
IEICE TRANS. INF. & SYST., VOL. XXX, NO. X FEBUARY 2006
1

PAPER Special Issue on Parallel/Distributed Computing and Networking

A Security Middleware Model for Real-time Applications on Grids

Tao XIE and Xiao QIN, Nonmember

Summary Real-time applications are indispensable for
conducting research and business in government, industry, and
academic organizations. Recently, real-time applications with
security requirements increasingly emerged in large-scale
distributed systems such as Grids. However, the complexities
and specialties of diverse security mechanisms dissuade users
from employing existing security services for their applications.
To effectively tackle this problem, in this paper we propose a
security middleware (SMW) model from which security-
sensitive real-time applications are enabled to exploit a variety of
security services to enhance the trustworthy executions of the
applications. A quality of security control manager (QSCM), a
centerpiece of the SMW model, has been designed and
implemented to achieve a flexible trade-off between overheads
caused by security services and system performance, especially
under situations where available resources are dynamically
changing and insufficient. A security-aware scheduling
mechanism, which plays an important role in QSCM, is capable
of maximizing quality of security for real-time applications
running in distributed systems as large-scale as Grids. Our
empirical studies based on real world traces from a
supercomputing center demonstratively show that the proposed
model can significantly improve the performance of Grids in
terms of both security and schedulability.
Key words: Security middleware, real-time applications,
real-time scheduling, grid.

1. Introduction

An increasing number of real-time systems have timing
and security constraints because sensitive data and
processing require special safeguards against unauthorized
access [4][5]. In particular, a variety of military real-time
applications running on parallel and distributed systems
like clusters and Grids require security protections to
completely fulfill their security needs. Unfortunately,
conventional wisdom on the design of real time systems is
inadequate for security-sensitive real-time applications
because it did not factor in the applications’ security needs.

To tackle the aforementioned problem, we propose a
security middleware model, which allows real-time
applications to invoke various underlying security services
through specific application programming interfaces
(APIs) to satisfy their security needs. Employing the
security services, however, requires extra overhead in
terms of CPU time, network and disk bandwidth. Thus,
real-time scheduling algorithms need to consider the

overhead to make efficient schedules for tasks submitted.
Consequently, applications or users are able to receive
satisfactory service from real-time systems, which achieve
high performance with respect to quality of security and
schedulability. The security middleware model can benefit
both applications and the real-time systems. With the
model in place, applications or users are allowed to
formally describe their security requirements using
security services specifications, e.g., security-related APIs.
These APIs then invoke an array of high-level security
services provided by the framework of the SMW model
(see Fig. 1). From a real-time system standpoint, it can
leverage the model to glean global information pertinent to
the applications’ security needs. Additionally, the model
makes it possible for the real-time system to measure the
applications’ security overhead. In doing so, the model is
able to make an effort to guarantee timing constraints and
security requirements. In a security-critical real-time
system, a task will be rejected by the system if the task’s
minimal security requirements cannot be met. This process
is essential because running tasks without guaranteeing
their security requirements tends to make the system
vulnerable to attack. In short, the model is intended to
seamlessly integrate security into real-time scheduling for
applications running in parallel and distributed systems.

The contributions of this paper are three-fold. First, a
security middleware (SMW) model is proposed. Second, a
security-aware real-time scheduling mechanism is
implemented. Finally, a case study illustrates the
performance of the security-aware real-time scheduling
mechanism in the light of the security middleware (SMW)
model. Our simulator combines performance and security
overhead estimates using the security overhead model
based on the three most commonly used security services,
i.e., authentication, integrity, and confidentiality. We have
used real world traces from a supercomputing centre to
drive our simulations. Empirical results demonstrate that
the proposed model, in which the scheduling mechanism
is the centerpiece, is capable of achieving high quality of
security while guaranteeing timing constraints of real-time
applications.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 introduces the
architecture of our security middleware (SMW) model.
Section 4 implements and evaluates the QSCM module, a

 Manuscript received April 2005.
Manuscript revised August 10, 2005.

The authors are with the Department of Computer Science, New Mexico
Institute of Mining and Technology, Socorro, NM 87801, USA. E-mail:
{xietao, xqin}@cs.nmt.edu.

Tao XIE and Xiao QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
2

core part of the model, on a simulated Grid. Section 5
concludes the paper with some comments on future work.

