LETTER

Some Results on Primitive Words, Square-Free Words, and Disjunctive Languages

Tetsuo MORIYA ${ }^{\dagger \mathrm{a})}$, Member

Abstract

SUMMARY In this paper, we give some resuts on primitive words, square-free words and disjunctive languages. We show that for a word $u \in \Sigma^{+}$, every element of $\lambda(c p(u))$ is d-primitive iff it is square-free, where $c p(u)$ is the set of all cyclic-permutations of u, and $\lambda(c p(u))$ is the set of all primitive roots of it. Next we show that $p^{m} q^{n}$ is a primitive word for every $n, m \geq 1$ and primitive words p, q, under the condition that $|p|=|q|$ and $(m, n) \neq(1,1)$. We also give a condition of disjunctiveness for a language. key words: primitive word, square-free word, principal congruence, disjunctive language

1. Introduction

A lot of studies have been done for primitive words and square-free words, which concern the decomposition and combination of words. (See for example [4], [5].) On the other hand, various research have been done about properties of a disjunctive langauge. [2], [3].

In this paper, we give some resuts on primitive words, square-free words and disjunctive languages. In Sect. 2, some basic definitions are presented. In Sect. 3, we show that for a word $u \in \Sigma^{+}$, every element of $\lambda(c p(u))$ is dprimitive iff it is square-free, where $c p(u)$ is the set of all cyclic-permutations of u, and $\lambda(c p(u))$ is the set of all primitive roots of it. This is an arrangement of the relation between d-primitive words and squre-free words by means of a cyclic permutation. Next we show that $p^{m} q^{n}$ is a primitive word for every $n, m \geq 1$ and primitive words p, q, under the condition that $|p|=|q|$ and $(m, n) \neq(1,1)$. This strengthen the result in [6] that $q^{m} q^{n}$ is primitive for two distinct primitive words p, q, and integers $m, n \geq 2$. In Sect. 4, we study disjunctive languages. We give a condition of disjunctiveness for a language. This result is an improved one for Proposition 4.7[4].

2. Preliminaries

Let Σ be an alphabet consisting of at least two letters. Σ^{*} denotes the free moniod generated by Σ, that is, the set of all finite words over Σ, including the empty word 1 , and $\Sigma^{+}=\Sigma^{*}-1$. For w in $\Sigma^{*}|w|$ denotes the length of w. A language over Σ is a set $L \subseteq \Sigma^{*}$. For a language $L \subseteq \Sigma^{*}$, we define $L^{*}=\bigcup_{i=0}^{\infty} L^{i}$ and $L^{+}=\bigcup_{i=1}^{\infty} L^{i}$. For a word $u \in \Sigma^{+}$,

[^0]by u^{+}we mean the set $\{u\}^{+}$.
For a word $u \in \Sigma^{+}$, if $u=v w$ for some $v, w \in \Sigma^{*}$, then $v(w)$ is called a prefix (suffix) of u, denoted by $v \leq_{p} u$ ($w \leq_{s}$ u, resp.). If $v \leq_{p} u\left(w \leq_{s} u\right)$ and $u \neq v(w \neq u)$, then $v(w)$ is called a proper prefix (proper suffix) of u, denoted by $v<_{p} u$ ($w<{ }_{s} u$, resp.).

For a language $L \subseteq \Sigma^{*}$, we define $L^{(i)}=\left\{w^{i} \mid w \in L\right\}$ for $i \geq 1$. A nonempty word u is called a primitive word if $u=f^{n}, f \in \Sigma^{+}, n \geq 1$ always implies that $n=1$. Let Q be the set of all primitive words over Σ. For $u=p^{i}$, $p \in Q, i \geq 1$, let $\lambda(u)=p$, and call p the primitive root of u. For a language $L \subseteq \Sigma^{+}$, let $\lambda(L)=\{\lambda(u) \mid u \in L\}$. A nonempty word u is a non-overlapping word if $u=v x=y v$ for $x, y \in \Sigma^{+}$always implies that $v=1$. Let $D(1)$ be the set of all non-overlapping words over Σ. A word in $D(1)$ is also called a d-primitive word. Let $D=D(1) \cup[D(1)]^{(2)} \cup$ $[D(1)]^{(3)} \cup \cdots$. By the definition, it is immediate that $\lambda(D)=$ $D(1)$ and that $Q \cap D=D(1)$. A word $u \in \Sigma^{+}$is a square free word if $u=v_{1} w^{2} v_{2}$ for any $v_{1}, w, v_{2} \in \Sigma^{*}$ always implies $w=1$. For a word $u \in \Sigma^{+}, u=x y, x, y \in \Sigma^{*}, y x$ is called a cyclic permutation of the word u. Let $c p(u)$ be the set of all cyclic permutations of the word u. That is, $c p(u)=\{y x \mid u=$ $\left.x y, x, y \in \Sigma^{*}\right\}$. For a language $L \subseteq \Sigma^{+}$, let $c p(L)=\{c p(u) \mid u \in$ $L\}$.

