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Abstract. This paper investigates some modular powering functions
suitable for cryptography. It is well known that the Rabin encryption
function is a 4-to-1 mapping and breaking its one-wayness is secure under
the factoring assumption. The previously reported encryption schemes
using a powering function are variants of either the 4-to-1 mapping or
higher n-to-1 mapping, where n > 4. In this paper, we propose an op-
timized powering function that is a 3-to-1 mapping using a p2g-type
modulus. The one-wayness of the proposed powering function is as hard
as the infeasibility of the factoring problem. We present an efficient al-
gorithm for computing the decryption for a p?g-type modulus, which
requires neither modular inversion nor division. Moreover, we construct
new provably secure digital signatures as an application of the opti-
mized functions. In order to achieve provable security in the random
oracle model, we usually randomize a message using random hashing or
padding. However, we have to compute the randomization again if the
randomized message is a non-cubic residue element — it is inefficient for
long messages. We propose an algorithm that can deterministically find
the unique cubic residue element for a randomly chosen element.

Keywords: factoring, RSA, modular powering function, digital signa-
ture.

1 Introduction

Modular powering functions with composite moduli play an important role in
cryptography. The RSA cryptosystem [15] and its variations [2, 3] use one-to-one
modular powering functions (permutations) as primitives. The Rabin cryptosys-
tem [14] and its variants such as Williams’ scheme [19] and Kurosawa et al.’s
schemes [8,9] are composed of modular squaring functions (4-to-1 mapping).
The other encryption schemes using powering functions [16],[10],[20],[21] utilize
n-to-1 mappings (n > 4). Although the types of moduli for these functions are
various, the following types are mainly used: pq, pgr and p?q (e.g. [5],[7],[13],[18]),
where p, g, r are distinct prime numbers. The pgr-type modulus can efficiently



compute its decryption using the Chinese remainder theorem [13], and the p?q-
type modulus can achieve faster decryption through the addition of Hensel lifting
[7],[18].

These various kinds of functions have advantages and disadvantages. In cryp-
tographic use, we expect that these functions will be proven to be one-way under
some reliable assumptions such as the infeasibility of factoring large composite
numbers. In view of this, strictly speaking, computational equivalence between
one-wayness and the infeasibility of factoring is not proven for RSA functions.
On the other hand, it is proven that Rabin functions are one-way under the
factoring assumptions. However, for pq and p?g-type moduli, these functions are
4-to-1, where four is the cardinality of the kernel (for pgr-type, the functions
are 8-to-1), and this causes some inconvenience in cryptography such as non-
uniqueness in decryption. In avoiding this, additional treatment is required for
decryption or efficiency is decreased, and thus a smaller kernel would better suit
for our purposes. Moreover, for a p2g-type modulus, the conventional methods
([7],[18]) require modular inverses and integer divisions to be calculated. Even
though these operations are fast in software, they are relatively expensive in
hardware, especially for smartcards that are not equipped with coprocessors to
calculate these inverses and divisions.

In this paper, we investigate optimized modular powering functions whose
one-wayness can be proven secure under factoring assumptions. We deal with
the general powering function f(x) = 2° mod n for modulus n = p?q. We show
some criteria related to parameters g, d,p,q, which determine the number of
pre-images of f(x). We conclude that the optimal encryption of our proposed
scheme is a 3-to-1 mapping with the p?¢-type modulus. Moreover, we propose an
efficient algorithm to calculate the preimages of a p?g-type modulus, which needs
neither modular inversion nor division of integers. Moreover, as an application
of these optimized functions, we construct new provably secure digital signa-
tures using these functions in the random oracle model. In order to achieve the
security in the random oracle model, we randomize a message using a random
hashing or padding. If the randomized message is a non-cubic element, we have
to randomize it again before the primitive computation — it is inefficient for long
messages. In this paper, we propose an algorithm, with which the three possi-
ble kernel elements can easily be distinguished by a non-cubic residue element.
This trick was initially proposed by Kurosawa et al. for the Rabin signature
scheme [9]. Finally, we estimate the efficiency of the proposed signature scheme
in contrast with other conventional signature schemes. The decryption of the
proposed scheme with a p?g-type modulus is about 1.7 time faster than that of
the Multi-Prime RSA with a pgr-type modulus of the same size.

This paper is organized as follows: In Section 2, we discuss the proposed
primitives and propose an optimal powering function. Section 3 discuss our con-
struction of digital signature schemes based on the optimal powering function.
Section 4 concludes the paper with a few closing remarks.



2 Proposed Primitives

In this section, we first study generalized powering functions with respect to
security, efficiency and convenience for cryptography, and we then propose a
new type of function that has not been applied to cryptography, that is, the
conditions for prime factors of the modulus are asymmetric. In the following,
because of efficiency, we concentrate on moduli of the powering functions that
have two distinct prime factors (cf. Section 3.4).

2.1 Generalized Powering Functions

Let us recall the general properties of powering functions over some finite rings.

We deal with a modulus N = p?q, where p and ¢ are distinct odd prime
numbers and d > 1 a positive integer'. Let us denote the g-th power map on the
multiplicative group Z3 by

f=fng: Ly — Ly, f(z) =29 mod N. (1)

Note that f is a gpg,-to-one map, and the image of f is equal to (Z%)9 =
(Z;d)gp X (Z;)g", where g, = ged(g,p — 1) and g, = ged(g, ¢ — 1) for an integer
1< g <min(p—1,¢g—1). Let y be an element in the image of f, then the
preimage of y by f is the set given by f~1(y) = {2/ € Z% | 2’9 = y}, which
consists of g,g, elements. We choose g = 2 for the Rabin cryptosystem, so that
there are four ambiguities for the preimage of map f due to g, = g, = 2.