2. Related Work

QoS-aware middleware has been extensively studied in
the past both experimentally and theoretically [2][3].
Huang et al. proposed a middleware-oriented Global
Resource Management System, or GRMS, which provides
distributed applications with end-to-end QoS negotiation
and adaptation [3]. Abdelzaher et al. presented a scheme
for QoS negotiation in real-time applications. The scheme
provides a generic way to express application-level
semantics to control how application QoS is to be
degraded under overload or failure conditions [2].
Although the above works addressed applications’ QoS
requirements in parallel and distributed systems, none of
them paid attention to real-time applications’ security
requirements, which are increasingly becoming critical in
real-time systems. Our work is orthogonal and
complementary to the above approaches in the sense that
the security middleware model centered around security
services is focused on the security needs of real-time
applications.

The security middleware model (SMW) provides a
way of explicitly specifying the security requirements of
real-time applications running on a parallel and distributed
computing platform. It is indispensable for the model to be
aware of extra resource overhead incurred by applications’
security requirements because the model has to achieve an
optimized trade-off between system security and
performance. To the best of our knowledge, the way of
calculating costs of security service has received little
attention. Irvine et al. proposed a model of computing
costs for quality of security service [1]. In their approach
application’s security requirements are specified by a
security vector, which is composed of an array of sub-
vectors with each sub-vector being a particular security
service used [1]. Wang et al. presented a security
measurement framework, which is based on theory and
practice of formal measurements [7]. In our previous work
[6], we proposed a practical security overhead model to
estimate the CPU time overhead of some commonly used
security services like authentication and integrity. Our
security overhead model leveraged the results in [15][16],
which provided the CPU time units cost for primitive
security services such as confidentiality and integrity
check. Take confidentiality for example, Nahum et al. in
[16] offers the performance of ten widely used encryption

algorithms in terms of mega bytes per second (MB/s) on a
175 MHz Dec Alpha600 machine. Detailed information
about how to quantitatively measure security overhead can
be found in our previous work [6] [14]. Most recently, we
proposed a family of dynamic security-aware scheduling
algorithms for a cluster [6] and a Grid [14].

3. Security Middleware Model (SMW)

Middleware is software that sits between two or more
types of software and translates information between
them. It is used to solve computer clients’ heterogeneity
and distribution issues by offering distributed system
services that have standard programming interface and
protocols [8]. We refer to these system services as
middleware services, because they reside in a layer
between networking, operating system software and
specific applications. In this section we propose a security
middleware (SMW) model, which aims at meeting
security requirements of a variety of applications and
improving performance of distributed real-time systems.
Section 3.1 presents an overview of the architecture for
the SMW model. Detailed functional descriptions of each
component of the SMW model can be found in Section
3.2. Section 3.3 illustrates how to specify applications’
security requirements.

3.1 Architecture of the SMW Model

The SMW model consists of a user interface, a
framework, low-level security service APIs, a quality of
security control manager, and security middleware
services (Fig. 1).

The SMW model provides two different types of user
interfaces, namely, a professional user interface and a
normal user interface. The professional user interface is an
interface between developers (e.g., programmers) and
applications being developed. An editor, a compiler and a
debugger are essential components of the professional user
interface. Programmers are allowed to directly access the
low-level security service APIs, thereby efficiently
constructing applications with various security functions.
A normal user interface sits between a normal user and the
framework. By using the normal user interface, usually an
IDE (integrated development environment), a normal user
such as a system administrator can leverage the framework
to readily create his applications with security
requirements.

IEICE TRANS. INF. & SYST., VOL. XXX, NO. X FEBUARY 2006

3

Framework

Application Tool

High-Level Security Service APIs

User interface Mapping to
Middleware Services

Framework Private
Service

A framework is a software environment that is
designed to simplify application development and system
management for a specialized application domain [8]. The
framework illustrated in Fig. 1 is composed of a set of
high-level security service APIs, an array of tools, a
security middleware-service mapping module, and
framework-private middleware services. The functionality
of the framework is two-fold. First, it provides developers
an efficient computing environment in which security-
aware applications can be rapidly developed. Second, the
framework makes it possible for users to manipulate
security-related system parameters. As a result, there is no
need for developers and users to directly access low-level
security service APIs, which are, in most cases,
complicated to use. The high-level security service APIs
may be (1) an abstraction of low-level security service
APIs for the underlying security middleware services, or
(2) a new set of APIs that encapsulate the low-level
security service APIs. When the high-level APIs are
different from their low-level peers, they may add value
by specializing user interface, simplifying the low-level
APIs, or import framework-private middleware services.
The applications within the framework are administration
applications from which the users (including
administrators and programmers) can manage and
configure multiple security services by employing the
high-level APIs with the assistance of some tools. The
objective of the tools in the framework is to simplify the
use of the high-level APIs. For example, a security service
virtualization tool offers users a visible table that

demonstrates all currently available security services and
their corresponding costs. The security middleware
services mapping module is responsible for translating the
high-level security service APIs into their corresponding
low-level counterparts. Framework-private services
provide specific functions in addition to the underlying
middleware services to meet framework’s own needs.

