
IEICE TRANS. INF. & SYST., VOL. XXX, NO. X FEBUARY 2006 
1 
 
PAPER   Special Issue on Parallel/Distributed Computing and Networking 

A Security Middleware Model for Real-time Applications on Grids  

Tao XIE and Xiao QIN, Nonmember
 

Summary Real-time applications are indispensable for 
conducting research and business in government, industry, and 
academic organizations. Recently, real-time applications with 
security requirements increasingly emerged in large-scale 
distributed systems such as Grids. However, the complexities 
and specialties of diverse security mechanisms dissuade users 
from employing existing security services for their applications. 
To effectively tackle this problem, in this paper we propose a 
security middleware (SMW) model from which security-
sensitive real-time applications are enabled to exploit a variety of 
security services to enhance the trustworthy executions of the 
applications. A quality of security control manager (QSCM), a 
centerpiece of the SMW model, has been designed and 
implemented to achieve a flexible trade-off between overheads 
caused by security services and system performance, especially 
under situations where available resources are dynamically 
changing and insufficient. A security-aware scheduling 
mechanism, which plays an important role in QSCM, is capable 
of maximizing quality of security for real-time applications 
running in distributed systems as large-scale as Grids. Our 
empirical studies based on real world traces from a 
supercomputing center demonstratively show that the proposed 
model can significantly improve the performance of Grids in 
terms of both security and schedulability. 
Key words:  Security middleware, real-time applications, 
real-time scheduling, grid.

1. Introduction 

An increasing number of real-time systems have timing 
and security constraints because sensitive data and 
processing require special safeguards against unauthorized 
access [4][5]. In particular, a variety of military real-time 
applications running on parallel and distributed systems 
like clusters and Grids require security protections to 
completely fulfill their security needs. Unfortunately, 
conventional wisdom on the design of real time systems is 
inadequate for security-sensitive real-time applications 
because it did not factor in the applications’ security needs.  

To tackle the aforementioned problem, we propose a 
security middleware model, which allows real-time 
applications to invoke various underlying security services 
through specific application programming interfaces 
(APIs) to satisfy their security needs. Employing the 
security services, however, requires extra overhead in 
terms of CPU time, network and disk bandwidth. Thus, 
real-time scheduling algorithms need to consider the 

overhead to make efficient schedules for tasks submitted. 
Consequently, applications or users are able to receive 
satisfactory service from real-time systems, which achieve 
high performance with respect to quality of security and 
schedulability. The security middleware model can benefit 
both applications and the real-time systems. With the 
model in place, applications or users are allowed to 
formally describe their security requirements using 
security services specifications, e.g., security-related APIs. 
These APIs then invoke an array of high-level security 
services provided by the framework of the SMW model 
(see Fig. 1). From a real-time system standpoint, it can 
leverage the model to glean global information pertinent to 
the applications’ security needs. Additionally, the model 
makes it possible for the real-time system to measure the 
applications’ security overhead. In doing so, the model is 
able to make an effort to guarantee timing constraints and 
security requirements. In a security-critical real-time 
system, a task will be rejected by the system if the task’s 
minimal security requirements cannot be met. This process 
is essential because running tasks without guaranteeing 
their security requirements tends to make the system 
vulnerable to attack. In short, the model is intended to 
seamlessly integrate security into real-time scheduling for 
applications running in parallel and distributed systems. 

The contributions of this paper are three-fold. First, a 
security middleware (SMW) model is proposed. Second, a 
security-aware real-time scheduling mechanism is 
implemented. Finally, a case study illustrates the 
performance of the security-aware real-time scheduling 
mechanism in the light of the security middleware (SMW) 
model. Our simulator combines performance and security 
overhead estimates using the security overhead model 
based on the three most commonly used security services, 
i.e., authentication, integrity, and confidentiality. We have 
used real world traces from a supercomputing centre to 
drive our simulations. Empirical results demonstrate that 
the proposed model, in which the scheduling mechanism 
is the centerpiece, is capable of achieving high quality of 
security while guaranteeing timing constraints of real-time 
applications. 