We denote the isomorphism by the Chinese remainder theorem by ¢:

(b = (bpd’q : Zpd X Zq = Zy.

As is well known, the multiplicative group Z is a cyclic group of order p —1.
For an integer ¢ > 1, let Z,+ be the subgroup of elements in Z; whose order
divides t: Z,; = {a € Z) | a* = 1}.

We consider the g-th power map f, 4 on Zj. It can easily be seen that the

following sequence is exact®: 1 — Z, , — Z% Iog (Z;)g — 1. Moreover, we

have (Z%)? = ((Z;)g”)g/gp, and the order of (Z%)” is (p — 1)/g,, in particular,
it is prime to g/gp, thus it holds that ((Z;)gp)g/gp = (Z;)g”. Hence, we have

#HZ,q = (p—1)/# (Z;)g" = ¢p, and from the uniqueness of the subgroup of
order g, in Zj, letting (, 4 be a primitive g,-th root of unity, we have 7, ; =
Zp.g, = (Cp.g)» that is, the subgroup of g-th roots of unity is equal to that of
gp-th roots of unity. Let x4 = f, »=1 be the (p —1)/g,-th power map on Zj:

’ gp

-1
Xp,g * Ly = Ly,  Xpg(T) = 27 mod D,

p7
! Boneh et al. proposed a polynomial time algorithm for factoring p%q for large d [4].
The exponent d in this paper is very small, so that their algorithm is not effective.

2 4L, B4 (s said to be exact if the image of f is equal to the kernel of g.



then, due to the above arguments, the following sequence is exact: 1 — (Z;)g =

(Z;)gp — L X248 (¢pg) — 1. In other words, we have the following.

Lemma 1. For any x € Zy, we have Xy 4(z) € ((pg), and x is a g-th power
residue (i.e. T € (Z;)q) if and only if xp q(x) = 1.

For (Zpd)*, there exists a decomposition (Zpd)* ~ (Zp)* X ZLipa-1. Since
ged(g,p) = 1, regarding Zj as a subgroup of Ly, we have Z,a , = Z, 4, and
ac Z;d is a g-th power residue if and only if a mod p satisfies the condition in
Lemma 1. For the prime ¢, the situation is similar, let Z, , = ({4,4), then by
the Chinese remainder theorem, the set Zy 4 of all g-th roots of unity in Z3
can be written as Zn g = ¢(Zp,g, Zq.g) = {d)({;’g,cgvg) [0<i<gy 0<j< gq}.
Since ¢, 4 and (4 4 are easily calculated (e.g. (p g = z®=1/9% for some x), and by
Lemma 2, Zy 4 is easily obtained. Especially, we have #Zy 4 = g, - g4- Putting
Gp,q = lem(gy, gq), it can easily be seen that Zn , = Zn,g, -

Consequently, for y € (Zy)?, let x € f~'(y) be a preimage of y : 29 = y,
then the preimage f~!(y) of y by f can easily be calculated by the following:

fﬁl(y):{x(b(C;g?Cg,g) |OSZ<gpa O§J<gq}7 (2)

2.2 Security of Generalized Powering Functions

We will now consider computational equivalence between the factoring problem
on N and the one-wayness of function f, when f is not injective.

For each divisor e of g, define the set of primes which satisfy the conditions in
Lemma 1 as follows: P, = {p : prime | gcd(g,p — 1) = ¢, ged(g, (p —1)/e) = 1}.

Let Div(g) be the set of all divisors of g. For a non-empty set D C Div(g),
we put Pp = (J.cp Pe. We fix integers d > 1, g > 2, and non-empty sets
D1,Dy C Div(g), D1 UDs # {1} (namely, one of these contains divisors of ¢
besides 1). For these, let a instance generator Gy be a probabilistic polynomial
time algorithm such that Go(1¥) — N, where N = piq, |N| = k, p € Pp,,
q € Pp,, |p| = |q| (In the case 1 € D1 NDq, we also assume that (p, q) & P1 x P1).
Using these notations, we define the factoring problem and its infeasibility.

Definition 1. The integer factoring problem is a problem which for given d, g,
D1, Dy, and N ki3 Go(1%), finds the factors (p,q) of N. The integer factoring
problem is said to be infeasible if for any probabilistic polynomial time (PPT)
algorithm A, any constant ¢ and all sufficiently large k,

1
Pr[A(1%,N,d, g, D1, D2) = (p,q) | N & Qo(lk)} <=

ke’
Definition 2. A integer factoring PPT algorithm A is said to (t,€)-break N &
Go(1%) if for any k € N, after at most t(k) processing time, it factors N with

probability at least e(k). The set of outputs of Gy is (t, €)-secure if there exists no
integer factoring PPT algorithm which (t,€)-breaks.



We next define the one-wayness for the functions defined in Section 2.1 as
follows:

Definition 3. The notations d, g, D1, D2 and Gy are the same as in Defini-
tion 1. The powering function f is said to be one-way if for any PPT algorithm
A, for any constant ¢ and any sufficiently large k,

Adv(A) =
N & Gy(1k);
PI' A(lkavdvg,DhD%y):xlefil(y) $£Z7v, <ﬁ
R
y < f(2)

Definition 4. A PPT algorithm A is said to (t,€)-break f if for any k € N,
after at most t(k) processing time, it calculates a preimage of f with probability
at least e(k). f is (L, €)-secure if there exists no PPT algorithm which (t, €)-breaks.