The low-level security service APIs are programming
interfaces through which underlying security services
included in the middleware services can be invoked. We
can implement our low-level security service APIs based
on the Generic Security Service API described in [9],
which allows a calling application to authenticate principle
identity associated with a peer application, to delegate
rights to a peer application, and to exploit security services
such as confidentiality and integrity on a per-message
basis [9]. A sample API routine could be gss_verify_mic(),
which can check a message integrity code (MIC) against a
message to verify integrity of a received message. Another
example routine is gss_indicate_mechs() that determines
available underlying authentication mechanism.

Quality of security control manager (QSCM) is a
module needed for optimizing applications’ security
requirements based on available system resources.
Conceptually, it is an engine for security-critical real-time
systems to achieve a high system performance in terms of
quality of security and schedulability. Detailed description
of QSCM will be given in Section 3.2.
A middleware service is a generic service that operates
between platforms and applications (see Fig. 1). The

• • •
Platform
• OS
• Hardware

Platform interface Platform interface
Platform
• OS
• Hardware

Middleware Services (including security services)

Low-Level Security Service APIs

Application Application • • •

• • •

Quality of Security Control Manager

Fig. 1 Security middleware architecture.

Tao XIE and Xiao QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
4

middleware service, which is defined by APIs and
supported protocols [8], has several features that differ
itself from general-purpose applications or platform-
oriented services. Specifically, the middleware service is
distributed, capable of running on multiple platforms, and
supporting standard interfaces and protocols. Among the
middleware services, authentication service, auditing
service, confidentiality service and access controller are
commonly used security services in a distributed system.
For instance, authentication service provides functions to
an application related to establishing, verifying, and
transferring a person or a process. These security
middleware services furnish a set of standard APIs (e.g.,
low-level security service APIs), which can be invoked in
applications. The services are in forms of standard
routines, which can be implemented using programming
languages such as C and Java. For example, a Java
Security Service Module is a commercial product that
facilitates the above services implemented as classes [10].

3.2 Quality of Security Control Manager (QSCM)

QSCM (Fig. 2) is a centerpiece of the SMW model
because it can optimize the quality of security services
requested by applications while maintaining a high-level
system performance in terms of schedulability. The input
of the QSCM module is a security service attribute-value
vector specified by users, and the output is an array of
selective values for each required security service. The
most important abstraction in our QSCM module is
security level, which is used to indicate the strength or
safety degree of a particular security service.

A security service is implemented by a particular
security mechanism. For example, encryption, a security
mechanism, provides a means to implementing
confidentiality, which is a security service. Thus, the
strength of a security service is mainly decided by the

robustness of the security mechanism that implemented it.
Further, the strength of the security mechanism largely
depends on (1) how rigorously the security algorithm is
tested, (2) how long it has been used, and (3) how robust it
is under attacks performed against it [7]. From a normal
user’s standpoint, a security level may be a subjective and
qualitative value like “low”, “medium”, and “high”. For a
security professional, on the other hand, the security level
could be a quantitatively measured value such as 0.3, a
normalized value when setting the strongest security
mechanism as 1. In the latter case, security level is a
relatively objective value obtained by some reasonable
and practical measurement methods. In addition, security
levels are represented in terms of security parameters
whose semantics only need be known to the user and the
service provider (e.g., security middleware service).

Please note that security mechanisms are not
independent of one another. Instead, it is common that
multiple security mechanisms are needed in order to form
an integrated security solution. For example,
authentication and message integrity cannot work without
each other [13]. The SMW model offers users an array of
basic security mechanisms so that they can select one or
multiple of them to form an integrated security solution to
meet their security needs. In other words, it is users’
responsibility to make a meaningful combination of
fundamental security mechanisms. The local security
optimization module, which will be described shortly in
this subsection, can assist users to accomplish this.