The rest of this paper is organized as follows. Related 
work is discussed in Section 2. Section 3 introduces the 
architecture of our security middleware (SMW) model. 
Section 4 implements and evaluates the QSCM module, a 
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core part of the model, on a simulated Grid. Section 5 
concludes the paper with some comments on future work. 

2. Related Work 

QoS-aware middleware has been extensively studied in 
the past both experimentally and theoretically [2][3]. 
Huang et al. proposed a middleware-oriented Global 
Resource Management System, or GRMS, which provides 
distributed applications with end-to-end QoS negotiation 
and adaptation [3]. Abdelzaher et al. presented a scheme 
for QoS negotiation in real-time applications. The scheme 
provides a generic way to express application-level 
semantics to control how application QoS is to be 
degraded under overload or failure conditions [2]. 
Although the above works addressed applications’ QoS 
requirements in parallel and distributed systems, none of 
them paid attention to real-time applications’ security 
requirements, which are increasingly becoming critical in 
real-time systems. Our work is orthogonal and 
complementary to the above approaches in the sense that 
the security middleware model centered around security 
services is focused on the security needs of real-time 
applications. 

The security middleware model (SMW) provides a 
way of explicitly specifying the security requirements of 
real-time applications running on a parallel and distributed 
computing platform. It is indispensable for the model to be 
aware of extra resource overhead incurred by applications’ 
security requirements because the model has to achieve an 
optimized trade-off between system security and 
performance. To the best of our knowledge, the way of 
calculating costs of security service has received little 
attention. Irvine et al. proposed a model of computing 
costs for quality of security service [1].  In their approach 
application’s security requirements are specified by a 
security vector, which is composed of an array of sub-
vectors with each sub-vector being a particular security 
service used [1].  Wang et al. presented a security 
measurement framework, which is based on theory and 
practice of formal measurements [7]. In our previous work 
[6], we proposed a practical security overhead model to 
estimate the CPU time overhead of some commonly used 
security services like authentication and integrity.  Our 
security overhead model leveraged the results in [15][16], 
which provided the CPU time units cost for primitive 
security services such as confidentiality and integrity 
check. Take confidentiality for example, Nahum et al. in 
[16] offers the performance of ten widely used encryption 

algorithms in terms of mega bytes per second (MB/s) on a 
175 MHz Dec Alpha600 machine. Detailed information 
about how to quantitatively measure security overhead can 
be found in our previous work [6] [14]. Most recently, we 
proposed a family of dynamic security-aware scheduling 
algorithms for a cluster [6] and a Grid [14].  

3. Security Middleware Model (SMW) 

Middleware is software that sits between two or more 
types of software and translates information between 
them. It is used to solve computer clients’ heterogeneity 
and distribution issues by offering distributed system 
services that have standard programming interface and 
protocols [8]. We refer to these system services as 
middleware services, because they reside in a layer 
between networking, operating system software and 
specific applications. In this section we propose a security 
middleware (SMW) model, which aims at meeting 
security requirements of a variety of applications and 
improving performance of distributed real-time systems. 
Section 3.1 presents an overview of the architecture for 
the SMW model. Detailed functional descriptions of each 
component of the SMW model can be found in Section 
3.2. Section 3.3 illustrates how to specify applications’ 
security requirements.  

3.1 Architecture of the SMW Model  

The SMW model consists of a user interface, a 
framework, low-level security service APIs, a quality of 
security control manager, and security middleware 
services (Fig. 1).  

