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PAPER

Modification of Cubic Bézier Spirals for Curvature Linearity

Koichi HARADA†a), Member, Hidekazu USUI††, and Koichiro NISHI†, Nonmembers

SUMMARY We propose the extended Bézier spiral in this paper. The
spiral is useful for both design purposes and improved aesthetics. This is
because the spiral is one of the Bézier curves, which play an important
role in interactive curve design, and because the assessment of the curve is
based on the human reception of the curve. For the latter purpose we uti-
lize the logarithmic distribution graph that quantifies the designers’ pref-
erences. This paper contributes the unification of the two different curve
design objectives (the interactive operation and so called “eye pleasing”
result generation); which have been independently investigated so far.
key words: spirals, curvature variation, clothoid, Bézier curve, volume of
a curve, transition curve

1. Introduction

For CAD systems that are used for designing surfaces such
as automobile bodies, it is necessary to generate smooth sur-
faces that satisfy the designer’s task purpose. In order to do
so, curvature variation of the obtained curves that compose
the surface must be smooth enough. Therefore, defining
smooth curves is very important in the fields of computer
aided design (CAD) and computer aided geometric design
(CAGD). Much research has focused on smooth curves (see
[1], for example).

Generally, tools to analyze curve’s shape are provided
by curvature plot of the curve. A curve is said to be fair if
its curvature plot is continuous and consists of only a few
monotone pieces. According to this definition, the clothoid
(its curvature is a linear function of the arc length) [2] and
the logarithmic spirals (its radius of curvature is a linear
function of the arc length) [3] are useful. On the other hand,
the Bézier curves (a special case of well-known NURBs) are
widely used in CAD applications, because their shape can
be controlled easily. Unfortunately we can not guarantee in
general that the obtained Bézier curves is fair. Recently the
cubic Bézier spiral segment was reported [4] that has mono-
tonically changing curvature.

Most of research on smooth curves describe defini-
tions, continuity and controlling methods of the curves.
There is relatively few research that focus on the characteris-
tics of curves from the view point of designer’s impression.

The characteristics that are considered when design-
ers generate and modify a curve are the pattern of curva-
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ture variation and the volume [5]. Designers express these
characteristics with special imaginary words, and control the
curve’s shape. However, these imaginary words are not eas-
ily understood in general. So, it is necessary to quantify
these characteristics in order to propose better CAD sys-
tems. The logarithmic distribution graph of curvature is one
of the quantities for this purpose. In [5], it is described that
the pattern of curvature variation is related with the self-
affinity, and it affects the smoothness of a curve.

Recently, Miura et al. [6] showed mathematical de-
scription of the logarithmic distribution graph of the curva-
ture (they use LCH to refer to the histograms). They even
propose a general formula of aesthetic curves. The defini-
tion gives more insight between the relation of human im-
pression and the shape of curves.

In this paper, we propose the extended cubic Bézier
curves (the definition is given in Sect. 4). The proposed
curves are useful in CAD and CAGD because they are
Bézier curves. For attaining its optimum state, we evaluate
each Bézier curve by using logarithmic distribution graph
of the curvature (LDGC). The judgement should match that
of seasoned designers thanks to the merits of LDGC (the de-
signers preferences are supposed to be closely related to this
graph). The obtained Bézier spirals are expected to be (i) vi-
sually pleasing to human eyes, and (ii) appropriate as the de-
sign curves due to its monotone change of curvature. How-
ever, some important requirements on the curvature value
for actual curve design are missing in the discussion. For
designing curves, we should freely set curvature to its ap-
propriate value. The focus of this paper is more on curva-
ture variation, while the curvature value at the beginning or
the end point is expected to be the desirable value. Higashi
et al. [7] presented by the first and second derivatives the
criteria that a curve’s curvature changes monotonously and
smoothly. Their consideration might solve the case when
some curvature values are set as the boundary condition.

This paper is organized as follows: Firstly, we briefly
describe the clothoid and Bézier spirals for later discussion.
Secondly, we summarize the logarithmic distribution graph
that plays very important role in this paper. Then, new spiral
(extended cubic Bézier spiral) will be proposed for smooth
curve generation; our extended Bézier spirals will be evalu-
ated with respect to the LDGC. The existence of extended
cubic Bézier spirals is investigated with respect to its dy-
namic range, and we conclude the merits of Bézier curves
as the curve design tool.

