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PAPER

Gradient-Limited Affine Projection Algorithm for
Double-Talk-Robust and Fast-Converging
Acoustic Echo Cancellation

Suehiro SHIMAUCHI†,††a), Yoichi HANEDA†, Akitoshi KATAOKA†, Members,
and Akinori NISHIHARA††, Fellow

SUMMARY We propose a gradient-limited affine projection algorithm
(GL-APA), which can achieve fast and double-talk-robust convergence in
acoustic echo cancellation. GL-APA is derived from the M-estimation-
based nonlinear cost function extended for evaluating multiple error signals
dealt with in the affine projection algorithm (APA). By considering the non-
linearity of the gradient, we carefully formulate an update equation consis-
tent with multiple input-output relationships, which the conventional APA
inherently satisfies to achieve fast convergence. We also newly introduce a
scaling rule for the nonlinearity, so we can easily implement GL-APA by
using a predetermined primary function as a basis of scaling with any pro-
jection order. This guarantees a linkage between GL-APA and the gradient-
limited normalized least-mean-squares algorithm (GL-NLMS), which is a
conventional algorithm that corresponds to the GL-APA of the first order.
The performance of GL-APA is demonstrated with simulation results.
key words: affine projection algorithm, acoustic echo canceller, double-
talk, robust control

1. Introduction

In teleconferencing systems that connect remote sites to
communicate with each other, an acoustic echo canceller
(AEC) is indispensable at each site. To eliminate acoustic
echo from the microphone signal, an adaptive filter with a
finite impulse response (FIR) structure is often implemented
in the AEC. The adaptive filter adaptively simulates the echo
path impulse response between the loudspeaker and micro-
phone, produces an echo replica, and subtracts the echo
replica from the microphone signal. However, the adaptive
filter often suffers from divergence of its coefficients during
double-talk, where the near- and far-end speakers are talking
simultaneously. This is because the near-end speech acts as
an outlier for the adaptation. Such an outlier causes a large
disturbance in the echo path identification of many adaptive
algorithms. Thus, robustness against double-talk has been a
key issue in AEC implementation.

There are several approaches for achieving robustness.
In the dual-filter-structure approach [1], [2], an adaptive fil-
ter is used in the background, while a semi-fixed filter
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achieves echo cancelling in the foreground. The coefficients
of the foreground filter are overwritten by the background
coefficients only when the background filter is judged to
converge sufficiently. Hence, the foreground filter is free
from the wrong adaptations that occur in the background.
Using a double-talk detector (DTD) [3]–[8] is also a reason-
able approach for freezing the adaptation when a double-talk
situation is detected. However, when the echo path changes
during double-talk, both the dual filter and DTD techniques
by themselves can do nothing except stop the (foreground)
filter update, even if they can detect echo path changes. This
can lead to annoying howling when there is a drastic echo
path change. To overcome this problem, the adaptive algo-
rithm itself needs to be improved so that it can track the echo
path change even during double-talk.

Direct modification of the least-mean-squares algo-
rithm (LMS) [9] by introducing nonlinearity into the error
cost function gives a reliable clue for achieving such a ro-
bust adaptation [10]–[12]. We have introduced the gradient-
limited normalized LMS (GL-NLMS) [13] based on M-
estimation [12], as a robust version of the normalized LMS
(NLMS) [14]. As shown in [13], GL-NLMS achieves better
echo-path tracking during double-talk than another robust
NLMS proposed in [11] does. The difference between their
performances is due to their error evaluations. GL-NLMS
evaluates the error ‘after’ normalization by the reference sig-
nal vector norm, while the robust NLMS in [11] evaluates
the error ‘before’ the normalization. However, in common
with NLMS-based algorithms, GL-NLMS still has a draw-
back: slow convergence for colored input signals such as
speech. This drawback needs to be overcome for AEC ap-
plications.