The SMW model provides two different types of user 
interfaces, namely, a professional user interface and a 
normal user interface. The professional user interface is an 
interface between developers (e.g., programmers) and 
applications being developed. An editor, a compiler and a 
debugger are essential components of the professional user 
interface. Programmers are allowed to directly access the 
low-level security service APIs, thereby efficiently 
constructing applications with various security functions. 
A normal user interface sits between a normal user and the 
framework. By using the normal user interface, usually an 
IDE (integrated development environment), a normal user 
such as a system administrator can leverage the framework 
to readily create his applications with security 
requirements. 
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A framework is a software environment that is 
designed to simplify application development and system 
management for a specialized application domain [8]. The 
framework illustrated in Fig. 1 is composed of a set of 
high-level security service APIs, an array of tools, a 
security middleware-service mapping module, and 
framework-private middleware services. The functionality 
of the framework is two-fold. First, it provides developers 
an efficient computing environment in which security-
aware applications can be rapidly developed. Second, the 
framework makes it possible for users to manipulate 
security-related system parameters. As a result, there is no 
need for developers and users to directly access low-level 
security service APIs, which are, in most cases, 
complicated to use. The high-level security service APIs 
may be (1) an abstraction of low-level security service 
APIs for the underlying security middleware services, or 
(2) a new set of APIs that encapsulate the low-level 
security service APIs. When the high-level APIs are 
different from their low-level peers, they may add value 
by specializing user interface, simplifying the low-level 
APIs, or import framework-private middleware services. 
The applications within the framework are administration 
applications from which the users (including 
administrators and programmers) can manage and 
configure multiple security services by employing the 
high-level APIs with the assistance of some tools. The 
objective of the tools in the framework is to simplify the 
use of the high-level APIs. For example, a security service 
virtualization tool offers users a visible table that 

demonstrates all currently available security services and 
their corresponding costs. The security middleware 
services mapping module is responsible for translating the 
high-level security service APIs into their corresponding 
low-level counterparts. Framework-private services 
provide specific functions in addition to the underlying 
middleware services to meet framework’s own needs.  

The low-level security service APIs are programming 
interfaces through which underlying security services 
included in the middleware services can be invoked. We 
can implement our low-level security service APIs based 
on the Generic Security Service API described in [9], 
which allows a calling application to authenticate principle 
identity associated with a peer application, to delegate 
rights to a peer application, and to exploit security services 
such as confidentiality and integrity on a per-message 
basis [9]. A sample API routine could be gss_verify_mic(), 
which can check a message integrity code (MIC) against a 
message to verify integrity of a received message. Another 
example routine is gss_indicate_mechs() that determines 
available underlying authentication mechanism.  

Quality of security control manager (QSCM) is a 
module needed for optimizing applications’ security 
requirements based on available system resources. 
Conceptually, it is an engine for security-critical real-time 
systems to achieve a high system performance in terms of 
quality of security and schedulability. Detailed description 
of QSCM will be given in Section 3.2.  
A middleware service is a generic service that operates 
between platforms and applications (see Fig. 1). The 

•  •  •
Platform 
• OS 
• Hardware 

Platform interface Platform interface 
Platform 
• OS 
• Hardware 

Middleware Services (including security services) 

Low-Level Security Service APIs

Application Application •  •  •

•  •  •

Quality of Security Control Manager 

Fig. 1  Security middleware architecture.
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middleware service, which is defined by APIs and 
supported protocols [8], has several features that differ 
itself from general-purpose applications or platform-
oriented services. Specifically, the middleware service is 
distributed, capable of running on multiple platforms, and 
supporting standard interfaces and protocols. Among the 
middleware services, authentication service, auditing 
service, confidentiality service and access controller are 
commonly used security services in a distributed system. 
For instance, authentication service provides functions to 
an application related to establishing, verifying, and 
transferring a person or a process. These security 
middleware services furnish a set of standard APIs (e.g., 
low-level security service APIs), which can be invoked in 
applications. The services are in forms of standard 
routines, which can be implemented using programming 
languages such as C and Java. For example, a Java 
Security Service Module is a commercial product that 
facilitates the above services implemented as classes [10]. 