A security range, which is a scope, contains multiple
distinct security levels for a particular security service.
The lowest value in a security range indicates the minimal
security strength mandated by the user, while the highest
value implies the maximal security strength necessary for
the user and all the values above should not be considered.

Application
Task

Application
Task

Application
Task• • •

The QSCM runs on top of middleware services and
uses the Resource Monitoring module to monitor the
underlying available resources. A user is enabled to submit
a task Ti along with its security requirements expressed by
a vector of security ranges, e.g., Si = (, , …,),

where T

1
iS 2

iS q
iS

i requires q security services. is the security
range of the jth requested security service.

j
iS

Low Level Security Service APIs

The security optimization module, which plays a key
role in QSCM, is responsible for choosing the most
appropriate point si in space Si, e.g., si = (, , …,),

where The objective of the
security level selection is to maximize overall utility in
terms of quality of security (see Section 4).

1
is 2

is q
is

,j
i

j
i Ss ∈ .1 qj ≤≤

The local schedulability analyzer aims at checking
whether or not the selected security levels can be
supported under current workload conditions. With the
assistance of the local schedulability analyzer, the security

Fig. 2 Quality of security control manager.

Global Security
Optimization

Local Security
Optimization

Security Optimization
Quality of Security
Control Manager

Local
Schedulability

Analyzer

Resource Monitoring
Security
Service

Security
Service

• • •

IEICE TRANS. INF. & SYST., VOL. XXX, NO. X FEBUARY 2006

5

optimization module performs admission control on
arrival application tasks.

The scheduling mechanism has to make use of the
schedulability analyzer and the security optimization
module to measure the security benefits gained by each
admitted task. In particular, the security benefit of task Ti
is quantitatively modeled as the following security level
function.

∑
=

=
q

j

j
i

j
ii swsSL

1
)(, , , (1) 10 ≤≤ j

iw ∑
=

=
q

j

j
iw

1
1

where is the weight of the jth security service. Note
that it is programmers’ responsibility to define the weights
to reflect relative priorities given to the required security
services.

j
iw

Suppose is all possible schedules for task TiX i

generated by the scheduling mechanism, and is a
scheduling decision. The schedulability analyzer considers
x

ii Xx ∈

i a feasible schedule if (1) the security requirements are
satisfied, and (2) its deadline can be met. Given a real-time
task , the security benefit of is expected to be
maximized by the security level controller (See Fig. 1)
under the timing constraint:

iT iT

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

q

j
i

j
i

j
iXxi xswxSB

ii 1
)(max)(, (2)

where and

are the minimum and maximum security
requirements.

)()min(i
j

i
j

i xsS ≤).max(j
iS≤)min(j

iS
)max(j

iS

The QSCM is focused on maximizing quality of
security, which is defined by the sum of the security levels
of admitted tasks. More formally, the following security
function needs to be maximized, subject to certain timing
and security constraints:

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

p

i
iiXx

xSByxSV
1

)(max)(, (3)

where p is the number of submitted tasks, yi is set to 1 if
task Ti is accepted, and is set to 0 otherwise.

The local security optimization module is used to
select security levels only for local clients based on local
machine resources, while the global security optimization
module is launched using a load-sharing algorithm, which
can exploit distributed system resources when local
resources are insufficient to sustain client’s service
requests. In addition, the local security optimization
module also validates security mechanism selections made
by local clients before selecting security levels for them. If
a client selects a number of security mechanisms that
cannot form a meaningful integrated protection solution,

the local security optimization module will send a warning
message back to the client. This function enforces that
only practical security solution requests can be granted.

3.3 Security Service Requirements Specification

In this subsection we present an approach to specifying
users’ security service requirements. Irvine et al. proposed
the notion of security range that consists of a set of
security levels [11]. Users can define their security
requirements for a particular security service by specifying
a security range. To accomplish this goal, our SMW
model provides users with a task submission description
language (TSDL), a vehicle that users can leverage to
articulate their security needs upon the submissions of
their tasks. Figure 3 illustrates an example of the task
submission structure (TSS) described in TSDL.