Let ¢ be the Euler totient function. Under these definitions, we can prove
the following theorem, whose proof can be found in Appendix A.

Theorem 1. Fiz integersd > 1 and g > 2, and assume that all divisors of g can
be efficiently computed. Fiz non-empty sets D1, Dy C Div(g), D1 U Dy # {1},
and for any e; € Dy and ea € Do, assume that {Zelgcd(ehw)@(6)2}/6162 is
small. Moreover, we put

)2
T = min {1 _ Ze\gcd(el,ez) o(e) } -

e1€D1,e2€D2 €16

(Notice that by the assumptions, T is close to 1) Let Go be the instance generator

for the above parameters, and N bl Go(1¥). If the integer factoring problem for
N is infeasible, then the function f : Zy — Zy, f(z) = 29 is one-way. More
precisely, if the outputs of Gy are (tr, er)-secure, then f is (ts,€s)-secure, where

tr(k) = ty(k) + O(K®), er(k) = Tes(k).

According to the argument in Section 2.3, the inverse of f can be calculated
using the factors of N, hence, together with the argument in this section, it is
proven that the equivalence between the infeasibility of the factoring problem
on N and the one-wayness of f.

2.3 Efficient Decryption Algorithms

In this section, we consider an efficient algorithm that can be used to calculate
the preimage of the powering function considered in Section 2.1, (1) when the
prime factors p and ¢ are known. In the case d > 1, the conventional method
(e.g. [7][18]) needs the modular inverse to be calculated. We now propose an



algorithm that does not need the modular inverse to be calculated under some
conditions on p, ¢ and g. The proofs for the following are in Appendix B. The
notations p, ¢, d, N and g are the same as in Section 2.1. Let z = p~! mod ¢. For
y € (Zy)?, we put y, = y mod p, y, = y mod g and y; = y mod p'q (1 < i < d).
Moreover, let x, be a g-th root of y, in Z5, that is xJ = y,(modp). Similarly,
let z, be a g-th root of y,: J = y, mod g. Then, by the Chinese remainder
theorem, a g-th root of y modulo pq is given by the following lemma.

Lemma 2. By the isomorphism Z, X Zq = Lpg, (Tp,xq) € Ly X Lg corresponds
to an element x1 € Zpq, which is given by x1 = xp + p ((xg — zp)z mod q), and
x1 1s a g-th root of y1 (= y mod pq).

By using the g-th roots of y € (Z%)? in modulus p, ¢ and pg, we can calculate
the g-th root of y in the high-power modulus (p'q, i = 2,3,...,d) as we will see
in the following.

Lemma 3. The notations are the same as in the above. Let n, = (g]gc]%*l)*1 mod
pandz; (1 <i<d)beag-throot ofy; ( modulo p'q) such that z; = x, (mod p).
Then a g-th root x;41 of yi+1 modulo p'*1q such that r;y = xp mod p is given
by zip1 = x5 + 1y (yiy1 — x7) mod pitiq.

Though it needs to calculate a modular inverse modulo p for 7,,, under some
condition, we can have 7, efficiently.

Lemma 4. Assume that there exists some integer 0 < o < p — 1 depending
only on p and g such that x, = y, mod p, then we have (ngl)il mod p =
yz‘*l mod p.

(e%

This follows from &~ 29" = (z,-y, ") - (yp-2, ') =1 (mod p). Thus, once

! mod p, we have n, = g~! (a:g_l)_l

we obtain (mg_l)_l mod p, precalculating g~

mod p by single modular multiplication.
Let us next consider the conditions in Lemma 4. That is, let us consider the

relation between p and g so that there exists an integer o which depends only

on p and g, such that for any a € (Z;)g, a® is a g-th root of a ((a*)9 = a).

Proposition 1. Let p be a prime, 1 < g < p—1 be an integer. Then there exists
an integer o = a(p,g) (1 < a < p — 1) which depends only on p and g, and
satisfies (a*)9 = a for any a € (Z;)g if and only if ged(g, (p — 1)/g0) = 1 where
go = ged(g,p — 1). Here, av is given by

a=a(p,g)=10+u{(p—1)/g90}) /g, where u= (—(p—1)/go)” " mod g.

Using the above discussion, if for p and ¢, g satisfies the conditions in
Lemma 1, we have an efficient algorithm which calculates a g-th root (Note
that using a g-th root, all g-th root are given by (2)).



Corollary 1. Let p, q be prime integers. Let d > 1 be an integer, and N = p?q.
Let g > 1 be an integer which satisfies ¢ < min(p—1,q—1) and ged(g, (p —
1)/ ged(g,p—1)) = ged(g, (g—1)/ ged(g,q—1)) = 1. Moreover, let z = p~* mod g,
v = g ' mod p. For any y € (Z§)?, put y, = ymod p, y, = ymod q, y; =
ymod plq (1 <i<d), yg=vy. Then by calculating

To = y;“(p’g)‘l mod p, xp = ypxo mod p,
n = wxg mod p, Ty = yg(q’g) mod g,

1 =2xp+p((xqg — xp)z mod q),

and for i =2,3,...,d, z; = z;—1 + n(y; — J_,) mod p'q, we have that x := x4
is a g-th root of y (x9 =y mod N ).