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers
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2. Clothoid and Bézier Spirals

The clothoid is a spiral defined parametrically in terms of
Fresnel integrals by(

x(t)
y(t)

)
= πB

(
C(t)
S (t)

)
, (1)

where the scaling factor πB is positive, the parameter t is
nonnegative, and the Fresnel integrals are

C(t) =
∫ t

0
cos

1
2
πu2du, (2)

S (t) =
∫ t

0
sin

1
2
πu2du. (3)

In the case of clothoid, the radius of curvature is given as

ρ =
B
t
. (4)

Therefore, the curvature of the clothoid changes linearly
with respect to the arc length. By this reason the clothoid
has been widely used for highway design [8].

The curvature change along the curve is also very im-
portant to generate “visually pleasing” interpolants. Meek
et al. [9] proposed a technique to utilize clothoids as the in-
terpolants whose curvature is easily controlled. However, as
Eq. (1) shows the calculation for the clothoid requires much
computational effort compared to the widely used interpola-
tion curves such as Bézier curves.

The Bézier curve is used extensively for CAD applica-
tions. Bézier curve of degree n is defined as

Q(t) =
n∑

i=0

PiB
n
i (t), 0 ≤ t ≤ 1, (5)

where Bn
i (t) is the Bernstein polynomials that is defined by

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i.

The points, Pi, i = 0, · · · , n form the Bézier control polygon
for Q(t). Since they are polynomial, the resulting algorithms
are convenient for implementation in interactive computer
graphics environments. We will investigate the case of n = 3
in this paper. Then, the resulting Bézier curve is cubic.

Recently it was discovered that by choosing the sec-
ond control point (P1) of a cubic Bézier midway between
the first and the third control points, the derivative of the
curvature becomes more manageable [10] (see Fig. 1). By
analyzing the derivative of the curvature of this special cu-
bic, a cubic Bézier spiral was developed which can be used
as a transition curve in a manner similar to the way in which
the clothoid is used to join straight lines to circles, circles to
circles, and straight lines to straight lines.

A cubic Bézier spiral is the curve whose curvature
varies monotonically with arc length. LetΩ be the family of
those cubic Bézier curves (5) with

Fig. 1 A cubic Bézier spiral.

P1 = 0.5(P0 + P2). (6)

Let

a = ||P1 − P0|| > 0, (7)

T0 = (P1 − P0)/a, (8)

b = ||P3 − P2|| > 0, (9)

and

T1 = (P3 − P2)/b. (10)

Then, we can describe the first and the second deriva-
tives of Q(t) as

Q′(t) = 3aT0(1 − t)2 + 6aT0(1 − t)t + 3bT1t2, (11)

and

Q′′(t) = 6(bT1 − aT0)t. (12)

The curvature of a plane curve Q(t) is

κ(t) =
Q′(t) ×Q′′(t)
||Q′(t)||3 . (13)

By analyzing Eq. (13), we find,

• the numerator is linear in t
• the denominator is of degree t6

These properties allow simplification in the analysis of
the curvature to determine a condition for members of Ω to
be spirals. By differentiating Eq. (13) we get the condition
(see [10] for details) that Q(t) be a spiral if

b ≤ 1.2a cosφ, (14)

where φ is the angle spanned by T0 and T1.
Walton et al. [4] applies the cubic Bézier spiral that

meets the condition of Eq. (14) as the substitute for clothoid.
However, there is major difference in their curvature change
pattern (the curvature change of the cubic Bézier spiral is
monotone with respect to the arc length, while the change is
linear in the case of clothoid).

It is not clear in what extent the resemblance in the
curvature characteristics is required in actual applications.
One of the interesting reports regarding this matter is the
human perception to the curvature variation. The topic is
described in the next chapter.
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3. Curvature Change Pattern

Smooth curves are important in CAD applications. Defini-
tions and controlling methods for smooth curves have been
proposed by many researchers, but there is few research that
describes the relations between the features and the impres-
sion of the curve.

Designers create a curve by considering some features
of the curve. They control features of the curve by the use
of some imaginary words. In [5], these imaginary words are
classified into two groups:

• The pattern of curvature variation
• The volume

The pattern of curvature variation means that how the
curve’s curvature vary, or whether the curve has the point
where the curvature is not continuous. Curve’s volume is
defined as the inside area that is enclosed by the curve and
its chord. If the curve is smooth, it has “rhythm” regarding
the pattern of curvature variation.

