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[LETTER

Some Results on Primitive Words, Square-Free Words,

and Disjunctive Languages

SUMMARY In this paper, we give some resuts on primitive words,
square-free words and disjunctive languages. We show that for a word
u € X*, every element of A(cp(u)) is d-primitive iff it is square-free, where
cp(u) is the set of all cyclic-permutations of u, and A(cp(w)) is the set of all
primitive roots of it. Next we show that p™g" is a primitive word for every
n,m > 1 and primitive words p, g, under the condition that |p| = |g| and
(m,n) # (1,1). We also give a condition of disjunctiveness for a language.
key words: primitive word, square-free word, principal congruence, dis-
Junctive language

1. Introduction

A lot of studies have been done for primitive words and
square-free words, which concern the decomposition and
combination of words. (See for example [4],[5].) On the
other hand, various research have been done about proper-
ties of a disjunctive langauge. [2], [3].

In this paper, we give some resuts on primitive words,
square-free words and disjunctive languages. "In Sect.2,
some basic definitions are presented. In Sect.3, we show
that for a word u € X*, every element of A(cp(w)) is d-
primitive iff it is square-free, where cp(u) is the set of all
cyclic-permutations of u, and A(cp(u)) is the set of all prim-
itive roots of it. This is an arrangement of the relation be-
tween d-primitive words and squre-free words by means of
a cyclic permutation. Next we show that p™g" is a primi-
tive word for every n,m > 1 and primitive words p, g, un-
der the condition that |p| = |g| and (m,n) # (1,1). This
strengthen the result in [6] that g™ ¢" is primitive for two dis-
tinct primitive words p, g, and integers m,n > 2. In Sect. 4,
we study disjunctive languages. We give a condition of dis-
junctiveness for a language. This result is an improved one
for Proposition 4.7[4].

2. Preliminaries

Let T be an alphabet consisting of at least two letters. X*
denotes the free moniod generated by £, that is, the set of
all finite words over X, including the empty word 1, and
¥+ = ¥* — 1. For w in &* |w| denotes the length of w. A
language over T is a set L C =*. For a language L C X*, we
define L* = U2, L' and L* = U2, L'. For a word u € Z*,

Manuscript received March 5, 2008.
Manuscript revised June 13, 2008.
fThe author is with School of Science and Engineering,
Kokushikan University, Tokyo, 154-8515 Japan.
a) E-mail: moriya@kokushikan.ac.jp
DOI: 10.1093/ietisy/e91-d.10.2514

Tetsuo MORIYA'®, Member

by u* we mean the set {u}*.

For a word u € X7, if u = vw for some v,w € X*, then
v (w) is called a prefix (suffix) of u, denoted by v <, u (w <;
u, resp.). If v <, u (w <5 u) and u # v(w # u), then v (w) is
called a proper prefix (proper suffix) of u, denoted by v <, u
(w < u, resp.).

For a language L C X*, we define LY = {(wilw € L}
for i.> 1. A nonempty word u is called a primitive word
ifu=f" feZ n > 1 always implies that n = 1. Let
Q be the set of all primitive words over X. For u = p',
peQ,i>1,let Au) = p, and call p the primitive root
of u. For a language L C %, let A(L) = {Aw)|u € L}. A
nonempty word u is a non-overlapping word if u = vx = yv
for x,y € Z* always implies that v = 1. Let D(1) be the
set of all non-overlapping words over £. A word in D(1) is
also called a d-primitive word. Let D = D(1) U [D()]® U
[D(1)]®U~. By the definition, it is immediate that A(D) =
D(1) and that QN D = D(1). A word u € =% is a square free
word if u = viw?v, for any vi,w,1, € L* always implies
w=1 Forawordu € £*, u = xy,x,y € £*, yxis called a
cyclic permutation of the word u. Let cp(u) be the set of all
cyclic permutations of the word u. That is, cp(u) = {yxlu =
xy, x,y € £*}. For alanguage L C X7, let cp(L) = {cp(w)lu €
L}.

A word u € X7 is A-cyclic-squre-free word if A(cp(u))
is square-free. A(u) is called a cyclic-square-free word if
a word u is A-cyclic-squre-free. Let S F be the set of all
square-free words, CS F be the set of all cyclic-squre-free
words, and 1 — CSF be the set of all A-cyclic-squre-free
words.

For a language L, the equivalence relation Py on X*,
called the principal congruence by L is defined as u =
v (Py) if and only if (xuy € L & xvy € L for any
x,y € T*). If Py is the equality, then we call L a disjunc-
tive language. '

3. Primitive Words and Square-Free Words

In this section, we show that for a word u € Z*, every ele-
ment of A(cp(u)) is d-primitive iff it is square-free.

Lemma 1: cp(cp(u)) = cp(u) for every u € *. In other
words, for every u and w € T*, if w € cp(u), then cp(u) =
cp(w). )

[Proof] Since u € cp(u), it is obvious that cp(u) C cp(cp(u)).

Suppose that w € cp(cp(u)). We can write u = yx, and
w € cp(xy) for x,y € X*. Let X = ajy1 ... ap, ¥y = a1 ... Gy It
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is obvious that w € cp(xy) C cp(u). ::
Lemma2: ForucX*, i>1,cp) = (cpu)?.