2.4 Choices of Cryptographically Suitable Powering Functions

We will discuss the optimal choice of parameters g, g,, g, and d suitable for
cryptography in the following.

Efficiency must be considered, when we apply powering functions that can
be proven to be one-way under the assumption of infeasibility of the integer
factoring problem to cryptosystems. The cost of calculating the image will be
lower if the powering index is smaller. Moreover, if the number of preimages is
larger, then there will be some inconvenience as previously mentioned.

9 ||9p 9q|9p " 9q T 9 ||9p 94|9p " 9a T
2112 2| 4 .500 6 |2 6] 12 .833
31 3| 3 .667 6 6| 36 722
33| 9 444 TN T 7 .857
4 (|2 4| 8 750 7 7| 49 .245
4 4| 16 .625 8 (|2 8| 16 .875
511 5| 5 .800 4 8| 32 .813
5 5| 25 .320 8 8| 64 .656

Table 1. Parameters for 2 < g < 8

Table 1 shows all possibilities of g, g4 for relatively small g’s. Note that cases
where p and ¢ are replaced have been omitted, and for even g, the parities of
gp and g4 (even or odd) coincide. Note also that the case (g,gp,94) = (2,2,2)
(and d = 1) corresponds to the Rabin function. The value g, - g, indicates
that the g-th power function f is a (g, - g4)-to-1 mapping and is desired to
be small. 7 is the constant coefficient appearing in the reduction probability of
Theorem 1 (See also Appendix A for more details). Although a larger value is
desired, it is sufficient if it is greater than 0.5. From this table, we can conclude
that the case (g, 9p,94) = (3,1,3) (or (9,9p,94) = (3,3,1)), that has smallest
9p - 9q, 1s optimized for cryptosystems (ratio is 0.667 and sufficiently large).
Moreover, as we will see in Section 3.4, the p?g-type modulus (d > 2) makes the
preimage calculation more efficient using the proposed algorithm in Section 2.3.



Thus letting F (= fx.3) be the (3,1,3)-type function with the plg-type modulus
(d > 2), we can conclude that F' is most suitable for cryptography. Table 2 sums
up the positions of F' and other typical functions including RSA functions. In
the table, IF stands for integer factorization.

type map | condition p%¢-type modulus assumption for
(9, Ips 9q)|gpdq = 1| for p, q d=1 [ d>2 one-wayness
(e,1,1) 1:1 | symmetric RSA — RSA
(3,1,3) 3:1 |asymmetric — F IF
(2,2,2) 4:1 | symmetric Rabin HIME IF

Table 2. (3,1,3)-type and other typical functions

3 Application to Digital Signatures

As cryptographic applications of the arguments in the previous sections, we pro-
pose digital signature schemes using the cubic function considered in Section 2.4
and ensure the advantages of the proposed cubic function, especially in terms of
efficiency (Section 3.4).

3.1 Basic Notation

We start by recalling the basic notion of digital signature schemes according to
[3,6,12].

Definition 5. A signature scheme (G,S,V) is defined as follows:

The key generation algorithm G is a PPT algorithm which has input 1% and
outputs a pair of matching public and secret keys (pk, sk).

The signature generation algorithm S takes a message M to be signed and
public and secret keys (pk, sk), and outputs a signature x = Spi si(M).

The signature verification algorithm V takes a message M, a candidate signa-
ture ' and public key pk, and outputs a bit Vi (M, x'), equal to 1 if the signature
is accepted and 0 otherwise. We require that if x = Sy sk, then Vpp(M,z') = 1.

On the security for signatures, we only deal with existential unforgeability
under an adoptive chosen message attack which is the strongest notion([3, 6]).
In this scenario, a forger of a signature can dynamically obtain signatures of
messages of his choice and attempts to output a valid signature, where a pair of
message and signature (M, x) is said to be a valid forgery if V,,(M,z) =1 and
the signature of M was never requested by the forger.

Most signature schemes use hash functions, and the security is proven under
random oracle models, that is the models which is appropriately replaced the
hash functions with random oracles([1]). In these models, forgers are allowed
to access to random oracles. The resistance against these attacks is defined as
follows:



Definition 6. A forger A (a PPT algorithm) is said to (t,qn,qs,€)-breaks the
signature scheme (G, S, V) if after at most qn (k) queries to the hash oracles, ¢ (k)
signature queries and t(k) processing time, it outputs a valid forgery with proba-
bility at least e(k) (for any k € N). A signature scheme (G,S,V) is (t,qn,qs, €)-
secure if there exists no forger who (t,qn, qs, €)-breaks the scheme.

3.2 Proposed Signature Scheme: Scheme 1

We now propose new signatures constructed with the (3,1,3)-type cubic residue
function F' in Section 2.4 (in case d = 2). These are proven to be secure under
the assumption of integer factoring infeasibility.

First, we will consider the (full domain) hash & sign (F-FDHS) signature
which is most fundamental. Fix an integer a > 1 (regard a as a system parame-
ter).

Key Generation

Generate randomly same length distinct prime numbers p and ¢ such that
p=2mod3, ¢ =4 or 7Tmod9, and choose a non-cubic residue a modulo g,
put N = p?q. Let H : {0,1}* — Z% be a hash function. Then output the public
key (N, H) and the secret key (p, ¢) (a is open to public as a system parameter).

Signature Generation
1. For a message M, calculate w = H(M).
2. Let y be one of w, aw, a?w which is a cubic residue.
3. Calculate a cubic root z of y (x € F~1(y)).
4. Output x and end.