The affine projection algorithm (APA) [15]–[19] is
a good candidate to overcome the slow convergence of
NLMS-based algorithms. In previous works to achieve fast
convergence with low sensitivity to noise, variable step-size
control is introduced in the APA [18], [20] or an APA-like
signal decorrelation algorithm [21]. Those techniques can
be regarded as an extension of variable step-size NLMS,
such as that shown in [22]. Parallel subgradient projection
techniques [23] are also developed to overcome the sensi-
tivities of APA to noise. However, none of these approaches
considers the double-talk situation, where noise corresponds
to near-end speech with nonstationarity, and its level is as
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high as or sometimes higher than that of the echo signal to
be eliminated.

In this paper, we focus on deriving a novel adaptive
algorithm that can track the echo path change even during
double-talk, with faster convergence than that of GL-NLMS
and robustness as good as that of GL-NLMS. We extend
the gradient-limited (GL-) algorithm based on APA, which
we call GL-APA. First, we newly define a cost function for
the APA derivation, which does not appear in [15]–[19], but
seems promising for our purpose: to apply M-estimation-
based nonlinearity to APA. By taking account of the non-
linearity of the gradient, we carefully formulate an update
equation consistent with multiple input-output relationships,
which the conventional APA inherently satisfies. Further-
more, we also introduce a scaling rule for the nonlinearity,
so we can easily implement GL-APA of any projection order
by scaling a predetermined primary function. This guaran-
tees a linkage between GL-APA and GL-NLMS by choos-
ing the nonlinear function used in GL-NLMS as the primary
function.

2. AEC and Conventional Algorithms

2.1 Configuration of AEC

An AEC based on an adaptive filter, as shown in Fig. 1, is
used to eliminate acoustic echo caused by acoustic coupling
between loudspeaker and microphone in hands-free telecon-
ferencing. The signal x(n) at a discrete time index n is re-
ceived from the far end. That signal is reproduced by the
loudspeaker and picked up by the microphone as echo d(n)
after passing through the room echo path, which has an im-
pulse response modeled as h = [h1, . . . , hL]T , where L is the
effective length and T denotes the transpose. For simplic-
ity, here we consider the period where h is time-invariant,
which is assumed in the derivation of most conventional al-
gorithms. The echo d(n) can be denoted as

d(n) = xT (n)h, (1)

where x(n) = [x(n), . . . , x(n − L + 1)]T . The microphone
signal y(n) may contain a speech signal s(n) and ambient
noise signal a(n) at the near end in addition to the echo d(n).
On the other hand, the adaptive FIR filter in the AEC has
its coefficient vector ĥ(n) to identify the echo path h and

Fig. 1 Configuration of AEC.

generates an echo replica d̂(n) as

d̂(n) = xT (n)ĥ(n). (2)

The residual signal e(n) is fed back to the adaptive filter as
the error signal to update ĥ(n) and is sent to the far end as
an echo-eliminated signal, where

e(n) = y(n) − d̂(n). (3)

Here, we suppose that ĥ(n) has the same length as h. A
general form of the update equation of ĥ(n) can be expressed
as

ĥ(n + 1) = ĥ(n) + µ∆ĥ(n), (4)

where the update vector ∆ĥ(n) depends on each adaptive al-
gorithm, and µ is the step-size. The near-end speech s(n) or
ambient noise a(n) contained in the microphone signal y(n)
is regarded as an outlier for adaptive algorithms to identify
the echo path h. One of the most challenging situations for
the adaptation is double-talk, where near- and far-end speak-
ers are talking simultaneously. In such situations, an adap-
tive algorithm derived from a simple error-minimization cri-
terion, such as NLMS [14], often suffers from misconver-
gence or divergence of its coefficients because the outlier is
dominant in the error signal e(n) to be minimized.