DEFINE Task : flight_control
{
 Input = (altitude: 1230, heading: 35, …);
 Output = (takeoff_distance, climb_rate);
 Type = “Real Time”;
 Period = 80;
 Completion_Time = 0;
 Owner = “sqin”;
 Cmd = “flight_con”;
 Processor_num= 5;
 Data_secured=250;
 Priority = 3;
 Constraint
 • Arch == “INTEL”;
 • OS == “UNIX”;
 • Disk >= 480;
 • Memory >=128;
 • Deadline = 80;
 • 0.3 <= Authentication <=0.6;
 • 0.4 <= Integrity <= 0.8;
 • 0.5 <= Confidentiality <= 0.9
}

 Fig. 3 Task submission structure for flight control.

A TSS is a highly flexible and extensible data model
that can be utilized to represent multiple security services
and constraints in a submitted task. It is a mapping from
attribute names to expressions. For example,
Processor_Num is an attribute and the number 5 is its
corresponding expression. An expression might be an
integer, a string constant, or a combination of complicated
expressions constructed with arithmetic and logical
operators such as “0.3 <= Integrity <=0.8” (See Fig. 3).
After a user submits a TSS, the security service constraints
it will be translated into the high-level security service
APIs. Therefore, there is no need for users to directly deal
with the APIs. To further alleviate users’ burden, the
framework of the SMW model makes is possible for
system administrators to specify security requirement

Tao XIE and Xiao QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
6

expressions using a higher-level abstraction like security
abstract table.

4. QSCM Implementation and Results

The security middleware model (SMW) can take full
advantage of the QSCM module (see Fig. 2) to guarantee a
diversity of security requirements while improving the
schedulability performance of real-time systems. It is
intuitive that higher security requirements imply longer
execution times, which in turn may violate real-time tasks’
deadlines. In the light of the schedulability analyzer and
security optimization module, the scheduling mechanism
in the QSCM module is capable of making appropriate
trade-offs between security and real-time requirements. To
quantitatively evaluate the performance of the proposed
model, we implemented the QSCM module based on the
model presented in Section 3. In particular, we
implemented the SAREG scheduling algorithm [14] in the
QSCM module. Note that SAREG detailed in [14] is a
real-time scheduling algorithm with security-awareness.

Experimental results demonstrate that the
performance gain of the QSCM module, in which the
SAREG algorithm is employed, is significant due to the
virtue of the security middleware model. Therefore, the
SMW model can eventually enhance the performance of
distributed real-time systems in terms of security and
schedulability (measured as guarantee ratio). Section 4.1
presents an introduction of the simulation experiments.
Section 4.2 compares SAREG with the three baseline
algorithms. Section 4.3 shows that SAREG still maintains
a good performance in conventional performance metrics.

4.1 Introduction of Experiments

Using extensive simulation experiments based on San
Diego Supercomputer Center (SDSC) SP2 log, we
evaluate in this section the potential benefits of the
proposed security middleware model. We constructed a
homogeneous Grid [14] simulator, which assumes that (1)
there are multiple sites in the Grid; (2) the number of
nodes in one site could be different from the number of
nodes in another site; and (3) all nodes in the simulated
Grid had an identical processing power. The last
assumption is reasonable in the sense that it can be easily
relaxed by incorporating a simple conversion mechanism
for relative heterogeneous processing capabilities.
Therefore, it’s readily to extend our SAREG scheme to a
heterogeneous Grid. Besides, to provide workload (arrival
tasks) for each site in the simulated Grid, we randomly
divided the trace into multiple parts and each part went to

one site. Similar experimental methodology was used in
[17], which collected real workload from one computer in
six daytime intervals. And then a distributed system,
where each of six hosts executes the workload arrivals
from one of the daytime traces, was simulated [17]. In
addition, using trace from one supercomputing center to
drive a simulated Grid is reasonable because (1) a Grid is
essentially a large-scale virtual super-site that consists of
multiple sites; (2) the workload of each site in our
simulated Grid came from partial workload of one existing
real site (SDSC).
 In purpose of revealing the strength of the QSCM module
with SAREG, we compared it against two scenarios where
QSCM make use of three well-know scheduling
algorithms, namely, Min-Min, Sufferage [12], and earliest
deadline first algorithm (EDF). To highlight the non-
security-aware characteristic of the EDF algorithm, we
call it NS-EDF (non-security-aware EDF) in this paper.
Although NS-EDF algorithm, a slightly modified version
of EDF, is intended to schedule real-time tasks with
security requirements, it makes no effort to optimize
quality of security. For the sake of simplicity, throughout
this section Sufferage is referred to SUFFER. The three
baseline algorithms are briefly described below.
 (1) MINMIN: For each submitted task, the node that
offers the earliest completion time is tagged. Among all
the mapped tasks, the one that has the minimum earliest
completion time is chosen and then allocate to the tagged
node (machine).
(2) SUFFER: Allocating a node to a submitted task that
would “suffer” most in terms of completion time if that
node is not allocated to it.
(3) NS-EDF: The task with the earliest deadline is always
executed first.