3.2 Quality of Security Control Manager (QSCM)  

QSCM (Fig. 2) is a centerpiece of the SMW model 
because it can optimize the quality of security services 
requested by applications while maintaining a high-level 
system performance in terms of schedulability. The input 
of the QSCM module is a security service attribute-value 
vector specified by users, and the output is an array of 
selective values for each required security service. The 
most important abstraction in our QSCM module is 
security level, which is used to indicate the strength or 
safety degree of a particular security service.  

A security service is implemented by a particular 
security mechanism. For example, encryption, a security 
mechanism, provides a means to implementing 
confidentiality, which is a security service. Thus, the 
strength of a security service is mainly decided by the 

robustness of the security mechanism that implemented it. 
Further, the strength of the security mechanism largely 
depends on (1) how rigorously the security algorithm is 
tested, (2) how long it has been used, and (3) how robust it 
is under attacks performed against it [7]. From a normal 
user’s standpoint, a security level may be a subjective and 
qualitative value like “low”, “medium”, and “high”. For a 
security professional, on the other hand, the security level 
could be a quantitatively measured value such as 0.3, a 
normalized value when setting the strongest security 
mechanism as 1. In the latter case, security level is a 
relatively objective value obtained by some reasonable 
and practical measurement methods. In addition, security 
levels are represented in terms of security parameters 
whose semantics only need be known to the user and the 
service provider (e.g., security middleware service). 

Please note that security mechanisms are not 
independent of one another. Instead, it is common that 
multiple security mechanisms are needed in order to form 
an integrated security solution. For example, 
authentication and message integrity cannot work without 
each other [13]. The SMW model offers users an array of 
basic security mechanisms so that they can select one or 
multiple of them to form an integrated security solution to 
meet their security needs. In other words, it is users’ 
responsibility to make a meaningful combination of 
fundamental security mechanisms. The local security 
optimization module, which will be described shortly in 
this subsection, can assist users to accomplish this. 

A security range, which is a scope, contains multiple 
distinct security levels for a particular security service. 
The lowest value in a security range indicates the minimal 
security strength mandated by the user, while the highest 
value implies the maximal security strength necessary for 
the user and all the values above should not be considered.  

Application 
Task 

Application 
Task 

Application 
Task• • • 

The QSCM runs on top of middleware services and 
uses the Resource Monitoring module to monitor the 
underlying available resources. A user is enabled to submit 
a task Ti along with its security requirements expressed by 
a vector of security ranges, e.g., Si = ( , , …, ), 

where T

1
iS 2

iS q
iS

i requires q security services.  is the security 
range of the jth requested security service.  

j
iS

Low Level Security Service APIs 

The security optimization module, which plays a key 
role in QSCM, is responsible for choosing the most 
appropriate point si in space Si, e.g., si = ( , , …, ), 

where   The objective of the 
security level selection is to maximize overall utility in 
terms of quality of security (see Section 4).  

1
is 2

is q
is

,j
i

j
i Ss ∈ .1 qj ≤≤

The local schedulability analyzer aims at checking 
whether or not the selected security levels can be 
supported under current workload conditions. With the 
assistance of the local schedulability analyzer, the security 

Fig. 2  Quality of security control manager. 
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optimization module performs admission control on 
arrival application tasks.  

The scheduling mechanism has to make use of the 
schedulability analyzer and the security optimization 
module to measure the security benefits gained by each 
admitted task. In particular, the security benefit of task Ti 
is quantitatively modeled as the following security level 
function. 

∑
=

=
q

j

j
i

j
ii swsSL

1
)( , , ,          (1) 10 ≤≤ j

iw ∑
=

=
q

j

j
iw

1
1

where  is the weight of the jth security service. Note 
that it is programmers’ responsibility to define the weights 
to reflect relative priorities given to the required security 
services. 

j
iw

Suppose  is all possible schedules for task TiX i 

generated by the scheduling mechanism, and  is a 
scheduling decision. The schedulability analyzer considers 
x

ii Xx ∈

i a feasible schedule if (1) the security requirements are 
satisfied, and (2) its deadline can be met. Given a real-time 
task , the security benefit of  is expected to be 
maximized by the security level controller (See Fig. 1) 
under the timing constraint: 

iT iT

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

q

j
i

j
i

j
iXxi xswxSB

ii 1
)(max)( ,                                (2) 

where  and 

are the minimum and maximum security 
requirements.   