2.2 GL-NLMS

GL-NLMS [13] is a modified version of NLMS, which is
more robust against outliers. The modification is based on
M-estimation [12] and is described as follows. According to
[13], NLMS can be derived from the following cost function

JNLMS(n) =
1
2

( |e(n)|
‖x(n)‖

)2
. (5)

On the other hand, the cost function for GL-NLMS is given
as

JGLNLMS(n) = ρ

( |e(n)|
‖x(n)‖

)
, (6)

where ρ(v) is, in general, an arbitrary function for variable v.
Note that, when ρ(v) = v2/2, (6) is equal to (5). The gradient
estimate is obtained from (6) as

∇̂GLNLMS(n) =
∂JGLNLMS(n)

∂ĥ(n)

= −ψ
( |e(n)|
‖x(n)‖

)
· sgn(e(n)) · x(n)

‖x(n)‖ , (7)

where the function ψ(v) = ∂ρ(v)/∂v, and sgn(v) denotes a
sign function. The update vector for GL-NLMS is made
from the gradient estimate ∇̂GLNLMS(n):

∆ĥGLNLMS(n) = −∇̂GLNLMS(n). (8)

For good robustness, ρ(v) is chosen so that ψ(v) be-
comes a bounded function [12]. Examples of functions ρ(v)
and ψ(v) for AEC application are shown in [13]:
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ρ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 v

2, 0 ≤ v ≤ T1

S 1v, T1 < v ≤ T2

S 2v, T2 < v,
(9)

and

ψ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v, 0 ≤ v ≤ T1

S 1, T1 < v ≤ T2

S 2, T2 < v,
(10)

which are specified in the three separated ranges based on
the behavior of the value of v = |e(n)|/‖x(n)‖. When 0 ≤
v ≤ T1, single-talk of the far-end speaker is mostly expected.
When T2 < v, single-talk is rarely expected. When T1 < v ≤
T2, both single-talk and double-talk, or even an echo path
change can be expected. Thresholds T1 and T2 correspond
to the lower and upper bounds, respectively, of the range of
the acoustic coupling level observed after echo cancellation.
The lower threshold T1 can be set by estimating the limit of
the adaptive identification because of ambient noise, finite
tap length, and so on. The upper threshold T2 can be set
assuming the system setup, such as maximum volume of the
loudspeaker. To achieve greater suppression of the update
amount for larger v, the values of S 1 and S 2 are chosen as
0 ≤ S 2 ≤ S 1, e.g., S 1 = 0.5T1 and S 2 = 0.25T1.

GL-NLMS achieves significantly more robust adapta-
tion than the ordinary NLMS, as shown in [13]. However,
GL-NLMS has the same drawback as the ordinary NLMS,
that is, slow convergence for the input of a colored signal
such as speech.

2.3 APA

APA [15]–[19] is an extended version of NLMS to achieve
faster convergence, especially for colored input. The update
vector used in APA is given as

∆ĥAPA(n)=X(n)R−1(n)e(n), (11)

where

X(n) = [x(n), x(n − 1), . . . , x(n − p + 1)], (12)

R(n) = XT(n)X(n) + δ1Ip×p, (13)

e(n) = y(n) − XT (n)ĥ(n), and (14)

y(n) = [y(n), y(n − 1), . . . , y(n − p + 1)]T . (15)

In the above equations, p denotes the projection order, δ1 is a
positive constant for regularization of the inversion stability,
and Ip×p is the identity matrix of p×p. In actual calculations,
by regarding δ1 as sufficiently small, we can approximately
obtain the error vector e(n) in (14) based on a simple past-
error correction:

e(n) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e(n)

(1 − µ) · e(n − 1)
...

(1 − µ)p−1 · e(n − p + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (16)

The update vector ∆ĥAPA(n) in (11) is derived as the

minimum norm solution among non-unique solutions of p-
th order (underdetermined) simultaneous equations

e(n) = XT (n)∆h(n), (17)

where ∆h(n) denotes non-unique unknowns that include the
true solution h − ĥ(n). By satisfying the last p input-output
relationships simultaneously, the update vector ∆ĥAPA(n)
can be more reliable than that of NLMS, which satisfies only
the current relationship. This agrees with the fast conver-
gence of APA.