Signature Verification
1. For the message M, calculate w’ = H(M).
2. Calculate ¢/ = 22 mod N.
3. If 4/ coincides one of w’, aw’, a®w’, then output 1, else output 0 and end.

Remark 1. Note that from Lemma 1, we can easily seen that one of w, aw or a?w

is a cubic residue, and we can determine this by calculating x, 3 (this function
is also a powering function). Therefore, we do not have to recompute the hash
value H(M), and for a given message m we can uniquely generate the signature
x of m. Kurosawa et al. proposed a similar technique for the Rabin signature
[9].

We can prove that F-FDHS is secure over the random oracle model (the hash
function H is replaced to the random oracles) under the assumption of integer
factoring infeasibility. The proof is basically similar to that of [9].

For the fixed a and a positive integer k, let

N, = {N =p’q

p,q : primes, |p| =|¢| =k, pmod 3 =2,
qmod9:4or7,a€Z;\(Z;)3 ’



and put ' = (J, Nj. Then we can prove the following theorem, whose proof can
be found in Appendix C.

Theorem 2. If N is (i1, €r)-secure, then F-FDHS is (t,qm, qs, €)-secure, where,
tr(k) = t(k) + (gm + ¢s + 2)O(K®), er(k) = (2/3)e(k).

In the following, combining the idea in Lemma 1 and Corollary 1, we propose
an efficient algorithm, denoted by @, which for given w € Z},, determines which
of w, aw or a’w is a cubic residue, and then calculates its cubic root. The validity
of the algorithm can be found in Appendix D.

Let v = (p+1)/3and z = p~! mod q. Let 8, = (2p—4)/3 and 3, = (2¢—8)/9,
¢ =al""VBmodgqif ¢ =4mod9, B, = (¢ —17)/9, ¢ = a?@ /3 mod ¢ if
¢ = 7mod 9. Finally, let b = ¢! mod g¢.

Algorithm ¢
Inpl’It: N’ a? p? q’ 5})5 ﬂlp b? C’ Z? 7 and w G Z}kv'
Output: x € Z} s.t. z° mod N € {w, aw mod N, a*w mod N}.

Step 1. Check the cubic residuosity modulo ¢ and calculate a cubic root

Step 1.1. wy = w mod q.
Step 1.2. w; = wqﬁ“ mod g.
Step 1.3. z, = wiw, mod g.
Step 1.4. w3 = wlxz mod q.
Step 1.5. if wsg # 1 then
Step 1.5.1. Set x4 < bgxq mod ¢, w < aw mod N.
Step 1.5.2. If w3 # ¢ then set x4 < by, mod ¢, w < aw mod N.

Step 2. Calculate a cubic root modulo p

Step 2.1. w, = w mod p.

Step 2.2. zo = wf" mod p.

Step 2.3. z, = wpzo mod p.

Step 2.4. n = yxg mod p.
Step 3. 1 =z, + p((zq — zp)2z mod q).
Step 4. z = 21 + n(w — z3) mod N.

3.3 Other Constructions: Schemes 2 and 3

In the following, we present two additional constructions of digital signatures
based on the generalized powering function.



Scheme 2. Let us consider a scheme F-2HS (2-hash and sign) that has been
slightly changed from scheme 1 : F-FDHS. Similarly, fix an integer ¢ > 1 and
let k1, k2 be positive integers such that k; + k2 < |N| (modulus length), and
regard these as system parameters in addition to a in scheme 1. The key gener-
ation is the same as for scheme 1 except for letting H : {0,1}* — {0,1}* and
G : {0,1}%* — {0,1}*2 be hash functions (H: compressor, G: generator). The
public key is (N, H, G), and the secret key is (p, q).

Signature Generation
1. For a message M, calculate wy = H(M), wy = G(w1) and let w = w||w,.
2. Let y be one of w, aw, a?w which is a cubic residue.
3. Calculate a cubic root z of y (z € F~1(y)).
4. Output x and end.

Signature Verification

1. For M, calculate w} = H(M), wy = G(w}) and let v’ = w]||w}.

2. Calculate ¢/ = x> mod N.

3. If 3/ coincides one of w’, aw’, a®w’, then output 1, else output 0 and end.

This scheme can also be proven to be secure over the random oracle model
(the hash functions H and G are replaced with random oracles) under the factor-
ing assumption. Let A be the same as in scheme 1. We then have the following:

Theorem 3. If N is (t;,€e;)-secure, then F-2HS is (t,qm,qc,qs,€)-secure, where

tr(k) = t(k) + (au +qs +2)O(K%), er(k) = (2/3)e(k).

This scheme is nothing more than a version of PSS([3]) without the random
numbers part, and is not essentially different from scheme 1. However, with
respect to implementation, we bother with the construction of hash functions
with long output using some short output functions (e.g. [17]), and in most cases,
it is inefficient when the hash function deals with very long messages.

Scheme 3. Finally, we will consider a message recovery signature scheme F-MR
(message recovery) based on scheme 2 : F-2HS. For this scheme, the message
length is restricted to |M| = k. The key generation and signature generation
are the same as in scheme 2, except that we set wy = G(w1)® M in Step 1 of the
signature generation (Fig. 1). The signature verification and message recovery
are as follows:

Signature Verification
1. Calculate 3’ = 3 mod N.
2. Fori=0,1,2,
2.1. Calculate Yi = w17i||w27i = aéy’ mod N (|’LU171'| = kl, |U}271'
2.2. Calculate M; = wa; ® G(wy ;).
3. If for some 7, wy; = H(M;), then output 1 and M;, else output 0 and end.