)()min( i
j

i
j

i xsS ≤ ).max( j
iS≤ )min( j

iS
)max( j

iS

The QSCM is focused on maximizing quality of 
security, which is defined by the sum of the security levels 
of admitted tasks. More formally, the following security 
function needs to be maximized, subject to certain timing 
and security constraints: 

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

p

i
iiXx

xSByxSV
1

)(max)( ,                                  (3) 

where p is the number of submitted tasks, yi is set to 1 if 
task Ti is accepted, and is set to 0 otherwise.  

The local security optimization module is used to 
select security levels only for local clients based on local 
machine resources, while the global security optimization 
module is launched using a load-sharing algorithm, which 
can exploit distributed system resources when local 
resources are insufficient to sustain client’s service 
requests. In addition, the local security optimization 
module also validates security mechanism selections made 
by local clients before selecting security levels for them. If 
a client selects a number of security mechanisms that 
cannot form a meaningful integrated protection solution, 

the local security optimization module will send a warning 
message back to the client. This function enforces that 
only practical security solution requests can be granted. 

3.3 Security Service Requirements Specification  

In this subsection we present an approach to specifying 
users’ security service requirements. Irvine et al. proposed 
the notion of security range that consists of a set of 
security levels [11]. Users can define their security 
requirements for a particular security service by specifying 
a security range.  To accomplish this goal, our SMW 
model provides users with a task submission description 
language (TSDL), a vehicle that users can leverage to 
articulate their security needs upon the submissions of 
their tasks. Figure 3 illustrates an example of the task 
submission structure (TSS) described in TSDL. 
 

DEFINE Task : flight_control 
{ 
 Input = (altitude: 1230, heading: 35, …);
     Output = (takeoff_distance, climb_rate);
 Type = “Real Time”; 
 Period = 80; 
 Completion_Time = 0; 
 Owner = “sqin”; 
 Cmd = “flight_con”; 
 Processor_num= 5; 
 Data_secured=250; 
 Priority = 3; 
 Constraint 
        • Arch == “INTEL”; 
        • OS == “UNIX”; 
        • Disk >= 480; 
                     • Memory >=128; 
        • Deadline = 80; 
                     • 0.3 <= Authentication <=0.6; 
                     • 0.4 <= Integrity <= 0.8; 
                     • 0.5 <= Confidentiality <= 0.9 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  Task submission structure for flight control.

A TSS is a highly flexible and extensible data model 
that can be utilized to represent multiple security services 
and constraints in a submitted task. It is a mapping from 
attribute names to expressions. For example, 
Processor_Num is an attribute and the number 5 is its 
corresponding expression. An expression might be an 
integer, a string constant, or a combination of complicated 
expressions constructed with arithmetic and logical 
operators such as “0.3 <= Integrity <=0.8” (See Fig. 3). 
After a user submits a TSS, the security service constraints 
it will be translated into the high-level security service 
APIs. Therefore, there is no need for users to directly deal 
with the APIs. To further alleviate users’ burden, the 
framework of the SMW model makes is possible for 
system administrators to specify security requirement 
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expressions using a higher-level abstraction like security 
abstract table.  

