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Machine Vision Group, Electrical and Information Engineering Department

P.O.Box 4500, FIN-90014 University of Oulu, Finland
{dillian,mkp,olli}@ee.oulu.fi

Abstract

In this paper, we study how multidimensional local bi-
nary pattern (LBP) texture feature data can be visually ex-
plored and analyzed. The goal is to determine how true
paper properties can be characterized with local texture
features from visible light images. We utilize isometric fea-
ture mapping (Isomap) for the LBP texture feature data and
perform non-linear dimensionality reduction for the data.
These 2D projections are then visualized with original im-
ages to study data properties. Visualization is utilized in
the manner of selecting texture models for unlabeled data
and analyzing feature performance when building a train-
ing set for a classifier. The approach is experimented with
simulated image data illustrating different paper properties
and on-line transilluminated paper images taken from run-
ning paper web in the paper mill. The simulated image set
is used to get quantitative figures of the performance while
the analysis of real-world data is an example of semisuper-
vised learning.

1 Introduction

Texture analysis provides a useful set of tools for real-
world paper inspection. Even though the texture analysis
research is rather old, there still exist several different def-
initions of texture itself [13] and only a few very succesful
exploitations of texture methods have been made in paper
industry.

The biggest problem of using texture information in pa-
per characterization is that the produced paper has a very
homogenous appearance and the features should be very
discriminative to detect relevant texture variations. The ex-
treme conditions of paper mills cause variations for image
appearance and the features describing the papers should
be invariant with respect to the monotonic gray-scale varia-
tions caused by illumination changes, for example. Operat-
ing environments are usually hard to fix completely and the
camera position can change between installations. These is-
sues set requirements that features should be able to handle
different rotations and scales as well. Also computational
issues are important in this kind of applications, for exam-
ple, to achieve a reasonable classification time for acquired
samples.

Paper mainly consists of pulp, chemicals and fl ocs.
Flocs are wood fibre bunches that are visible when look-
ing through the paper against the light source. In paper
characterization the main goal is to determine the proper-

ties of fl ocs, like their size and shape. They characterize
indirectly important properties of the paper such as forma-
tion, strength and printability. Paper making procedure has
a lot of random processes resulting the fl ocs to randomly
distribute over the paper. This causes the appearance of
transilluminated paper to look like a stochastic texture even
though some properties, like the direction of production
line, are visible from the fl oc distributions.

Texture has been applied satisfactorily to paper defect
detection [6] and some attempts have also been proposed
for paper formation analysis [5, 3]. In this paper, we aim to
determine the general visual quality of paper based on its
textural appearance. This is basically what paper procud-
ers do subjectively after production when analyzing light
through papers with human eye.

No texture features or descriptors are availabe that are
the best in all kind of texture analysis problems. Tradi-
tionally the best texture features for a given application are
found by a comparative study using supervision and pre-
labeled data like in [11]. The data is analyzed and tested
with different features and algorithms to find, for example,
the most discriminating features. In real-world applications
the labeling is usually very problematic causing much dif-
ficulties in analysis. In addition, the computational burden
of optimization and search algorithms in feature analysis
might be far too high.

LBP texture features [10] detect microstructres, like
edges, lines, curves and fl at areas from textures and have
performed very well in many real-world texture analysis
applications including paper characterization [14]. In that
study the self-organizing map [7] was used as an user in-
terface for classifying textured paper samples providing a
useful view into the data. In this paper we study how vi-
sualization of LBP texture data with Isomap [12] can be
utilized in feature analysis, training data selection and la-
beling. The dimensionality of the feature data is reduced
with Isomap to two dimensions which then is visualized
utilizing both manifold structure and original texture im-
ages. Visualization makes it possible to analyze and com-
pare the performance of the features semi-supervisely with-
out using labeled data. Isomap makes the higher-to-lower
dimensionality mapping differently compared to the SOM
and preserves relational distances between samples more
faithfully revealing manifold structures of the data. The ap-
proach presented in [14] is more suitable for on-line use
and classification tasks, but here we construct a tool for the
early stage visual analysis of paper’s texture and quality.
The tool can be used when training a texture classifier and
analyzing features with unlabeled data.
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2 Proposed Approach