A word $u \in \Sigma^{+}$is λ-cyclic-squre-free word if $\lambda(c p(u))$ is square-free. $\lambda(u)$ is called a cyclic-square-free word if a word u is λ-cyclic-squre-free. Let $S F$ be the set of all square-free words, $C S F$ be the set of all cyclic-squre-free words, and $\lambda-C S F$ be the set of all λ-cyclic-squre-free words.

For a language L, the equivalence relation P_{L} on Σ^{*}, called the principal congruence by L is defined as $u \equiv$ $v\left(P_{L}\right)$ if and only if (xuy $\in L \Longleftrightarrow x v y \in L$ for any $x, y \in \Sigma^{*}$). If P_{L} is the equality, then we call L a disjunctive language.

3. Primitive Words and Square-Free Words

In this section, we show that for a word $u \in \Sigma^{+}$, every element of $\lambda(c p(u))$ is d-primitive iff it is square-free.

Lemma 1: $c p(c p(u))=c p(u)$ for every $u \in \Sigma^{+}$. In other words, for every u and $w \in \Sigma^{+}$, if $w \in c p(u)$, then $c p(u)=$ $c p(w)$.
[Proof] Since $u \in c p(u)$, it is obvious that $c p(u) \subseteq c p(c p(u))$. Suppose that $w \in c p(c p(u))$. We can write $u=y x$, and $w \in c p(x y)$ for $x, y \in \Sigma^{*}$. Let $x=a_{i+1} \ldots a_{n}, y=a_{1} \ldots a_{i}$. It
is obvious that $w \in c p(x y) \subseteq c p(u)$.:
Lemma 2: For $u \in \Sigma^{+}, i \geq 1, c p\left(u^{i}\right)=(c p(u))^{(i)}$.
[Proof] Let $x y=u^{i}$ for $x, y \in \Sigma^{*}$. For $y x \in c p\left(u^{i}\right)$, and $u=u_{1} u_{2}$ with $u_{1} \in \Sigma^{+} ; u_{2} \in \Sigma^{*}$, we can write as $y x=$ $u_{2} u \ldots u u_{1}=\left(u_{2} u_{1}\right)^{i} \in(c p(u))^{(i)}$. Thus $c p\left(u^{i}\right) \subseteq(c p(u))^{(i)}$. Conversely, suppose that $u=v w$ for $v \in \Sigma^{+}, w \in \Sigma^{*}$. We have that $(w v)^{i}=w(v w)^{i-1} v \in c p\left((v w)^{i}\right)=c p\left(u^{i}\right)$. Hence $(c p(u))^{(i)} \subseteq c p\left(u^{i}\right) .::$

Lemma 3: [1] Let $u \in \Sigma^{+}$. Then $u \notin D(1)$ if and only if there exists a unique word $v \in D(1)$ with $|v| \leq(1 / 2)|u|$ such that $u=v w v$ for some $w \in \Sigma^{*}$.

Next two lemmnas are well-known results.
Lemma 4: [4] Let $u v=f^{i}, u, v \in \Sigma^{+}, f \in Q, i \geq 1$. Then $v u=g^{i}$ for some $g \in Q$.

Lemma 5: [6] Let $u, v \in \Sigma^{+}$. If $u v=v u$, then u and v are powers of a common primitive word.

The following is immediate by Lemmas 4 and 5.
Lemma 6: If $f \in Q$, then $c p(f) \subseteq Q$.
Proposition 7: For $u \in \Sigma^{+}$, the following are equivalent.
(1) $c p(u) \subseteq D(1)$.
(2) $c p(u) \subseteq S F$.
[Proof] [(1) \Rightarrow (2)] Suppose that $c p(u) \nsubseteq S F$. There exist x and y such that $x y=u$ and $y x \notin S F$. We can write $y x=z_{1} w^{2} z_{2}$ for $z_{1}, z_{2} \in \Sigma^{*}$, and $w \in \Sigma^{+}$. Hence $w z_{1} z_{2} w \in c p(y x) \subseteq c p(c p(u))=c p(u)$ by Lemma 1. Thus $c p(u) \nsubseteq D(1)$.
$[(2) \Rightarrow(1)]$ Suppose that $c p(u) \nsubseteq D(1)$. There exist x and y such that $x y=u$ and $y x \notin D(1)$. We can write $y x=w v w$ for $v \in \Sigma^{*}$, and $w \in \Sigma^{+}$by Lemma 3. Hence $v w^{2} \in c p(y x) \subseteq$ $c p(c p(u))=c p(u)$. Thus $c p(u) \nsubseteq S F$. ::