4. QSCM Implementation and Results 

The security middleware model (SMW) can take full 
advantage of the QSCM module (see Fig. 2) to guarantee a 
diversity of security requirements while improving the 
schedulability performance of real-time systems. It is 
intuitive that higher security requirements imply longer 
execution times, which in turn may violate real-time tasks’ 
deadlines. In the light of the schedulability analyzer and 
security optimization module, the scheduling mechanism 
in the QSCM module is capable of making appropriate 
trade-offs between security and real-time requirements. To 
quantitatively evaluate the performance of the proposed 
model, we implemented the QSCM module based on the 
model presented in Section 3. In particular, we 
implemented the SAREG scheduling algorithm [14] in the 
QSCM module. Note that SAREG detailed in [14] is a 
real-time scheduling algorithm with security-awareness. 

Experimental results demonstrate that the 
performance gain of the QSCM module, in which the 
SAREG algorithm is employed, is significant due to the 
virtue of the security middleware model. Therefore, the 
SMW model can eventually enhance the performance of 
distributed real-time systems in terms of security and 
schedulability (measured as guarantee ratio). Section 4.1 
presents an introduction of the simulation experiments. 
Section 4.2 compares SAREG with the three baseline 
algorithms. Section 4.3 shows that SAREG still maintains 
a good performance in conventional performance metrics. 

4.1 Introduction of Experiments  

Using extensive simulation experiments based on San 
Diego Supercomputer Center (SDSC) SP2 log, we 
evaluate in this section the potential benefits of the 
proposed security middleware model. We constructed a 
homogeneous Grid [14] simulator, which assumes that (1) 
there are multiple sites in the Grid; (2) the number of 
nodes in one site could be different from the number of 
nodes in another site; and (3) all nodes in the simulated 
Grid had an identical processing power. The last 
assumption is reasonable in the sense that it can be easily 
relaxed by incorporating a simple conversion mechanism 
for relative heterogeneous processing capabilities. 
Therefore, it’s readily to extend our SAREG scheme to a 
heterogeneous Grid. Besides, to provide workload (arrival 
tasks) for each site in the simulated Grid, we randomly 
divided the trace into multiple parts and each part went to 

one site. Similar experimental methodology was used in 
[17], which collected real workload from one computer in 
six daytime intervals. And then a distributed system, 
where each of six hosts executes the workload arrivals 
from one of the daytime traces, was simulated [17]. In 
addition, using trace from one supercomputing center to 
drive a simulated Grid is reasonable because (1) a Grid is 
essentially a large-scale virtual super-site that consists of 
multiple sites; (2) the workload of each site in our 
simulated Grid came from partial workload of one existing 
real site (SDSC). 
 In purpose of revealing the strength of the QSCM module 
with SAREG, we compared it against two scenarios where 
QSCM make use of three well-know scheduling 
algorithms, namely, Min-Min, Sufferage [12], and earliest 
deadline first algorithm (EDF). To highlight the non-
security-aware characteristic of the EDF algorithm, we 
call it NS-EDF (non-security-aware EDF) in this paper. 
Although NS-EDF algorithm, a slightly modified version 
of EDF, is intended to schedule real-time tasks with 
security requirements, it makes no effort to optimize 
quality of security. For the sake of simplicity, throughout 
this section Sufferage is referred to SUFFER. The three 
baseline algorithms are briefly described below. 
 (1) MINMIN:  For each submitted task, the node that 
offers the earliest completion time is tagged. Among all 
the mapped tasks, the one that has the minimum earliest 
completion time is chosen and then allocate to the tagged 
node (machine).  
(2) SUFFER: Allocating a node to a submitted task that 
would “suffer” most in terms of completion time if that 
node is not allocated to it.  
(3) NS-EDF: The task with the earliest deadline is always 
executed first.  

The admission controller randomly selects a security 
level of each security service required by an arrival task 
for all the three baseline algorithms above. The purpose of 
comparing SAREG with MINMIN and SUFFER is to 
show the performance improvements over existing Grid 
scheduling algorithms in a real-time computing 
environment where the QSCM module were not deployed. 
The goal of comparing SAREG with NS-EDF is to 
demonstrate the security performance benefits gained by 
integrating SAREG in the QSCM module. The 
performance metrics by which we evaluate system 
performance include: security value (the total sum of all 
accepted tasks’ security levels), guarantee ratio (measured 
as a fraction of total submitted tasks that are found to be 
schedulable), overall system performance (defined as a 
product of security value and guarantee ratio). 
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    (a) Guarantee ratio                                                (b) Security value                                 (c) Overall system performance 

                                                                  Fig. 4  Performance impact of deadline. 