The admission controller randomly selects a security
level of each security service required by an arrival task
for all the three baseline algorithms above. The purpose of
comparing SAREG with MINMIN and SUFFER is to
show the performance improvements over existing Grid
scheduling algorithms in a real-time computing
environment where the QSCM module were not deployed.
The goal of comparing SAREG with NS-EDF is to
demonstrate the security performance benefits gained by
integrating SAREG in the QSCM module. The
performance metrics by which we evaluate system
performance include: security value (the total sum of all
accepted tasks’ security levels), guarantee ratio (measured
as a fraction of total submitted tasks that are found to be
schedulable), overall system performance (defined as a
product of security value and guarantee ratio).

IEICE TRANS. INF. & SYST., VOL. XXX, NO. X FEBUARY 2006

7

 (a) Guarantee ratio (b) Security value (c) Overall system performance

 Fig. 4 Performance impact of deadline.

4.2 Overall Performance Comparisons

The goal of this experiment is two fold: (1) to compare the
proposed SAREG algorithm against the three baseline
schemes, and (2) to understand the sensitivity of SAREG
to parameter β, or deadline base (Laxity).

Figure 4 shows the simulation results for these four
algorithms on a four-site Grid with 184 nodes where the
CPU power is fixed at 100MIPS. We observe from Figure
4 (a) that SAREG and NS-EDF exhibit similar
performance in terms of guarantee ratio (the performance
difference is less than 2%), whereas SAREG noticeably
outperforms MINMIN and SUFFER algorithms. Figure 4
(b) plots security values of the four algorithms when the
deadline base is increased from 50 second to 800 second.

Figure 4 (b) reveals that SAREG consistently
performs better, with respect to quality of security, than all
the other three approaches. When the deadlines are tight,
the security values of SAREG are much larger than that of
MINMIN and SUFFER. In addition, SAREG also
consistently outperforms NS-EDF. This is because that
SAREG can promote all accepted tasks’ security levels
under constraints of their deadlines and resources
availability, while NS-EDF puts no effort into optimizing
submitted tasks’ security level at all.

4.3 Conventional Performance Metrics

In this subsection we compare SAREG with the other
three alternatives in terms of conventional performance
metrics, namely, mean slowdown and mean response time.
The purpose of the comparison is to verify if SAREG has
good performance in the two commonly used metrics.

Figure 5 and Figure 6 shows us that SAREG
substantially outperforms MINMIN and SUFFER.
SAREG tied with NS-EDF in terms of mean slowdown
and mean response time. However, SAREG greatly
outperforms NS-EDF in security value, which is one of
the most important performance metrics in a security-
critical real-time Gird computing environment.

5. Summary and Future Work Fig. 5 Deadline impact on mean response time.

In this paper, we presented a novel security middleware
(SMW) model from which a security-sensitive real-time
application can exploit a variety of security services to
enhance the safety of its execution on Grids. In addition,
we constructed a security-aware scheduling strategy, or
SAREG, for real-time applications on Grids by integrating
the QSCM module into the scheduling mechanism. This
strategy paves the way to the design of security-aware
real-time scheduling algorithms. The effectiveness of the
SAREG strategy was evaluated by developing a new
security-aware real-time scheduling algorithm (SAREG),
which incorporates the earliest deadline first (EDF)

 Fig. 6 Deadline impact on mean slowdown.

Tao XIE and Xiao QIN: A SECURITY MIDDLEWARE MODEL FOR REAL-TIME APPLICATIONS ON GRIDS
8

scheduling algorithm into the SAREG strategy. To
quantitatively validate the performance of our SAREG
algorithm, we conducted trace-driven simulations and
introduced two new performance metrics, namely, security
value and overall system performance. Simulation results
on various simulated Grids show that SAREG achieves
overall system performance over three baseline real-time
scheduling algorithms (MINMIN, SUFFER and NS-EDF)
by averages of 286.34%, 272.14%, and 33.86%,
respectively. In addition, the empirical results reveal that
SAREG significantly improves quality of security for real-
time tasks while maintaining high guarantee ratios under a
wide range of workload characteristics.