The local binary pattern (LBP) operator offers an efficive
way to analyze textures [10]. It has a simple theory and
it combines properties of structural and statistical texture
analysis methods. LBP is invariant against monotonic gray-
scale variations and recently it has been extended to have
rotation invariant and multiscale properties. These matters
make LBP very attractive to be used in paper texture anal-
ysis. Here we utilize different versions of the LBP operator
to model the texture of paper in order to characterize dif-
ferent paper properties. We use the original 8-bit and more
recent multiresolution versions of the operator and also in-
clude experiments with its rotation invariant version.

Isomap [12] is nonlinear dimensionality reduction
method built on classsical MDS [4]. It tries to preserve the
intrinsic geometry of the data utilizing geodesic manifold
distances between all pairs of data points. The algorithm
builds a neighborhood graph using k nearest neighbors or
certain distance threshold ε. The distances are calculated
along the manifold instead of direct Euclidean distances
and finally the classical MDS is run for this distance data.
There is a guarantee of asymptotic convergence to the true
structure of the data when running Isomap with ’sufficiently
large’ sample sets [2]. Isomap can also recover the true in-
trinsic dimensionality of the nonlinear manifolds utilizing
residual variance of projections, and when representing the
data with global coordinates it can provide a very useful
way to analyze high-dimensional observations [12].

Multi-dimensional LBP features can be visualized as 1D
histograms but this does not provide very clear representa-
tion of the data especially when the amount of the samples
to be visualized increases. Thus more intelligent and user
friendly methods for visualizing the feature data are needed.
One solution is to reduce the dimensionality of the data with
Isomap and study how the features can cluster the data.

In Fig. 1 a, 256-dimensional LBP texture data of six
samples from two classes are projected with Isomap. We
can notice that the class boundary between these two
classes can be easily drawn on the 2D Isomap plane (near
x=0). User can visualize the projection with original tex-
ture images and determine how features can discriminate
different classes. Also a separate clustering algorithm, like
k-means, can be run on projection coordinates to help vi-
sual analysis, especially when there is some pre-knowledge
about the number of classes, for example. This kind of
visual exploration of multidimensional texture data can be
utilized in several texture analysis tasks, including feature
analysis, training of a classifier and unsupervised learning.
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Figure 1: 2d Isomap projection of six samples from two
texture classes and examples of synthetized samples.

Visual analysis of the feature data is based on the as-
sumption that similar data cluster close to each others in
the feature space if the features used are discriminative
enough. In dimensionality reduction this clustering infor-
mation is mostly preserved when the manifold is mapped
to 2-dimensions. Of course, the clusters might be more
overlapped and divided into several parts in the projection.
The main problem is to determine how badly the classes are
mixed with each other. This can be done by visualization,
also with unlabeled data.

The measure of residual variance can be used to quan-
tify how well the low-dimensional Euclidean embedding
captures the geodesic distances estimated from the neigh-
borhood graph. It can be used to determine the optimal
neighborhood size of Isomap algorithm [1] and to estimate
the intrinsic dimensionality of the original data [12].

The true intrinsic dimensionality of the LBP texture data
is usually much smaller than the original dimensionality,
typically between three and fifteen. This supports the idea
of using dimensionality reduction and visualization in tex-
ture data analysis. Kouropteva et al. [8] proposed a data
visualization framework in which they first estimated the
intrinsic dimensionality of the data and then reduced the di-
mensionality of the original data into that. After that they
made pairwise plots of each new dimension and calculated
the joint mutual information (JMI) criteria [9] from each
plot to find the optimal visualization plane. Here we ap-
ply this kind approach to LBP feature data using Isomap
for dimensionality reduction and estimation of the intrinsic
dimensionality.

If the features tend to cluster samples into separate clus-
ters, Isomap will also find separate manifolds from the data,
especially with small neighborhoods (small k or ε). In these
cases, the algorithm can be run separately on the discon-
nected manifolds. One can easily estimate the feature per-
formance by visualizing the projections of submanifolds.
Typically paper texture data is so homogenous that there
will be no disconnected components in the low-dimensional
embedding. The residual variance and JMI criteria can be
utilized when finding the optimal mapping from the feature
space to the 2D. The goal is to select such a projection that
provides useful visualization information and represents the
original data optimally.