Lemma 8: For $u \in \Sigma^{+}, \lambda(c p(u))=c p(\lambda(u))$.
[Proof] Let $u=f^{i}$ for $f \in Q$. By Lemma 2, it follows that $\lambda(c p(u))=\lambda\left(c p\left(f^{i}\right)\right)=\lambda\left((c p(f))^{(i)}\right)$. Since $c p(f) \subseteq Q$ by Lemma 6, we have that $\lambda\left((c p(f))^{(i)}\right)=c p(f)=c p(\lambda(u))$. Thus the result holds. ::
Corollary 9: The following are equivalent for $u \in \Sigma^{+}$.
(1) $\lambda(c p(u)) \subseteq D(1)$.
(2) $\lambda(c p(u)) \subseteq S F$.
[Proof] Let $u=f^{i}$ for $f \in Q$, and $i \geq 1$. By Lemma 5, it follows that $\lambda(c p(u))=c p(f)$. Since $c p(f) \in D(1)$ if and only if $c p(f) \in S F$ by Proposition 4 , the result holds. ::

Now we consider a word $p^{m} q^{n}$ for $m, n \geq 1$, and $p, q \in$ Q.

The next lemma is the key for results in this section.
Lemma 10: If $y=x x^{\prime} \in Q$ with $x, x^{\prime} \in \Sigma^{+}$, then $\left(x x^{\prime}\right)^{k} x$ $\in Q$ for every $k \geq 2$.
[Proof] Suppose that $\left(x x^{\prime}\right)^{k} x \notin Q$. Let $\left(x x^{\prime}\right)^{k} x=p^{j}$ for some $p \in Q$, and some $j \geq 2$.
(Case 1) $|x|>|p|$

If $x=p^{t}$ for some $t \geq 2$, then $x^{\prime}=p^{s}$ for some $s \geq 1$. This contradicts that $y \in Q$.
We can write $x=p^{s} u_{1}=u_{2} p^{s}$ with $\left|u_{1}\right|=\left|u_{2}\right|<|p|$ for some $s \geq 1$, and $p=u_{1} u_{1}^{\prime}=u_{2}^{\prime} u_{2}$ with $\left|u_{1}^{\prime}\right|=\left|u_{2}^{\prime}\right|$. Since $\left(u_{1} u_{1}^{\prime}\right)^{s} u_{1}=u_{2}\left(u_{2}^{\prime} u_{2}\right)^{s}$, we have that $u_{2}^{\prime}=u_{1}^{\prime}$, and $u_{1}=u_{2}$. Hence $p=u_{1} u_{1}^{\prime}=u_{1}^{\prime} u_{1}$. By Lemma 5 both u_{1} and u_{1}^{\prime} are powers of some common primitive word q. Thus $p=q^{i}$ for some $i \geq 2$. This is a contradiction.
(Case 2) $|x|<|p|$
(2.1) $p=\left(x x^{\prime}\right)^{s} w=w^{\prime}\left(x^{\prime} x\right)^{s}$ for $s \geq 1$, and some $w, w^{\prime} \in$ Σ^{+}with $|w|=\left|w^{\prime}\right|$, and $w<_{p} x, w^{\prime}<_{s} x$. Let $x=w z=$ $z^{\prime} w^{\prime}$. Since $\left(w z x^{\prime}\right)^{s} w=w^{\prime}\left(x^{\prime} w z\right)^{s}$, we have that $w=w^{\prime}$ and $z x^{\prime} w=x^{\prime} w z$. By Lemma 5 both $x^{\prime} w$ and z are powers of some common primitive word q. Let $x^{\prime} w=q^{i}$ and $z=q^{l}$ for some $i, l \geq 1$. Then $x^{\prime} x=x^{\prime} w z=q^{i+l}$. By Lemma 9, $x^{\prime} x=c p(y) \subseteq Q$. This is a contradiction.
(2.2) $p=\left(x x^{\prime}\right)^{s} x u=u^{\prime} x\left(x^{\prime} x\right)^{s}$ for $s \geq 0$, and $u, u^{\prime} \in \Sigma^{+}$with $|u|=\left|u^{\prime}\right|$, and $u<_{p} x^{\prime}, u^{\prime}<_{s} x^{\prime}$. Let $x^{\prime}=u v=v^{\prime} u^{\prime}$.
(2.2.1) $s \geq 1$