Our aim in this study is to extend GL-NLMS by incor-
porating the fast convergence of APA. To achieve this, here
we provide another derivation of APA, which does not ap-
pear in [15]–[19]. When we give a cost function based on
an analogical extension of the cost function in (5) as

JAPA(n) =
1
2

eT (n)R−1(n)e(n), (18)

we obtain

∇̂APA(n) =
∂JAPA(n)

∂ĥ(n)
= −X(n)R−1(n)e(n), (19)

and thus the update vector of APA

∆ĥAPA(n) = −∇̂APA(n) (20)

is derived.

3. Proposed Robust and Fast-Converging
Algorithm

In this section, we propose a robust and fast-converging
adaptive algorithm by applying an APA-like extension to
GL-NLMS. From the newly defined APA cost function (18),
we obtain good prospects for extending the M-estimation so
that the proposed algorithm can deal with multiple (the last
p) error signals, instead of ordinarily dealing with only the
current error e(n). To satisfy the last p input-output relation-
ships simultaneously, as the conventional APA inherently
does, we carefully formulate the update equation taking into
account the nonlinearity of the gradient estimate. Further-
more, we introduce a scaling rule for the nonlinearity, so we
can easily implement GL-APA of any projection order p by
using a simple primary function as a basis of scaling with
p. We also show that the extra computational complexity
of the proposed algorithm is not so large compared with the
complexity of the ordinary APA.

3.1 GL-APA

To derive an APA-like robust algorithm based on M-
estimation, we modify the cost function in (18) to

JGLAPA(n) = ρ
( √

eT (n)R−1(n)e(n)
)
. (21)

By noting that (11) indicates

‖∆ĥAPA(n)‖ =
√

eT (n)R−1(n)e(n), (22)
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we can describe the gradient estimate of (21) as

∇̂GLAPA(n) =
∂JGLAPA(n)

∂ĥ(n)

= −ψ
(
‖∆ĥAPA(n)‖

)
· ∆ĥAPA(n)

‖∆ĥAPA(n)‖ + δ2
, (23)

where a positive constant δ2 is introduced to avoid division
by zero. By expressing the update vector as

∆ĥGLAPA(n) = −∇̂GLAPA(n), (24)

we derive a new algorithm: GL-APA. Even though the con-
stants for numerical stability, δ1 and δ2, are introduced in
(23), the gradient estimate ∇̂GLAPA(n) in (23) is essentially
equivalent to (7), when p = 1. This means that GL-APA
includes GL-NLMS.

3.2 Error Vector Approximation

In the case of the ordinary APA, we normally use the er-
ror vector e(n) approximated as (16) to reduce the compu-
tational cost of calculating the update vector ∆ĥAPA(n). In
the GL-APA case, however, the approximation of (16) is not
always accurate because the correction of past errors is af-
fected by not only the step-size µ but also the nonlinearity
of ψ(v). Therefore, we apply another approximation to the
error vector for GL-APA as follows:

e(n) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(n)
(1 − γ(n − 1)) · e(n − 1)

...⎛⎜⎜⎜⎜⎜⎜⎝
p−1∏
k=1

(1 − γ(n − k))

⎞⎟⎟⎟⎟⎟⎟⎠ · e(n − p + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where the values of γ(n − 1), . . . , γ(n − p + 1) are calculated
in the past steps based on

γ(n) = µ ·
ψ
(
‖∆ĥAPA(n)‖

)
‖∆ĥAPA(n)‖ + δ2

. (26)

The reasonability of this modification can be easily under-
stood by regarding GL-APA as a kind of variable step-size
APA [18], [20]. In other words, the update equation of GL-
APA can be written as

ĥ(n + 1) = ĥ(n) + γ(n)∆ĥAPA(n). (27)

However, the step-size γ(n) in (26) uniquely achieves
double-talk robustness by using the bounded nonlinear func-
tion ψ(v) derived from the modified cost function (21).