3 Experiments

In the experiments both simulated and real-world paper
images were used. The appearance of paper was simulated
with a simple periodic function z(x,y) = r ∗ s in (tx ∗ x) +
c o s (ty ∗y), where r ∈ [1,3], tx,ty ∈ [1,6] and x,y ∈ [1,10π].
The dark areas of the synthetized image can be interpreted
as fl ocs and the bright areas as voids. The images were cat-
egorized into 11 classes based on the ” fl oc size” (so that
tx+ty ∈ [2,12]). Totally 720 images were generated and
Gaussian noise with µ = 0.0 and σ = 0.01 was added to the
images for creating more realistic 2d paper textures. In the
resulting images the form and in some cases the orienta-
tion of the ” fl ocs” varied but the mean size of the ” fl ocs”
remained relatively constant. Fig. 1 b and c show examples
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of generated samples (tx+ty=7).
The real world data set consisted of paper images ac-

quired from a Stora Enso papermill in Oulu, Finland. The
running paper web was imaged for one and half month in
December 2003 and January 2004 with 15 minute intervals
between images using a fast high quality CCD camera. Im-
ages taken under downtime of the mill were rejected. The
total number of samples was 2316.

Experiment #1: visual feature analysis

The synthetized data set was used in this experiment.
A leave-one-out 3-NN classification with eight different
LBP operators, L B P 8,1, L B P r i

8,1, L B P u2
8,1, L B P r iu2

8,1 ,
L B P u2

8,1+ 16 ,2+ 24 ,3, L B P r iu2
8,1+ 16 ,2+ 24 ,3, L B P u2

8,1+ 16 ,3+ 24 ,5

and L B P r iu2
8,1+ 16 ,3+ 24 ,5 was made obtaining classification

rates of 87.9, 72.4, 85.8, 74.2, 98.1, 99.3, 99.6 and 99.9
percent, respectively. These results represent the ground
truth for different features. Our aim is to demonstrate how
visualization of the features with Isomap can be used when
analysing the performance of different LBP operators.

For each feature set, its own Isomap projection was cre-
ated using ten different neighborhood sizes (k=[3,5,...,21]).
If the features cluster the data into separate clusters, Isomap
can detect these efficiently when using small neighbor-
hoods. With k=3, the number of connected components
varied for 3–21 with different features. With larger neigh-
borhoods (k ≥ 13) only one connected component was
found with every feature set. The intrinsic dimensionality
of the data was estimated from the residual variance versus
Isomap dimensionality plots by searching for the ” elbow”
from the plot [12]. Then the JMI criteria was used to se-
lect the most informative dimensionality components when
constructing the 2D projection.

Analysis of the residual variance plots suggests, for ex-
ample, that with L B P u2

8,1 features the neighborhood size
k ≥ 13 should be used. With L B P r iu2

8,1+ 16 ,3+ 24 ,5 features
k = 3 provides the best result. Applying Isomap with k=3
for these data sets it found 5 sub-manifolds from L B P u2

8,1

(original dimensionality = 59) and 19 sub-manifolds from
L B P r iu2

8,1+ 16 ,3+ 24 ,5 (original dimensionality = 54) feature
data. The largest sub-manifolds are shown in Figs. 2 a
and b. The multiresolution and rotation invariant opera-
tor can discriminate classes (only 2 involved in this pro-
jection) very well, but with the L B P u2

8,1 operator there are
confusions between classes (9 classes in the projection). In
fact, sub-manifolds of the multiresolution operator could
discriminate the classes nicely but some of the classes are
fragmented into several sub-manifolds (19 clusters and 11
classes). Visualization of projections using the original tex-
tured images reveals rapidly that with L B P u2

8,1 features the
classes are badly mixed. Figs. 2 c and d show the pro-
jections using a larger neighborhood (k=15). Now the lo-
cal properties of the data are not preserved as well as with
smaller neighborhoods and there is not that significant dif-
ference between projections. Both projections represent the
classes interestingly constucting threads on the projection
plane and with L B P u2

8,1 features the projection looks better
than with the smaller k value.