Let the logarithm of the radius of curvature that has
constant breadth of interval be ρ̄ j, and let the logarithm of
the partial arc length of the curve that is included in the in-
terval ρ̄ j be s̄ j. The curves that has “rhythm” regarding the
pattern of curvature variation if they satisfy the following
conditions (See [5] for details).

ds̄
dρ̄
= lim

s̄1 − s̄2

ρ̄1 − ρ̄2
= · · · = lim

s̄ j−1 − s̄ j

ρ̄ j−1 − ρ̄ j
= const. (15)

Curve’s features, the pattern of curvature variation and
the volume, can be expressed by the Logarithmic Distribu-
tion Graph of Curvature (LDGC).

In Fig. 2, an example of LDGC is given. In this graph,
pattern of curvature variation is expressed as the locus of
the curve C, and the volume is expressed as the position
of both endpoints of locus. Let the right point be A, and
the left point be B. If point A goes to the right or the in-
terval between points A and B become greater, the volume
becomes smaller. In this graph, the volume is expressed as
relative value. This graph can be used for investigating how
to change the volume of some cross-sections of a surface.

If the locus C on LDGC is a straight line and it has
constant slope as the graph in X-Y orthogonal coordinate

Fig. 2 The logarithmic distribution graph of curvature. (LDGC)

system (in this case, the curve satisfies condition (15)), the
curve is considered to be smooth. We can classify the curve
by the slope of the locus C. If two curves have the same
slope on LDGC, they are in the same category, these two
curves share the same impression.

Figure 3 shows the LDGC of a clothoid (the case of
B = 200, t = 0.5 in Eq. (1)). We observe the linear change
in LDGC that matches the calculation result in Appendix.
Miura et al. [6] presented the analysis of clothoid curves to
LDGC (LCH is their terminology). They modified the equa-
tion that describes the derivative of the arc length with re-
spect to the logarithm of the radius of curvature, and then
obtained a more informative equation (Eq. (2) in the refer-
ence).

Figure 4 shows the LDGC of a cubic Bézier curve.
If we slightly move a control point, the LDGC changes to
Fig. 5. These figures show that:

• Bézier curves’ LDGC is in general quite different from
that of clothoid where plot is linear as in Fig. 3.
• A slight change of a control point might cause abrupt

change in LDGC.

Fig. 3 LDGC of a clothoid.

Fig. 4 LDGC of a Bézier curve.

Fig. 5 LDGC of a Bézier curve. (a control point is slightly moved from
the case of Fig. 4)



HARADA et al.: MODIFICATION OF CUBIC BÉZIER SPIRALS FOR CURVATURE LINEARITY
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The next section gives more precise analysis between Bézier
curves and its LDGC which is the main topic of this paper.

4. Extended Cubic Bézier Spirals

Even if the pattern of curvature variation of a cubic Bézier
spiral is the same as the pattern of a clothoid at the start
point, they are quite different at the end point in general. In
the case of the cubic Bézier spiral, the second control point
P1 is chosen on the midpoint between the first control point
P0 and the third control point P2 (given as (6)). Figure 6 in-
dicates a Bézier spiral and its LDGC. Figure 6 (b) shows that
a Bézier spiral, which has been introduced as an appropriate
Bézier curve based on its monotone curvature change, does
not necessarily emulate the clothoid curve from the view
point of LDGC evaluation.

Now, the second control point is chosen arbitrarily be-
tween the first and the third control points, i.e. the second
control point is given as

P1 = mP0 + (1 − m)P2, 0 < m < 1. (16)

Let Ω be the family of cubic Bézier curve with (16),
and a, T0, b, and T1 is defined as (7), (8), (9), and (10),
respectively (same as the cubic Bézier spiral case). A mem-
ber of Ω and its first two parametric derivative can thus be
expressed as

Q(t) = P0(1 − t)3 + 3(P0 + aT0)(1 − t)2t

+ 3(P0 +
a
m

T0)(1 − t)t2

+ (P0 +
a
m

T0 + bT1)t3, (17)

Q′(t) = 3aT0(1 − t)(1 − 3t)

+
6
m

aT0(1 − t)t + 3bT1t2, (18)

and

Q′′(t) = −6aT0(2 − 3t) +
6
m

aT0(1 − 2t) + 6bT1t. (19)

It follows from (13), (18) and (19) that the curvature of the
member of Ω is given by

(a)

(b)

Fig. 6 (a) A Bézier spiral and (b) its LDGC.