Since $(x u v)^{s} x u=u^{\prime} x(u v x)^{s}$, we have that $u v x=v x u$. Thus both $v x$ and u are powers of some common primitive word q. Let $v x=q^{i}$ and $u=q^{l}$ for some $i, l \geq 1$. Hence $x^{\prime} x=$ $u v x=q^{i+l}$. This is a contradiction.
(2.2.2) $s=0$

Since $x<_{p} p$ and $v<_{p} p$, we have that $x \leq_{p} v$ or $v \leq_{p} x$. If $v<_{p} x$, then we can write $x=v v_{1}$ for some $v_{1} \in \Sigma^{+}$. Since $\left(x x^{\prime}\right)^{k} x=p^{j}$, we have that $v v_{1} u=v_{1} u v$. Thus $x x^{\prime}=v v_{1} u v=q^{i}$ for some $q \in Q$ and $i \geq 2$. This is a contradicion. If $x<_{p} v$, then we can write $x^{\prime}=u p^{t} w$, and $p=w w^{\prime}$ for some $t \geq 0$, and $w, w^{\prime} \in \Sigma^{+}$. Since $\left(x x^{\prime}\right)^{k} x=p^{j}$, we have that $w\left(p^{t+1} w\right)^{k-1} x=p^{j-t-1}$, that is, $w\left(\left(w w^{\prime}\right)^{t+1} w\right)^{k-1} x=\left(w w^{\prime}\right)^{j-t-1}$. Since $w\left(p^{t+1} w\right)^{k-1} x=$ $w w w^{\prime} \alpha$ and $p^{j-t-1}=w w^{\prime} w \beta$ for some $\alpha, \beta \in \Sigma^{*}, p=w w^{\prime}=$ $w^{\prime} w$. This implies that $p \notin Q$. If $x=v$, then we have that $x u=u x=x^{\prime}$ since $(x u x)^{k} x=(x u)^{j}$ for $k \geq 2$. Thus $y=x x^{\prime} \notin Q .::$

Remark 1: Unfortunately, the previous Lemma does not hold for $k=1$. For example, for $\Sigma=\{a, b\}$, let $x=a b b a$, $x^{\prime}=b b a a b b$. Then $x x^{\prime} x=(a b b a b b a)^{2} \notin Q$.

Proposition 11: For $p, q \in Q$ with $p \neq q$ and $|p|=|q|$, $p q^{n} \in Q$ and $p^{n} q \in Q$ for every $n \geq 2$.
[Proof] It suffices to show that $p q^{n} \in Q$. Let $p, q \in Q$ and $p \neq q$. Suppose that there exists $y \in Q$ such that $p q^{n}=y^{r}$ for some $r \geq 2$. If $|y|=|p|$, that is, $p=y$, then immediately $y=q$. This contradicts that $p \neq q$.
(Case 1) $|y|<|p|$
Let $p=y^{s} x$ for some $s \geq 1$ and $x \in \Sigma^{+}$with $x<_{p} y$. Thus $x<_{p} p$, and $x<_{s} p$. Let $y=x x^{\prime}$ for $x^{\prime} \in \Sigma^{+}$. By $p q^{n}=y^{r}, n \geq 2$, and $|p|=|q|$, we have that $q^{n}=\left(x^{\prime} x\right)^{r-s-1} x^{\prime}$ with $r \geq(n+1) s+1$. Since $r-s-1 \geq n s \geq 2$, and $x^{\prime} x \in Q$, it follows that $\left(x^{\prime} x\right)^{r-s-1} x^{\prime}$ is in Q by the Lemma 10. This is a contradiction.
(Case 2) $|p|<|y|$
If $y=p q^{s}$ for $s \geq 1$, then $p \in q^{+}$. This contradicts to that $p, q \in Q$ and $p \neq q$. Thus $y=p q^{t} x$ for some $t \geq 0$
and $x \in \Sigma^{+}$with $x<_{p} q$. Let $q=x w$ for $w \in \Sigma^{+}$. If $r=2$, then we have that $p q^{t} x=w q^{n-t-1}$ and $|x|=|w|=(1 / 2)|q|$. It follows that $q=x w=w x$. This implies that $q \notin Q$. Thus $r \geq 3$. Let $z=q^{t} x$.