= k).

Similarly for this scheme, we can prove following:



Theorem 4. IfN is (t1,€r)-secure, then F-MR is (t, qu, qa, s, €)-Secure, where

tr(k) = t(k) + (qu +as +2)O(k?),  er(k) = (2/3)e(k).

Similar to scheme 2, this scheme is nothing more than a version of PSS-R([3])
without the random number part, and this makes the message embedded in the
signature longer than that of PSS-R.

As we have seen, the proposed schemes need no trial and error in hashing
messages and in finding the cubic residue. This has a good effect on efficiency
especially with huge messages. In what follows, we discuss the advantages in
efficiency of the proposed schemes in detail.

Scheme 2: F-2HS Scheme 3: F-MR

Fig. 1. Paddings for Schemes 2 and 3

3.4 Efficiency Consideration

In this section, we estimate the efficiency of signature schemes 1,2 and 3 that
are introduced in the previous sections.

The proposed schemes deal with the modulus of N = p2q (|p| ~ |q|). In order
to fairly compare the proposed schemes with the RSA signature, we estimate the
efficiency of a fast variant of RSA signature, namely Multi-Prime RSA with N =
pqr (|p| = |q| = |r]) [13]. We consider the efficiency of signature generation which
has higher costs in comparison with signature verification. Note that Multi-prime
(pgr-type) Rabin’s scheme has the same efficiency as RSA signature in signature
verification.

The efficiency of public-key cryptosystems and digital signatures is frequently
estimated by the number of modular multiplications. Let us introduce the fol-
lowing notations to represent the amount of calculation. Let Mul(t) denote the
amount of calculation for an integer multiplication of ¢-bit integers. Similarly,
let RMul(¢) be that for a modular multiplication with a #-bit modulus, and
Red(s,t) that for a reduction s-bit integer with a ¢-bit modulus. Also, let RP(t)
be the number of ¢-bit modulus modular multiplications for powering with a
t-bit exponent.

In Schemes 1,2 and 3, the steps for checking the cubic residuosity and cal-
culating a cubic root (function @ in Section 3.2), comprise a large percentage
of signature generation. Thus we consider the efficiency of ®@. Let ¢ be the bit-
length of modulus N = p?q (|p| = |q|). Signature generation needs the following



amount of calculation:
(8 +2- RP(€/3)) -RMul(4/3) + 3 - RMul({) + 2 - Red (¥, £/3) + Mul(¢/3).

On the other hand, let ¢ be the bit-length of Multi-Prime RSA modulus
N =pqr (|p| = |q| = |r|), then for the generation of Multi-Prime RSA signature
[13], it needs

(1+3-RP(£/3)) - RMul(£/3) + 3 - Red(£, £/3) + Mul(£/3).

We have approximately RMul(t) ~ n?-RMul(¢/n), Mul(¢) ~ (1/2) - RMul(t).
Moreover, if we use the Montgomery method [11] for modular reduction, then we
have Red(t,t/n) ~ ((n+ 1)/n?) - RMul(t). We set a standard to the number of
modular multiplication on 1024-bit modulus: 1 = RMul(1024). We also assume
that a ¢-bit modular multiplication costs £(t) := (¢/1024)2. Then the amount of
calculation for the signature generation of the proposed and RSA schemes is

Proposed schemes : {29/6 + (2/9)RP(£/3)} £(¥),
Multi-Prime RSA : {3/2 + (1/3)RP(¢/3)} £(¥).

For modular powering, we adopt the basic binary method. If we assume that
half the bits in the exponent are non-zero, then this method needs 3t/2 modular
multiplications with a t-bit modulus (where we also assume that modular squar-
ing and modular multiplication have the same amount of calculation). Taking
all this into account, the number of modular multiplications in the proposed
schemes and the RSA signature and their ratio are as follows:

Proposed Schemes : (29/6 + ¢/81) £(¢), Multi-Prime RSA : (3/2 + £/36) £(£),
Multi-Prime RSA /Proposed scheme = 1.71.

Thus, we can say that the proposed schemes are considerably more efficient in
signature generation than Multi-Prime RSA signature. Similarly, we can see that
the proposed schemes are three or more times more efficient than the pg-type
RSA-CRT signature.

4 Summary

We studied modular powering functions suitable for cryptography. In particular,
we proposed a 3-to-1 functions, which can be proven to be one-way under the
factoring assumption. The three ambiguities of the kernel can easily be distin-
guished by a non-cubic residue element. For the p?g-type modulus (d > 2), we
proposed a more efficient method of calculating preimages for these functions,
which requires no modular inversion algorithm for Hensel lifting. Thus we can
say that the proposed functions are optimized in terms of security and efficiency.

As cryptographic applications, we also proposed new digital signature schemes
which utilize the new functions with d = 2. Finally, we showed that the proposed



schemes are about 1.71 times more efficient than Multi-Prime RSA with the
same length modulus (more than three times faster than the pg-type RSA-CRT
signature).
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A Proof of Theorem 1

We begin with the next lemma.

Lemma 5. If we identify Zy with integers between 0 and N —1, then as integers,
for 0 <i< g, and 0 < j < g4, the followings hold.

ged(p(¢) 1) = 1,N) =q, ged(¢(1,¢),) —1,N) =p”.