κ(t) =

2abt sin φ

{
1 + (

1
m
− 2)t

}

3{ f (t)}3/2 , (20)

where

f (t) = a2 − 4a2

(
2 − 1

m

)
t + 2a

(
11a − 10

m
a

+
2

m2
a + b cosφ

)
t2

− 4a

(
6a − 7

m
a +

2
m2

a + 2b cos φ − 1
m

b cosφ

)
t3

+

(
9a2 − 12

m
a2 +

4
m2

a2

+ 6ab cosφ − 4
m

ab cos φ + b2

)
t4, (21)

and φ is the angle from T0 to T1. Hence the curvature at
both endpoints of member of Ω are

κ(0) = 0, κ(1) =

2a sinφ

(
1
m
− 1

)

3b2
. (22)

If the three control point P0, P2 and P3 are given, the
curvature κ(1) at the last endpoint P3 varies according to the
position of the control point P1 (it changes according to m
in turn).

In order to approximate the clothoid, the cubic Bézier
curve is obtained by placing P0 and P3 at the first (Q0) and
the last (Q1) end point of the clothoid segment, respectively
(see Fig. 7). The direction of the unit tangent vector T0 and
T1 is chosen as the tangent direction at the first and the last
endpoints of the clothoid, respectively. The third control
point P2 is chosen as the intersection point of tangents at
both endpoints.

We can choose the second control point P1 such that
the curvature of the member ofΩ is equal to the curvature at
the last endpoint of the clothoid. To determine the position
of the second control point P1, the coefficient m is calculated
as

m = 1 − 3b2κ1
2c sinφ

, (23)

where

Fig. 7 The cubic Bézier curve that approximates the clothoid.
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(a)

(b)

Fig. 8 (a) The Bézier curve that approximates to the clothoid and (b) its
LDGC.

c = ||P2 − P0||.
If a cubic Bézier spiral’s second control point P1 is cho-

sen based on Eq. (23), then we can expect much closer simi-
larity to a clothoid curve. Let us call this cubic Bézier spirals
as extended cubic Bézier spiral.

We give an example of the extended Bézier spiral. The
target clothoid curve was generated by setting B = 200
and t = 0.5 (see Eqns. (1) through (4)). Then P0 and P3

are (0.0, 0.0) and (309.35,40.67), respectively. Two cur-
vature values at the two end points are 0.0 and 0.0025.
These data determine in turn b = 106.28, c = 211.17,
P1 = (100.46, 0.0) and P2 = (211.17, 0.0). The position of
P1 shows m = 0.476 which is not in the category of Walton’s
Bézier spiral. Figure 8 (a) depicts the cubic Bézier curve,
and Fig. 8 (b) is its LDGC. Because the slope of the locus
on LDGC is −1 (same as the case of clothoid), we can say
that this approximation of the clothoid is of high quality.

5. Dynamic Range for Extended Cubic Bézier Spirals

Walton’s main contribution [10] regarding the Bézier spiral
is the Eq. (14). This equation shows the condition to ob-
tain Bézier spiral when a, φ are fixed. If P3 locates inside
the circle derived by Eq. (14) the resulting Bézier curve is a
spiral. This is the special case analysis of m = 0.5. Unfor-
tunately, Walton’s restriction on the position of P1 does not
bring clothoid-like curve if we adopt LDGC for evaluation,
as our simple example shows.

LDGC was first introduced to explain the human factor
that brings designers’ preferences on curve design, and then
mathematical theory for it has been proposed that derives a
general formula of aesthetic curves [6]. Regarding the rela-
tion between LDGC and Bézier curves, what we have found
so far are: (1) if a curve (more specifically, a spiral) is sim-
ilar to a clothoid, then it is of high quality regarding the
LDGC measure, and (2) the high quality curves are derived
by moving the second control point.

The location of the second control point should be se-
lected so that the resulting curve is at least a spiral. This
consideration suggests the need investigating the allowable

region of m (a dynamic range of m) that guarantees the curve
to be a spiral. Analysing the relation between m and the
shape of the curve’s curvature profile is thus very important
for the later discussion.

Since the equations of Bézier spirals are too compli-
cated, the full analysis of Eqs. (17) through (21) are almost
impossible. We focus on a necessary condition instead that
guarantees the curve to be a cubic Bézier spiral.