Since $y=p z \in Q$ and $p q^{n}=y^{r}=(p z)^{r}$, it follows that $q^{n}=(z p)^{r-1} z \in Q$ with $r-1 \geq 2$ by Lemmas 6 and 10 . This is a contradiction::

Corollary 12: For $p, q \in Q$ with $p \neq q$ and $|p|=|q|$, $p^{n} q^{m} \in Q$ for every $n, m \geq 1$ with $(n, m) \neq(1,1)$.
[Proof] Let $p, q \in Q$ with $p \neq q$ and $|p|=|q|$. If $n \geq 2$ and $m \geq 2$, then $p^{n} q^{m} \in Q$ in either $|p|=|q|$ or not, by [3]. For other cases, the result holds by Proposition 11. ::
Remark 2: As mentioned in [6], the previous corollary does not hold for $n=1, m \geq 2$ or $n \geq 2, m=1$ without the condition $|p|=|q|$. On the other hand, for $n=m=1$, let $p=a b a$ and $q=b a b$. Then $p q=(a b)^{3} \notin Q$.

Corollary 13: Let $p, q \in Q$ with $p \neq q$ and $|p|=|q|$. Then $p q p^{n} \in Q$ and $p^{n} q p \in Q$ for every $n \geq 2$.
[Proof] Since $n+1 \geq 2, q p^{n+1} \in Q$ and $p^{n+1} q \in Q$ by Proposition 11. By Lemma 6, $p q p^{n} \in c p\left(q p^{n+1}\right) \subseteq Q$ and $p^{n} q p \in c p\left(p^{n+1} q\right) \subseteq Q .::$

4. Disjunctive Languages

In this section, we study a condition of disjunctiveness for a language. The following proposition is an improved result for Proposition 4.7 [4].

Proposition 14: Let $A \subseteq \Sigma^{*}$. Then the following are equivalent.
(1) A is a disjunctive language.
(2) If $u, v \in X^{*},|u|=|v|$, and $u \equiv v\left(P_{A}\right)$, then $u=v$.
(3) If $u, v \in Q,|u|=|v|$, and $u \equiv v\left(P_{A}\right)$, then $u=v$.
(4) If $u, v \in D(1),|u|=|v|$, and $u \equiv v\left(P_{A}\right)$, then $u=v$.
[Proof] (1) \Rightarrow (2), (2) \Rightarrow (3), and (3) \Rightarrow (4) are immediate. $[(3) \Rightarrow(1)]$ (See [4])
$[(4) \Rightarrow(2)]$ Suppose (4) holds, and let $x, y \in X^{*}$ be such that $|x|=|y|$ and $x \equiv y\left(P_{A}\right)$. Take $b \in X$. Then $b x b \equiv b y b\left(P_{A}\right)$. For $n>|b x b|=|b y b|$, consider the word $\alpha=b x b a^{n}$ and $\beta=b y b a^{n}$ with $a \neq b$. It is easy to see that $\alpha, \beta \in D(1)$. Since $|\alpha|=|\beta|$ and $\alpha \equiv \beta\left(P_{A}\right)$, we have $\alpha=\beta$, and thus $x=y$. Accordingly (2) holds. ::

References

[1] S.C. Hsu, M. Ito, and H.J. Shyr, "Some properties of overlapping order and related languages," Soochow J. Mathematics, vol.15, pp.2945, 1989.
[2] C.M. Reis and H.J. Shyr, "Some properties of disjunctive languages on free monoid," Information and Control, vol.37, pp.334-344, 1978.
[3] H.J. Shyr, "Disjunctive languages on a free monoid," Information and Control, vol.34, pp.123-129, 1977.
[4] H.J. Shyr, Free monoids and languages, Hon Min Book Company, Taichung, Taiwan, 2001.
[5] C.-M. Fan, H.J. Shyr, and S.S. Yu, "d-words and d-languages," Acta Informatica, vol.35, pp.709-727, 1998.
[6] R.C. Lyndon and M.P. Shützenberger, "The equation $a^{M}=b^{N} c^{P}$ in a free group," Michigan Math. J., vol.9, pp.289-298, 1962.

[^0]: Manuscript received March 5, 2008.
 Manuscript revised June 13, 2008.
 ${ }^{\dagger}$ The author is with School of Science and Engineering, Kokushikan University, Tokyo, 154-8515 Japan.
 a) E-mail: moriya@kokushikan.ac.jp

 DOI: 10.1093/ietisy/e91-d.10.2514