Proof. Since ¢(¢} ,,1) —1mod p? = ¢} , —1# 0, and ¢(¢} ,,1) — 1 mod g =
1 —1 =0, we can see that the greatest common multiple of this and NV is equal
to ¢. Similarly we can prove the second equation.

Let us denote Hy 4 the set of roots of unity in Lemma 5:

HNA,g = {¢( ;i;,g7 1) | 0<i< gp} U {(b(]-vgé,g) | 0< .7 < gq} C ZN,g'
Moreover, let us define G 4 as follows:
Gng=1{r € Zng4|2° € Hn4 for some divisor e of g} .

From the definition, Hy,y C Gn,g. Then the number of elements in Gy g4,
denoted by gn,g, is given by following.

Lemma 6. gng = p0q — Doc|god(gy.g,) P(6)*-

Proof. ¢(¢} ,,¢),) € Zng is in Gy, if and only if the order of p-part of

&( ;,97 Cg’g) is different from that of g-part of it. Hence, elements in Zy 4\ Gn 4

are which have same order in p-part and ¢-part, in this case, the orders are divi-

sors of ged(gp, gq). For each divisor e| ged(gp, gq), the number of elements which
2

have the order of p and g-part e is equal to (e)?, which gives the desired result.

Proof of Theorem 1: We now give the proof of Theorem 1. Under the as-
sumptions, let us put g, = ged(g,p — 1), g4 = ged(g,q — 1), then f is g,g4 : 1
(9pgq > 1) function (Of course, the adversary does not know p, g, but she knows
that f is not injective). We assume that there exists a PPT algorithm A which
computes a preimage of f. That is, A has input k, d, g, D1, D2, N, y, and it
outputs ' in f~1(y) = {z € Z% | 29 = y} with non-negligible probability. Using
A, we construct an algorithm M which factors N as follows:



Input of M : k., d, g, D1, D2, N
Output of M : a prime factor of N
. Choose randomly z € Z% (z # 1).
. Calculate y = 29 mod N.
. Input (k,d, g,D1,D2, N,y) to A.
. For an output 2’ of A, if y # 2’Y mod N, then Fail.
. Calculate z = 2’ /x mod N.
6. For each divisor e of g, calculate w = ged((2¢ — 1 mod N), N), if w is
non-trivial divisor of N, then output w and end, otherwise Fail.

CU W -

In Step 6, it outputs non-trivial divisor w if and only if z € Gy 4, hence
the success probability in Step 6 is equal to gy 4/gpgq- If we put the success
probability of A (that is, the probability such that it does not Fail in Step 4) to
Adv(A) = ¢, then, by Lemma 6, the final success probability of M, namely, the
probability such that M factors N, is equal to

2
gng ce= gpgq B Zel gcd(gp,9q) 80(6)
9pYq 9IpYq

- €,

which is non-negligible by the assumptions.

B Proofs of lemmas in Section 2.3

Proof of Lemma 3: By the assumptions, we have y;11 — a:f mod piq = Yi —
zf mod p’q = 0. Hence it mod p = x; mod p = x,. Moreover, 7 , = 27 +
927 ', (yir1 — x7) mod pitlq, and by the assumption on z; and the definition
of n,, we have gmf_lny mod p = gmg_lny mod p = 1 mod p. Therefore, we have

2y mod pttq = af + yip1 — 2 mod p'tlg = yiq.

Proof of Proposition 1: Let a be a generator of the cyclic group (Z;)g. The
order of a is equal to (p — 1)/go. If there exists an integer o which satisfies the
condition, we have (a®)9 = a, thus it must be «- g =1 (mod (p — 1)/go). That
is , g must be prime to (p — 1)/go. Conversely, if ged(g, (p — 1)/go) = 1, then
let a be as above, it is directly checked that it satisfies the condition. As the
order of a is (p — 1)/go, we have a®9 = g'Tu{(P=1/9%} — ¢ (mod p). Moreover,
u={—(p—1)/go} ! mod g, hence the numerator of « is divided by g, thus «
is an integer. Since u < g—1, g0 < g < p—1, we have 1 + u{(p — 1)/go} <
1+(g—D{(p—1)/g90} < g(p—1)/go < g(p—1). Thus « satisfies 1 < a < p—1.

C Proofs of the Security of Proposed Schemes

Proof of Theorem 2: Let A be a forger which (¢, qm, gs, €)-breaks the signature
scheme F-FDH. The input of A is a public key (N, a). A has oracle access to
random oracle H. Then we construct the factoring algorithm I which can (¢, €5)-
break by using A. The input of I is N € N. I gives A the public key N (we



assume that I and A know a as a system parameter). After this, A begins to
make sign queries and hash queries. For these queries, I behaves as follows.

If A makes a sign query without having made the corresponding hash query,
I at once goes ahead and makes the hash query itself, and then corresponds for
sign query as described below. Similarly for the output forgery, thus we may
assume that if A4 makes a sign query or outputs a forgery, then it has already
made corresponding hash query. Hence, effective number of hash queries is at
most ¢(k) = qu (k) + qs(k) + L.

To answer queries, I makes the query-mapping table (@, A) as follows: Start
with Q = A = ¢ (empty set). Suppose A makes a hash query m.

If m ¢ @, then I chooses randomly r € Z} and ¢ € {0,1,2}, returns
H(m) =7r3/a’ mod N, and sets Q = QU {m}, A= AU {(m,r,i,H(m))}.