3.3 Nonlinearity Scalable to Projection Order

The performance of GL-APA, like that of the ordinary APA,
depends on the choice of its projection order p. The require-
ment for GL-APA is to increase the convergence rate as p is
increased while not degrading robustness against outliers.
To achieve this, the function ψ(v) should be appropriately

chosen depending on the choice of p. Instead of spending
time and effort to choose an appropriate ψ(v) for every p,
here, we introduce a scaling rule for ψ(v) applicable to any
p.

First, as the basis for the scaling, we consider the func-
tion ψ(v) used for GL-NLMS and rename it ψ1(v). The prop-
erty of the primary function ψ1(v) can be chosen to fit the sta-
tistical behavior of v = |e(n)|/‖x(n)‖, as shown in [13]. In the
case of GL-APA, the variable changes to v = ‖∆ĥAPA(n)‖.
Thus, the difference in behavior between |e(n)|/‖x(n)‖ and
‖∆ĥAPA(n)‖ needs to be investigated. Although their behav-
iors may also depend on the characteristics of the input sig-
nal, here, we simply assume that the input is a white Gaus-
sian signal to obtain a basic clue for estimating the differ-
ence. Under the assumption, the non-diagonal elements of
the matrix R(n) take values close to zero, so

R(n)

≈ diag[‖x(n)‖2, ‖x(n−1)‖2, . . . , ‖x(n−p+1)‖2]. (28)

From (22) and (28), we obtain

‖∆ĥAPA(n)‖

≈
√
|e1(n)|2
‖x(n)‖2 +

|e2(n)|2
‖x(n−1)‖2 +· · ·+

|ep(n)|2
‖x(n−p+1)‖2 , (29)

where e1(n), e2(n), . . . , and ep(n) respectively denote the el-
ements of e(n). Furthermore, by assuming that the reference
input and the outlier are stationary at least during p sample
periods, and that the adaptation does not progress so much
during only p sample periods, we expect

E

[ |e(n)|
‖x(n)‖

]
≈ E

[ |e(n − 1)|
‖x(n − 1)‖

]

≈ · · · ≈ E

[ |e(n − p + 1)|
‖x(n − p + 1)‖

]
, (30)

where E denotes expectation. Then, by applying (25) and
(30) to (29), we obtain

E
[
‖∆ĥAPA(n)‖

]
≈ κp(n) · E

[ |e(n)|
‖x(n)‖

]
, (31)

where

κp(n) =

√√√
1 +

p−1∑
m=1

⎛⎜⎜⎜⎜⎜⎝ m∏
k=1

(1 − γ(n − k))2

⎞⎟⎟⎟⎟⎟⎠. (32)

The subscript p indicates the projection order, and we de-
fine κ1(n) = 1. According to the relationship between
|e(n)|/‖x(n)‖ and ‖∆ĥAPA(n)‖ in (31), the statistical behavior
of ‖∆ĥAPA(n)‖ is proportional to that of |e(n)|/‖x(n)‖ scaled
with κp(n). Thus, we obtain a scalable function ψp(v) for
variable v = ‖∆ĥAPA(n)‖ by scaling the primary function
ψ1(v) as

ψp(v) = κp(n) · ψ1

(
v

κp(n)

)
. (33)
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We note that the above assumptions that lead to (33) can be
applied to the speech input case without causing a signif-
icant degradation. Because the matrix R(n) for the speech
input still has diagonal elements larger than its non-diagonal
elements. In addition, we can assume that the speech is sta-
tionary during a short period (about 30 ms) [24]. Therefore,
as long as the projection order p is sufficiently small, we in-
tend to apply the scaling rule in (33) to the gradient estimate
(23) even for the speech input.