The results indicate that a proper visualization is useful

when studying the performance of the texture features. The
most informative projection for each feature set is found
automatically, but in practice one should also visualize the
projection obtained with a small neighborhood. This is be-
cause with small neighborhoods the Isomap may detect dif-
ferent classes automatically and represent the data using
disconnected manifolds. This helps the visualization task
because there are not so much data involved.

Experiment #2: creation of training set

In the second experiment real-world image data was
used. Our main aim was to develop a method used to train
a classifier for classifying on-line paper samples to differ-
ent ’quality classes’ according to their appearance. The
same features as in previous experiment were extracted and
Isomap projections with the same parameters were con-
structed. With all features and sizes of neighborhoods the
Isomap found only one connected component from the data.
So the data does not have so clear class structures as in the
previous experiments and textures are more homogenous
and uniformly distributed.

For such a homogenous and hardly visualizable texture
material as paper it is difficult to find the best LBP operator
to be used. But when visualizing the projections carefully
we notice that the roughness of the paper texture changes
relatively smoothly when moving from manifold’s one end
to the other. The roughness correlates with the formation
and printing properties of paper. Paper producers want their
paper to be as uniform and smooth as possible to assure
good quality and press properties of the paper.

By selecting a group of samples from different parts of
the manifold for visualization we can try to locate the ap-
parent ’class boundaries’. Fig. 3 shows the projection of
L B P r iu2

8,1+ 16 ,2+ 24 ,3 labeled to five roughness classes. Be-
cause the visual labeling is quite subjective for such a mate-
rial we first applied the k-means clustering to the projection
points and then visualized and adjusted the boundaries. The
left end of the projection represents smooth paper while the
texture is more rough on the right end. After labeling we
can train a classifier, like k-NN, using recently labeled sam-
ples as the training data and classify on-line paper samples
with it.

Figure 3: Isomap projection labeled to five roughness
classes.

Visual labeling of the data and creation of training set
can be utilized in various texture analysis tasks. The class
boundaries can be found by visualizing the 2D projection
(depending on features) and with effective user interface a
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Figure 2: Isomap projections of LBPu2
8,1 (a,c) and LBP riu2

8,1+16,3+24,5 (b,d) features using k=3 (a,b) and k=15 (c,d) nearest
neighbors.

large number of samples can be easily labeled. For human
it is very difficult to see differences between homogenous
samples. The visualization of Isomap projections is there-
fore useful with such a data because user can study data
points locally and globally and determine if there is some
change in texture apperances when moving on the mani-
fold.

4 Discussion

Early data processing, including feature performance
analysis, data labeling and training set creation for classifi-
cation are laborious but fundamental tasks when character-
izing textures in real-world environment. In this paper, we
studied combined use of LBP texture features and Isomap
dimensionality reduction method for analyzing transillumi-
nated paper textures. The 2D Isomap projections of high-
dimensional feature data were visualized and utilized in the
above mentioned tasks. Visualization of the 2D manifolds
and original texture images reveals interesting information
about the feature data and shows how well features can dis-
criminate different texture samples. Visualization can be
used when constructing the training set for classification
and the user can select representative training samples and
label them.

The approach was experimented with both synthetized
and real-world paper texture images. With synthetized data
it was shown that the visualization based method works
well in feature performance analysis of different LBP op-
erators. Real-world data was used to demonstrate capabili-
ties in semisupervised learning: paper texture samples were
visually labeled according to their appearance.

The analysis tool described in this paper can be utilized
in various texture analysis problems and might provide
very useful information about the inspected data. Paper
textures are very homogenous, but it is a difficult texture
analysis problem to characterize them. With the tool
presented here, papermakers can perform visual grading
for the produced paper more objectively and analyze
what would be the properties of the produced paper. It
is also possible to analyze separate off-line data sets and
create a classification training set for characterizing papers
according their textural appearance on-line.
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