If m € Q, then I finds corresponding (m,r,i, H(m)) € A and returns
H(m)(=r3/a’ mod N).

Next, suppose that A makes a sign query m. As mentioned above, we can
assume that there was already a hash query m, hence there exists corresponding
(m,r,i, H(m)) € A. I finds this and returns r as the signature for m.

Finally, suppose that A outputs a forgery (7n, §). If § is valid, then for some
i, a’H(m) = 8> mod N. N is chosen randomly and H is random from our con-
struction of I. Hence A can not distinguish the behavior of I from the original
game, thus A succeeds this simulation with original success probability e.

On the other hand, by the assumption, m € @, thus there exists the cor-
responding (7, 7,4, H(m)) € A and it holds #3 = 33 mod N. Suppose that 3 is
valid. From the argument in Theorem 1, using the above equations (if # # §),
a non-trivial factor of N can be calculated with success probability 2/3. Thus I
succeeds in factoring N with probability e; = (2/3)e.

Let to(k) be processing time for a modular multiplication with k-bit modulus.
I carries out 3-modular multiplications for each hash query, hence also from
Theorem 1, the processing time ¢’ of I is given by

' <t+ O(K®) + 3(qu + g5 + 1)to(k)
=t+ (qu + qs +2)O(k3).

Proof of Theorem 3, 4: Theorem 3 can be proven just like Theorem 2 except
for the behavior of simulator 1.

First, I makes the query mapping table (Qmu, An), (Qa, Ag) starting with
empty sets. Suppose the forger A makes a H-query m. If m € Q g, then I chooses
r €g Zy and i € {0,1,2} calculate y = wi||wy = r3/a* mod N (|wy| = ky,
lwa| = k2) and sets Qp = Qu U {m}, Ay = Ay U{(m,r,i,w1,w2)}, Q¢ =
Qc U{wi}, Ag = Ag U {(w1,ws)}. Finally, I returns H(m) = wy. f m € Qg,
then I finds corresponding (m, r, i, wy,ws) € Ay and returns H(m) = w;.

When A makes a G-query wq, if wy € Qg, then I finds corresponding
(w1, wy) € Ag and returns G(wy) = we, else I generates randomly ra, |ro| = ko,
sets Qg = Qg U{w1}, Ag = Ag U {(w1,r2)} and returns G(w;) = ra.

Finally, suppose that 4 makes a sign query m. We can assume that m €
Qm, hence I can finds corresponding (m,r,i,wy,ws) € Ay and returns r as a
signature for m.



Then, as in Theorem 2, we can see that I can factor the modulus using the
forgery outputted by A with the indicated probability and processing time.

The proof for Theorem 4 is similar as in Theorem 3, so we omit the detail.

D Validity of the algorithm ¢

We can easily obtain the algorithm ¢ from Corollary 1 and the following lemma.

Let a € Zj be a non-cubic residue and fix. In each case g mod 9 = 4 or 7,
define the followmgs in case of ¢ mod 9 = 4, a = (2¢+1)/9, ¢ = a'~/3 mod ¢,
and in case of g mod 9 =7, a = (¢ +2)/9, ¢ = a®@=1)/3 mod ¢q. Moreover, put
b=a—1and b=a“ modq.

Lemma 7. For w € Z , put wy = = w? mod q, wy = wy - wmod q and wz =
w1 - w3 mod q. Then w3 € {1,¢,¢?}, and we have followings: w3 = w mod ¢
if wz = 1, (bwg)® = aw mod q if wg = ¢ and (bV*w2)® = a®w mod q otherwise

(wg = CQ)

Proof. By the assumptions and Lemma 1, { is a non-trivial cubic root of unity.
Note that x43(a) = ¢ (gmod 9 = 4), = C2 (g mod 9 = 7). Moreover, in case
of gmod 9 = 4, wy = w@=D/9+2Ca+D/9 = ,2(@=1/3 = y 4 (w)?, in case of
gmod 9 = 7, wg = w4~ 7/9+2(a+2)/9 — y,(a— /8 _ = Xg,3(w). Hence, by Lemma 1,
we have w3 € {1,(,(?}, and w3 = 1 means that w is a cubic residue. In this case,
by Lemma 1, wo = w® is a cubic root of w. In case of ws = (, if ¢ mod 9 = 4,
then, by the above, we have x,3(w) = (2, and x,,3(aw) = ¢ - ¢? = 1, moreover
since bws = (aw)® mod ¢, by Lemma 1, we have the result. In case of g mod 9 = 7
or w3 = (2, it can be shown similarly.

E Decryption of RSA function

We briefly recall that the decryption algorithm for Multi-Prime RSA [13].

Let p,q,r be distinct prime numbers, N = pgr, z, = p~! mod ¢, and z, =
(pg)~! mod r. Let 1 < d < N be an integer such that ged(d, (p—1)(g—1)(r—1)) =
1land d, = d mod p, d; = d mod ¢, d,, = d mod r. In the case of p, g, r are known,
for any C € Z%, we can calculate M = C% mod M (this is the preimage of C by
the RSA function z¢ mod N, where e = d~! mod (p—1)(¢—1)(r—1)) as follows:

Step 1. €, = Cmod p, C; = C mod ¢q, C, = C' mod r.

Step 2. M, = C’g” mod p, M, = C’g“ mod g, M, = C% mod r.
Step 3. My, = M, + p((My — Mp)zy mod q).

Step 4. M = My, + (pq)((M, — Mpg)z, mod r).

Step 5. Output M and end.



