
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.1 JANUARY 2008
145

LETTER

A Query System for Texts with Macros

Keehang KWONt•õa), Nonmember, Dae-Seong KANG•õ•õ, Member, and Jinsoo KIM•õ•õ•õ, Nonmember

SUMMARY We propose a query language based on extended regu-
lar expressions. This language extends texts with text-generating macros.
These macros make it possible to define languages in a compressed, elegant
way. This paper also extends queries with linear implications and additive
(classical) conjunctions. To be precise, it allows goals of the form D-oG
and G1 & G2 where D is a text or a macro and G is a query. The first goal is
solved by adding D to the current text and then solving G. This goal is flex-
ible in controlling the current text dynamically. The second goal is solved
by solving both G1 and G2 from the current text. This goal is particularly
useful for internet search.
key words: text search, internet, information retrieval, linear logic

1. Introduction

Regular expressions [1] have gained much interest as a

query language for text search. While regular expressions
provide multiplicative ANDs and additive ORs, they lack
additive (or classical) conjunctions which are integral to In-
ternet search [2]. Lacking such connectives, regular expres-
sions do not have a simple way to express the queries of this
kind: find a web page which contains both the word abc and
the word bca

On the other hand, classical logic has gained much in-
terest as a query language for internet search (e.g., Google,
Yahoo). However, classical logic lacks the notion of re-
sources, i.e., multiplicative conjunctions. Lacking such con-
nectives, classical logic does not have an easy way to ex-

press queries of this kind: find a web page which contains
at least two occurrences of the word abbc.

This paper introduces a superset of these two lan-

guages, which is based on propositional intuitionistic linear
logic [3], [4]. This logic extends regular expressions by new
forms of queries: an implication goal of the form D-oG and
the expression of the form G1 & G2 where D is a text and G
is a goal. The former one has the following intended seman-
tics: the text D is intended to be added to the current context
in the course of proving G. This expression thus supports
the idea of local texts. This expression is particularly useful
for limiting the search space for Internet search. The lat-
ter expression has the following intended semantics: prove

both G1 and G2 from the current text. This expression thus

supports the idea of additive ANDS.

This logic also proposes a new form of macros for

texts: both a text of the form G-oD and a text of the form

!D are allowed where D is a text and G is a goal. The for-

mer one has the following intended semantics: the text G

can be transformed to D. This linear logic expression thus

supports the idea of (dynamic) macros. This expression is

particularly useful for replacing a text with another text. The

latter expression has the following intended semantics: D

is reusable. This expression thus supports the idea of un-

bounded texts.

In this paper we present the syntax and semantics of

this extended language, show some examples of its use, and

study the interactions among the newly added constructs.

The remainder of this paper is structured as follows.

We describe the language and an algorithm in the next sec-

tion. In Sect. 3, we present some examples. In Sect. 4, we

describe an improved algorithm. Section 5 concludes the

paper.

2. The Language

The extended language to be considered is described by G-

and D-formulas given by the syntax rules below:

G::=A|_?|G1(•~)G2•bG1 & G2•bG1(+)G2•bD-oG•b

D•ËG

D::=A|G-oD

In the rules above, A represents a word, i.e., a sequence of

alphabets. A D-formula is either a word (A) or a macro

(G-oD). The goal T consumes arbitrary resources. We

sometimes write GG in place of G(•~)G. The above language

is based on propositional intuitionistic logic and is a subset

of Lolli [4].

In the transition system to be considered, G-formulas

will function as queries and the sequence of D-formulas

will constitute a context. For this reason, we refer to a

G-formula as a goal, to the D-formulas as a context. Our

language is an extension to regular expression with the fol-

lowing difference: additive conjunctions, new scoping con-

structs are added in G-formulas, and macros are allowed in

D-formulas.

We will present an operational semantics for this lan-

guage.

Definition 2.1. Let G be a query and let ƒ¡ and ƒ¢ sequences

Manuscript received July 4,2007.

•õThe author is with the Department of Computer Engineering,

DongA University, Busan, 607-714, Korea.

•õ•õThe author is with the Department of Electronics Engineering,

DongA University, Busan, 607-714, Korea.

•õ•õ•õThe author is with the Department of Computer Science,

Konkuk University, Korea.

a) E-mail: khkwonC dau.ac.kr

DOI:10.1093/ietisy/e91-d.1.145

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

146
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.1 JANUARY 2008

of D-formulas. Then ƒ¡; ƒ¢ H G- the notion of proving G

from ƒ¡; ƒ¢-is defined as follows:

Operational Semantics

In the above rules, ƒ¡ represents the unbounded context

which can be used arbitrary times. ƒ¢ represents the bounded

context which can be used only once. In proving G1(•~)G2

from ƒ¡; ƒ¢, it splits ƒ¢ into two disjoint parts. The symbol -o

provides a scoping mechanisms: it allows for the augmenta-

tion of the text in the course of proving a goal.

3. Examples

This section describes the use of our language. An exam-

ple of the use of this construct is provided by the following

query which searches file for the letters apple and piano.

egrep nil (file -o(TappleT & TpianoT)).

This expression contains the new scoping constructs. Now,

based on the semantics that we have discussed informally

above, we see that the file file is not available at the top-

level but becomes available when evaluating the expression

(TappleT & TpianoT).