We also point out that the scale parameter κp(n) de-
pends not only on the projection order p but also on the past
step-sizes γ(n − 1), . . . , γ(n − p + 1), which retain informa-
tion about past gradient suppressions if p ≥ 2. Therefore,
the scalable function ψp(v) is time-variant even after a fixed
p is given. On the other hand, even if we could find a man-
ually optimized function instead of a scalable function after
an enormous amount of trial and error for each p, it would
be only a fixed function that cannot consider the past gra-
dient suppressions. This indicates that the scalable nonlin-
ear function ψp(v) in (33) has the potential to deal with the
behavior of the last p errors better than the fixed manually
optimized function does, as long as the above assumptions
that lead to (33) are valid and the primary function ψ1(v) is
selected well.

An example of the scaled function obtained from the
primary function ψ1(v) in (10) is described as

ψp(v)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v, 0 ≤ v ≤ T1 · κp(n),
S 1 · κp(n), T1 · κp(n) < v ≤ T2 · κp(n),
S 2 · κp(n), T2 · κp(n) < v.

(34)

3.4 Computation of Variable Step-Size

Here, we discuss the extra computation of GL-APA com-
pared with that of the ordinary APA. GL-APA can be imple-
mented as a variable step-size APA shown in (27). Hence,
the extra cost is mostly due to the calculation of the variable
step-size γ(n). In obtaining the value of γ(n) in (26), the
calculations of ‖∆ĥAPA(n)‖ and ψ(v) are dominant.

According to (22), ‖∆ĥAPA(n)‖ is calculated as

‖∆ĥAPA(n)‖ =
√

eT (n)g(n), (35)

where

g(n) = R−1(n)e(n) (36)

is the decorrelation vector whose calculation is already in-
cluded in the ordinary procedure even in the fast versions
[18], [19] of APA. Therefore, the calculation for (35) re-
quires p multiplications, p − 1 additions, and a square root.

In the case of using the nonlinear function ψp(v) in (34),
which is simply based on a few conditional branch opera-
tions, the most expensive cost is the calculation of κp(n). By
taking the square of κp(n) as

Kp(n) = κp(n)2, (37)

the following recursive equation is obtained:

Kp(n) = 1 + Γ(n − 1)
(
Kp(n − 1) −Gp(n)

)
, (38)

where

Γ(n) = (1 − γ(n))2 and (39)

Gp(n) =
p∏

k=2

Γ(n − k). (40)

Updating Kp(n) is completed at the cost of p multiplications
and three additions at most and a square root operation fi-
nally produces

κp(n) =
√

Kp(n). (41)

As a consequence, the main extra computations re-
quired for the variable step-size γ(n) are summed up to 2p
multiplications, p + 2 additions, and two square root oper-
ations, which are spent to calculate ‖∆ĥAPA(n)‖ and κp(n).
However, this is not a serious obstacle to implement GL-
APA instead of ordinary APA because even the fast versions
of APA require roughly 2L+20p multiplications per sample
period [18], [19]. The extra calculations for GL-APA are
much smaller than the total computation of APA in many
AEC applications, where L is much larger than p, as men-
tioned in [17].

4. Simulations

We evaluated the performance of the proposed GL-APA,
particularly for application to AEC. Although GL-APA may
be implemented in practice with a reliable peripheral esti-
mator such as DTD, here we focus on evaluating the perfor-
mance of the adaptive algorithm alone. The simulation con-
ditions were as follows. The actual echo path h was formed
as an impulse response truncated at 512 samples with an
average gain of 0 dB after measurement in an actual confer-
ence room with a reverberation time of 200 ms, as shown
in Fig. 2. The adaptive filter ĥ(n) also had the same length,

(a)

(b)

Fig. 2 (a) Impulse response and (b) frequency characteristic of echo
path.
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(a)

(b)

Fig. 3 (a) Far-end signal (male speech) and (b) near-end signal (female
speech).