Future studies in this research can be performed in
the following directions. (1) Extend our SMW model to
multi-dimensional computing resources. For now, we
simply consider CPU time, which is only one of the
computing resources consumed by the security services.
Memory, network bandwidth and storage capacities
should be considered in the future. (2) Accommodate
more security services like authorization and auditing
services into consideration into our SMW model.

References

[1] C. Irvine and T. Levin, “Towards a taxonomy and costing

method for security services,” Proc. 15th Annual
Computer Security Applications Conference, 1999.

[2] Tarek F. Abdelzaher, Ella M. Atkins and Kang Shin, “QoS
Negotiation in Real-Time Systems and its Application to
Automated Flight Control,” IEEE Transactions on
Computers, Vol. 49, No. 11, November 2000.

[3] J. Huang, Y. Wang and F. Cao, “On Developing
Distributed Middleware Services for QoS- and Criticality-
Based Resource Negotiation and Adaptation,” Real-Time
Systems 16(2): 187-221; May 1999.

[4] Gavin Donoho, “Building a Web Service to Provide Real-
Time Stock Quotes,” MCAD.Net, February, 2004.

[5] Eric Durant, “Embedded Real-Time System
Considerations,” EECS Department of Milwaukee School
of Engineering, April 23, 1998.

[6] Tao Xie, Xiao Qin, and Andrew Sung, "SAREC: A
Security-Aware Scheduling Strategy for Real-Time
Applications on Clusters," Proceedings of the 34th
International Conference on Parallel Processing, Norway,
June 14-17, 2005.

[7] C. Wang, and Wulf, W.A., “Towards a Framework for
Security Measurement,” Proceedings of the Twentieth
National Information Systems Security Conference,
Baltimore, MD, pp. 522-533, October, 1997.

[8] Philip A. Bernstein, “Middleware: A Model for Distributed
System Services,” Communication of ACM 39(2): 86-98,
1996.

[9] J. Wray, RFC2744- Generic Security Service API Version
2: C-bindings, http://www.faqs.org/rfcs/rfc2744.html,
2000.

[10] Programming Security for Java Applications, http://e-
docs.bea.com/wles/docs42/programmersguide/

[11] Irvine, C. and Levin, T., “Quality of Security Service”,
Proc. of New Security Paradigms Workshop2000, Cork,
Ireland, September, 2000.

[12] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems,”
8th IEEE Heterogeneous Computing Workshop (HCW
’99), pp. 30–44, Apr. 1999.

[13] A.S. Tanenbaum, M. Steen, “Distributed Systems:
Principles and Paradigms”, ISBN 0130888931, Prentice
Hall, 1st edition, January 15, 2002.

[14] T. Xie, X. Qin, “Enhancing Security of Real-Time
Applications on Grids through Dynamic Scheduling,”
Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing, PP.146-158,
Cambridge, MA, USA, June 19, 2005.

[15] A. Bosselaers, R. Govaerts and J. Vandewalle, “Fast
hashing on the Pentium,” Proc. Advances in Cryptology,
LNCS 1109, pp. 298-312, Springer-Verlag, 1996.

[16] E. Nahum, S. O'Malley, H. Orman, R. Schroeppel,
“Towards High Performance Cryptographic Software,”
Proc. IEEE Workshop Architecture and Implementation of
High Performance Communication Subsystems, August
1995.

[17] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balancing,” ACM Trans.
Computer Systems, vol. 3, no. 31, 1997.

Tao Xie is a Ph.D. Candidate in Computer
Science at the New Mexico Institute of
Mining and Technology in the USA. His
research interests are security-aware
scheduling, high performance computing,
cluster and Grid computing, parallel and
distributed systems, real-time/embedded
systems, and information security.

Xiao Qin received the BS and MS degrees
in computer science from Huazhong
University of Science and Technology in
1992 and 1999, respectively. He received
the PhD degree in computer science from
the University of Nebraska-Lincoln in
2004. Currently, he is an assistant professor
in the department of computer science at
the New Mexico Institute of Mining and

Technology. His research interests are in parallel and distributed
systems, storage systems, real-time computing, performance
evaluation, and fault-tolerance. He is a member of the IEEE.

http://www.faqs.org/rfcs/rfc2744.html
http://e-docs.bea.com/wles/docs42/programmersguide/
http://e-docs.bea.com/wles/docs42/programmersguide/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