Our language in Sect. 2 permits a new macro to be

added to the bounded part of file before solving the query:

egrep file ((TkillT-olove)-oTkillT).

This expression replaces-if there is one-an occurrence of

the word kill by love in file before solving TkillT.

The following example permits a new macro to be

added to the unbounded part of file before solving the query:

egrep file ((madonna-oma)=TmaT).

This expression replaces for arbitrary times the occurrences

of the word madonna by ma in file before solving TmaT.

This is useful for user customization.

It is interesting to note that our language is a useful tool

for limiting the search space for internet search. For this , let

us assume that we reserve the keyword internet for World

Wide Web. This is shown below:

egrep internet

www.ucla.edu(•~)www.berkeley.edu-oTAITAIT

This last expression searches the two UC campuses for web

pages that contain at least two occurrences of the word AI. It

is easily observed that there is no way to express this query

in classical logic or in regular expressions.

4. An Improved Algorithm

We have described an algorithm in which nondeterminism

is present in several places. In particular, there is a choice

concerning which way the text is split in the (•~) goal.

Hodas and Miller [4] dealt with the goal G1(•~)G2 by us-

ing IO-model in which each goal is associated with its input

resource and output resource. The idea used here is to delay

this choice of splitting as much as possible.

Following [4], we will improve the algorithm in Sect. 2

using IO model.

Definition 4.1. Let G be a query and let I, O be texts

with macros (including the new constant deletion). Then

<I, G, O> is defined as follows:

(1) <I, nil, I> holds.

(2) <I, T, O> holds if O is a subcontext of I, i.e., O results

from replacing zero or more components of I with the

constant deletion.

(3) <I, A, O> holds if A is an atom that occurs in I and. O

results from replacing that occurrence of c in I with the

constant deletion.

(4) <I, G1 & G2,O> holds if both <I, G1, O> and <I, G2, O>

hold.

(5) <I, G1(+)G2, O> holds if either <I, G1, O> or <I, G2, O>

holds.

(6) <I, G1(•~)G2, O> holds if both <I, G1, M> and <M, G2, O>

hold for some text M.

(7) <I, D-oG1, O> holds if <I(•~)D, G1, O(•~)deletion> holds.

(8) <I, D•ËG1, O> holds if <I(•~)!D, G1, O(•~)!D> holds.

(9) <I, A, O> holds if G-oA occurs in I and <M, G, O> holds

where M results from replacing that occurrence in I

with the constant deletion.

In the above rules, in proving <I, G1(•~)G2, O>, it introduces

a new existential variable M. However the choice of M re-

quires no non-deterministic splitting using the technique of

unification [5].

LETTER

147

Let us refer to the earlier collection of evaluation rules

in Sect. 2 as DS 1 and let DS 2 be the IO-model defined in

this section. The following theorem shows the connection

between DS 1 and DS 2. A proof of this theorem should be

obvious from the discussions in [4] and can be shown using

an induction on the length of evaluation.

Theorem 4.1: Let ƒ¡; ƒ¢ be a context and let G be a goal.

The relation ƒ¡; ƒ¢•Û G holds in DS 1 if and only if <ƒ¡; ƒ¢, G, O>

holds in DS 2 where O results from replacing each word in ƒ¡

; ƒ¢ with the constant deletion.

There is a definite benefit to using the modified rule

in evaluating expressions: considerable nondeterminism in

search can be eliminated by this choice. This observation

leads to a more viable implementation.

5. Conclusion

In this paper, we propose a language based on extended

regular expressions. This language extends texts with text-

generating macros. These macros make it possible to define

languages in a compressed way, as shown in XML. This

paper also extends queries with linear implications and ad-

ditive (classical) conjunctions. The first goal supports the

notion of local texts. The second goal is particularly useful

for Internet search.

Adding these new constructs does not degrade perfor-

mance, while enhancing usability. Our ultimate interest is

in a procedure for carrying out computations of the kind

described above. There are still efficiency problems. One

nondeterminism arises with the •Û construct. This requires

to consume some resources during execution. Hence it is

important to realize this requirement in an efficient way, as

discussed in [4], [6].

Acknowledgements

This paper was supported by Dong-A University Research

Fund in 2005.

References

[1] S.C. Kleene, Introduction to Metamathematics, North-Holland, Ams-

terdam, 1964.

[2] J. Davies, D. Fensel, and F.V. Harmelen, Towards the Semantics Web,

John Wiley and Sons, 2003.

[3] J.Y. Girard, •gLinear logic,•h Theor. Comput. Sci., vol.50, pp. 1-102,

1987.

[4] J. Hodas and D. Miller, •gLogic programming in a fragment of intu-

itionistic linear logic,•h J. Inf. Comput., vol.110, no.2, pp. 327-365,

1994. Invited to a special issue of submission to the 1991 LICS con-

ference.

[5] A. Martelli and U. Montanari, •gAn efficient unification algorithm,•h

ACM Trans. Program. Lang. Syst., vol.4, no.2, pp. 258-282, April

1982.

[6] I. Cervesato, J.S. Hodas, and F. Pfenning, •gEfficient resource manage-

ment for linear logic proof search,•h Proc. 1996 Workshop on Exten-

sions of Logic Programming, LNAI 1050, pp. 67-81, 1996.