4.2 Overall Performance Comparisons 

The goal of this experiment is two fold: (1) to compare the 
proposed SAREG algorithm against the three baseline 
schemes, and (2) to understand the sensitivity of SAREG 
to parameter β, or deadline base (Laxity).  

Figure 4 shows the simulation results for these four 
algorithms on a four-site Grid with 184 nodes where the 
CPU power is fixed at 100MIPS. We observe from Figure 
4 (a) that SAREG and NS-EDF exhibit similar 
performance in terms of guarantee ratio (the performance 
difference is less than 2%), whereas SAREG noticeably 
outperforms MINMIN and SUFFER algorithms. Figure 4 
(b) plots security values of the four algorithms when the 
deadline base is increased from 50 second to 800 second.  

Figure 4 (b) reveals that SAREG consistently 
performs better, with respect to quality of security, than all 
the other three approaches. When the deadlines are tight, 
the security values of SAREG are much larger than that of 
MINMIN and SUFFER. In addition, SAREG also 
consistently outperforms NS-EDF. This is because that 
SAREG can promote all accepted tasks’ security levels 
under constraints of their deadlines and resources 
availability, while NS-EDF puts no effort into optimizing 
submitted tasks’ security level at all.  

4.3 Conventional Performance Metrics 

In this subsection we compare SAREG with the other 
three alternatives in terms of conventional performance 
metrics, namely, mean slowdown and mean response time. 
The purpose of the comparison is to verify if SAREG has 
good performance in the two commonly used metrics. 

Figure 5 and Figure 6 shows us that SAREG 
substantially outperforms MINMIN and SUFFER. 
SAREG tied with NS-EDF in terms of mean slowdown 
and mean response time. However, SAREG greatly 
outperforms NS-EDF in security value, which is one of 
the most important performance metrics in a security-
critical real-time Gird computing environment.  

5. Summary and Future Work     Fig. 5  Deadline impact on mean response time. 

In this paper, we presented a novel security middleware 
(SMW) model from which a security-sensitive real-time 
application can exploit a variety of security services to 
enhance the safety of its execution on Grids. In addition, 
we constructed a security-aware scheduling strategy, or 
SAREG, for real-time applications on Grids by integrating 
the QSCM module into the scheduling mechanism. This 
strategy paves the way to the design of security-aware 
real-time scheduling algorithms. The effectiveness of the 
SAREG strategy was evaluated by developing a new 
security-aware real-time scheduling algorithm (SAREG), 
which incorporates the earliest deadline first (EDF) 

    Fig. 6  Deadline impact on mean slowdown. 
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scheduling algorithm into the SAREG strategy. To 
quantitatively validate the performance of our SAREG 
algorithm, we conducted trace-driven simulations and 
introduced two new performance metrics, namely, security 
value and overall system performance. Simulation results 
on various simulated Grids show that SAREG achieves 
overall system performance over three baseline real-time 
scheduling algorithms (MINMIN, SUFFER and NS-EDF) 
by averages of 286.34%, 272.14%, and 33.86%, 
respectively. In addition, the empirical results reveal that 
SAREG significantly improves quality of security for real-
time tasks while maintaining high guarantee ratios under a 
wide range of workload characteristics. 

Future studies in this research can be performed in 
the following directions. (1) Extend our SMW model to 
multi-dimensional computing resources. For now, we 
simply consider CPU time, which is only one of the 
computing resources consumed by the security services. 
Memory, network bandwidth and storage capacities 
should be considered in the future. (2) Accommodate 
more security services like authorization and auditing 
services into consideration into our SMW model. 
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