L = 512. The sampling frequency was 8 kHz. The far-
end speech x(n) for the reference input was male speech, as
shown in Fig. 3(a). The near-end speech s(n), which was
female speech as shown in Fig. 3(b), was an outlier. The
ambient noise a(n) was white Gaussian noise at a level that
was 18 dB lower than the echo level. The function ψp(v) in
(34) was applied to GL-APA, corresponding to each value
of p, where the parameters were given as T1 = 0.1/

√
L,

T2 = 1/
√

L, S 1 = 0.5T1, and S 2 = 0.25T1 after the exam-
ple shown in [13]. The constant parameters δ1 = 108 and
δ2 = 10−12 were set for all simulations.

For evaluations, the echo return loss enhancement
(ERLE) and the coefficient error (CE) defined below were
used:

ERLE(n) = 10 log10

n∑
m=n−M

[
y(m)−s(m)−a(m)

]2
n∑

m=n−M
[e(m)−s(m)−a(m)]2

[dB]

and

CE(n)=20 log10
‖h − ĥ(n)‖
‖h‖ [dB],

where ERLE indicates the observed relative echo cancella-
tion level, an appropriate smoothing factor, M = 8000, was
chosen to show results clearly, and CE indicates a normal-
ized Euclidean distance between the actual echo path and
the adaptive filter.

4.1 Improvement in Convergence Rate

Here, we show the improvement in the convergence rate of
GL-APA compared with that of GL-NLMS. We compared
the cases for different projection orders including p = 1
(equivalent to GL-NLMS). The others, p = 2, 4, and 8, were
chosen from a range where GL-APA can be implemented

Fig. 4 Comparison of GL-APA performance with different projection
orders: ERLEs for colored stationary signal input (single-talk).

Fig. 5 Comparison of GL-APA performance with different projection
orders: CEs for colored stationary signal input (single-talk).

without significant extra computation compared with APA,
as discussed in 3.4. The constant step-size µ used in (26)
was set differently for each p as follows. First, according to
[13], we set µ = 1 for p = 1 as a reference. Then, we found
appropriate step-sizes for p = 2, 4, and 8, so that each of
them including the standard case (µ = 1, p = 1) achieved
a similar steady-state ERLE level for the stationary signal
input, which had an averaged speech spectrum. This was
achieved with µ = 1, 0.8, 0.75, and 0.55 for p = 1, 2, 4, and
8, respectively, as shown in Fig. 4. The CE performance is
also shown in Fig. 5. As shown in Figs. 4 and 5, ERLE and
CE gave different characteristics for the order p, e.g., while
the ERLEs of any p converged to a similar steady-state level,
the CEs did not. This was because the filter coefficient error
vector, h − ĥ(n), for each p might have different frequency
characteristics, as discussed in [25]. For the choice of pa-
rameters, we mainly concentrated on ERLE characteristics
because they directly correspond to the actual echo cancel-
lation level that we will experience in AEC use.

Using those parameters given above, we obtained re-
sults for actual speech input. ERLEs and CEs in the single-
talk case, where male speech (Fig. 3(a)) was the reference
input and the echo path was changed at 12 s, are shown in
Figs. 6 and 7, respectively. From these results, we found that
convergence rates for larger p were more improved than that
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Fig. 6 Comparison of GL-APA performance with different projection
orders: ERLEs for male speech input (single-talk).

Fig. 7 Comparison of GL-APA performance with different projection
orders: CEs for male speech input (single-talk).

for p = 1 (GL-NLMS). ERLEs and CEs in the double-talk
case, where the female speech (Fig. 3(b)) was an outlier for
the male speech reference and the echo path was changed at
12 s again, are shown in Figs. 8 and 9, respectively. Even
in the case of double-talk with echo path change, as p in-
creased, GL-APA achieved faster convergence to the steady
state, and ERLE levels in the steady state were as high as the
ERLE level when p = 1 (GL-NLMS). Although we used the
scaling rule for the function ψp(v) based on the assumption
of a white Gaussian signal input, the results obtained here
demonstrate that it is also useful for the speech input, as we
expected in 3.3.