By investigating the derivative of κ(t) of Eq. (20), we
find that the critical value of m (indicated with m∗) is ob-
tained by solving the equation κ′(1) = 0. The equation is,

m∗ =
2b + 6a cos φ ± √2b

√
2b + 3a cos φ

3(b + 2a cos φ)
. (24)

As is clear by Fig. 7, a is affected by the position of P1. For
further investigation of the general case we use c instead of
a which enables easier observation of the position of P1. By
replacing a with cm∗ in Eq. (24), we obtain the following
nonlinear equation,

m∗ =
2b + 6cm∗ cosφ ± √2b

√
2b + 3cm∗ cosφ

3(b + 2cm∗ cosφ)
. (25)

With the aid of equation processing software, we can de-
rive the following two roots (suppose F(m∗) = 169b2 −
336bc cosφ + 144c2 cos2 φ).

m∗ =
−13b + 24c cos φ ± √F(m∗)

36c cosφ
. (26)

An obvious condition for the existence of valid m∗ is,

169b2 − 336bc cosφ + 144c2 cos2 φ ≥ 0. (27)

We find that this condition is automatically met for realistic
situations (0 < b, c; 0 ≤ φ < π/2). For the further analysis
of Eq. (26), we suppose the following relation,

b = αc cosφ. (28)

By inserting this relation into Eq. (26), and solve for α, we
obtain the following simple relation between m∗ and α.

α =
6(1 − 4m∗ + 3m∗2)

4 − 13m∗
. (29)

As is clear from this equation, the valid span for α is split
into two parts by the singular value of m∗ that makes the de-
nominator of Eq. (29) equal to zero. The singular value is
4/13, that is approximately 0.3. The plot of Eq. (29) shows
that α value is positive except at the singular point and its
vicinity for the range 0 ≤ m∗ ≤ 1. We omit the range be-
low this singular point for m∗ because it is too far from the
Walton’s case. Figure 9 shows the plot of Eq. (29) for further
consideration.

Note that Walton’s case (c = 2a) is equivalent to the
case α = 0.5 (m∗ = 0.6). This means if we set the distance
between P2 and P3 be half of the length of line P∗0P2 (P∗0
indicates the closest point from P0 on the extension of line
P2P3), then we can move the position of P1 rightward until
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Fig. 9 The plot of α value of Eq. (29) with respect to m∗.

Fig. 10 Dynamic range for m.

m increases to 0.6, while maintaining the resulting curve be
a spiral.

We can define an allowable span (dynamic range) for
m that can be visualized on the plot in Fig. 9. Our example
is shown in Fig. 10. Rl and Ru show the lower and upper
bounds for the allowable span, respectively. The length be-
tween Rl and Ru is the size of dynamic range. The vertical
dotted line indicates the case m = 0.5 that is the base for the
Walton’s case. The horizontal part of the dotted line shows
the critical case for Eq. (14). We can realize that Walton’s
condition yields very limited (narrow dynamic range) case
for discussing spirals. The dynamic range of our example
(shown with horizontal solid line) is much wider and en-
ables wide selection for cubic Bézier spirals. An interesting
observation is that the clothoid-like case (of high quality in
the sense of LDGC) shown by Rc in Fig. 10 is very close to
the middle of the dynamic range.

6. Conclusion

We evaluated the widely used Bézier curves from the view
point of human’s impression to curves. The quantitative
evaluation is based on LDGC and found the following:

• The clothoid curves which are widely used for road

design also offer high quality with respect to LDGC.
Mathematical treatment of LDGC [6] also supports this
result.
• The Bézier spirals can be elaborated to clothoid-like

curves by adjusting the positions of their control points.
• LDGC is very sensitive to the positions of control

points.
• The dynamic range that describes the possible area

where Bézier curves become Bézier spirals can be
widened by extending Walton’s case. More specifi-
cally, if the position of the last control point P3 is rel-
atively closer to the previous control point P2, then we
can expect wider dynamic range.

All the results of this paper have been derived by ex-
tending Walton’s result, and hence only valid in one case
(the number of control points is four). However, these ba-
sic results suggest the importance of Bézier spirals and are
expected to be extended to more general cases (for multiple
control point curves and surfaces).

As is described in Introduction, curve design is not a
simple process. When a designer creates a high quality
curve, he or she specifies first the key curvature values at
various points. This means that analysis for the desirable
curves should incorporate the free setting of the curvature
value. A systematic approach that includes various bound-
ary conditions (pre-setting of the curvature) should be con-
ducted in the future work for utilizing the results of this pa-
per in actual curve design work.
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Appendix: Slope of Clothoid Curve in LDGC

An element of arc length is

ds = πBdt, (A· 1)

hence

s =
∫

ds =
∫
πBdt = πBt. (A· 2)

Substitution of (A· 2) into (4) with arrangement gives

ρ =
πB2

s
. (A· 3)

Taking logarithm of (A· 3) yields

log ρ = logπB2 − log s. (A· 4)

Let X = log ρ, and Y = log s. (A· 4) can be written as

Y = −X +C. (C : const.) (A· 5)
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