4.2 Comparison with Conventional APA

We compared the proposed GL-APA and the conventional
APA when p = 8. The step-size of GL-APA was set to
µ = 0.55, which is the same value used in 4.1. The echo path
was fixed in this simulation. For the comparison, we chose
two step-sizes for APA, µ = 0.05 and 0.08 to obtain Fig. 10,
in which ERLEs in the single-talk case are shown. As shown
in Fig. 10, when we chose µ = 0.05, APA achieved a sim-
ilar convergence rate to that of GL-APA in the initial peri-
ods, while reaching a higher steady-state level. On the other
hand, when we chose µ = 0.08, APA reached a steady-state

Fig. 8 Comparison of GL-APA performance with different projection or-
ders: ERLEs for male speech input and female speech outlier (double-talk).

Fig. 9 Comparison of GL-APA performance with different projection or-
ders: CEs for male speech input and female speech outlier (double-talk).

Fig. 10 Comparison between GL-APA and APA for p = 8: ERLEs for
male speech input (single-talk).

level similar to that of GL-APA, while achieving a faster
initial convergence rate. We also note that filter updates of
the conventional APA were frozen when ‖x(n)‖ ≤ 500

√
L,

though GL-APA was updated without such a control. CEs
in the same situation are shown in Fig. 11.

Then, we evaluated robustness against double-talk un-
der the above-mentioned step-size conditions. ERLEs and
CEs in the double-talk case are shown in Figs. 12 and 13,
respectively. In the steady state, GL-APA achieved much
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Fig. 11 Comparison between GL-APA and APA for p = 8: CEs for male
speech input (single-talk).

Fig. 12 Comparison between GL-APA and APA for p = 8: ERLEs for
male speech input and female speech outlier (double-talk).

Fig. 13 Comparison between GL-APA and APA for p = 8: CEs for male
speech input and female speech outlier (double-talk).

better ERLE and CE convergence than APA did. Thus, the
GL-APA is more robust against double-talk than the con-
ventional APA at any constant step-size.

According to Figs. 10 and 12, while the ERLE of the
APA during double-talk was degraded by about 20 dB from
that during single-talk, the ERLE of the GL-APA during
double-talk was degraded by only about 10 dB from that
during single-talk and was still about 15 dB. In the actual im-
plementation, the degradations caused by both methods can

be compensated for by applying post-filtering approaches
based on short-time spectral amplitude (STSA) estimation,
as shown in [26]. However, the smaller residual echo, which
is due to GL-APA, provides better quality of the near-end
speech post-filtered during double-talk, because the perfor-
mance of the STSA estimation depends on the ratio of the
near-end speech and residual echo levels.

5. Conclusion

We have presented GL-APA, which can achieve fast and
double-talk-robust convergence in AEC applications. GL-
APA is derived from the M-estimation-based cost func-
tion extended for evaluating multiple (the last p) error sig-
nals dealt with in the ordinary APA. Because of nonlinear-
ity of the gradient for GL-APA, we carefully formulated
the update equation consistent with multiple (the last p)
input-output relationships, which APA inherently satisfies to
achieve fast convergence. We also newly introduced a scal-
ing rule for the nonlinearity, so that we can easily implement
GL-APA of any p by using a simple primary function as a
basis for scaling with the order p. This guarantees a linkage
between GL-APA and GL-NLMS. Through the simulations,
we confirmed that GL-APA can quickly and robustly track
an echo path change even during double-talk and is appli-
cable to AEC. In actual implementations, the combination
of GL-APA and a double-talk or echo-path-change detec-
tor is also a reasonable solution because such a detector can
provide helpful information for controlling GL-APA more
precisely.
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