[Proof] Let xy = u' for x,y € £*. For yx € cp(«'), and
u = wuy with u; € T*;u; € X*, we can write as yx =
wou . ..uwy = (o) € (cp(w))®. Thus cp(’) € (cpu))®.
Conversely, suppose that u = vw for v € ¥, w € Z*. We
have that (wv) = wiww) v € cp((vw)’) = cp(u’). Hence
(cp)® < cp(). ::

Lemma3: [1]Letu € £*. Then u ¢ D(1) if and only if

there exists a unique word v € D(1) with |v| < (1/2)|u] such
* that u = ywv for some w € X*.

Next two lemmnas are well-known results.

Lemma 4: [4Letuv = f,u,veX*, fe Q,i>1. Then
vu = g' for some g € Q.

Lemma 5: [6] Letu,v € X*. If uv = vu, then u and v are
powers of a common primitive word.

The following is immediate by Lemmas 4 and 5.
Lemma 6: If f € O, then cp(f) € Q.

Proposition 7: For u € £*, the following are equivalent.
(1) cp(u) € D(1).
(2) cp(w) € SF.

[Proof] [(1) = (2)] Suppose that cp(u) € SF. There ex-
ist x and y such that xy = uw and yx ¢ SF. We can
write yx = zw?z, for 71,7 € Z*, and w € E*. Hence
wzizow € cp(yx) € cp(cp(u)) = cp(u) by Lemma 1. Thus
cpu) € D(1).

[(2) =(1)] Suppose that cp(u) € D(1). There exist x and y
such that xy = u and yx ¢ D(1). We can write yx = wvw for
v € X*, and w € X+ by Lemma 3. Hence vw? € cp(yx) C
cplcp(u)) = cp(u). Thus cp(u) € SF. =

Lemma 8: For u € =*, A(cp(w)) = cp(A(u)).

[Proof] Let u = f° for f € Q. By Lemma 2, it follows that
Aepw)) = Aep(f1)) = Wep(HNHP). Since cp(f) < Q by
Lemma 6, we have that A((cp(f)?) = cp(f) = cp(Aw)).
Thus the result holds. ::

Corollary 9: The following are equivalent for u € *.

(DAlecpw)) < D(1).

@) Alcp(u)) CSF.

[Proof] Let u = f' for f € Q, and i > 1. By Lemma 5, it

follows that A(cp(w)) = cp(f). Since cp(f) € D(1) if and

only if cp(f) € S F by Proposition 4, the result holds. ::
.Now we consider a word p™g" form,n > 1, and p,q €

0. . v

The next lemma is the key for results in this section.

Lemma 10: Ify = xx’ € Q with x,x’ € X7, then (exYex

€ Q for every k > 2.

[Proof] Suppose that (xx')¥x ¢ Q. Let (xx')*x = p/ for some

p € Q, and some j > 2.
(Case 1)|x| > |pl
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If x = p' for some ¢ > 2, then x’ = p* for some s > 1. This
contradicts that y € Q.

We can write x = pSu; = upp® with |[uy| = |ug| < |p| for
some s > 1, and p = wju| = wju, with luj| = |uj|. Since

,(ulu'l)sul = Mz(u'zuz)s, we have that &, = uf, and u; = uy.

Hence p = uju} = uju;. By Lemma 5 both u; and uj are
powers of some common primitive word g. Thus p = ¢’ for
some i > 2. This is a contradiction.

(Case 2) |x| < |p|

2.1) p = (xx')Y'w = w(x’x)° for s > 1, and some w, w’ €
Xt with w| = W, andw <, x, W <, x. Let x = wz =
Zw’. Since (wzx’')Y’w = w'(x'wz)*, we have that w = w’ and
'w = x'wz. By Lemma 5 both x'w and z are powers of
some common primitive word g. Let ¥w = ¢’ and z = ¢
for some i,/ > 1. Then x’x = X¥'wz = ¢'"". By Lemma 9,
X'x = ¢p(y) € Q. This is a contradiction.

(2.2) p = (xx')*xu = ' x(x’x)* for s > 0, and u, v’ € * with
lul = '), and u <p X', w' < x'. Letx' =uv =v'u'.

221 s=1

Since (xuv)*xu = u’ x(uvx)®, we have that uvx = vxu. Thus
both vx and u.are powers of some common primitive word
g. Letvx = ¢ and u = ¢ for some i,/ > 1. Hence x'x =
uvx = ¢"*!. This is a contradiction.

222)s=0

Since x <, p and v <, p, we have that x <, vorv <, x.
If v <, x, then we can write x = vv; for some v € Z*.
Since (xx’)*x = p’/, we have that vwiu = vquv. Thus
xx' = wuv = g for some g € Q and i > 2. This is
a contradicion. If x <, v, then we can write X' = up'w,
and p = ww for some ¢ > 0, and w, w' € Z*. Since
(xx)x = p/, we have that w(p''w)*"1x = p/1, that
is, w((ww" )Y w)1x = (ww')1. Since w(p™*lw)lx =
www’ e and p/"1 = ww'wg for some @, € ¥, p = ww' =
w'w. This implies that p ¢ Q. If x = v, then we have
that xu = ux = x’ since (xux)’x = (xu)’ for k > 2. Thus
y=xx'¢0Q.:

Remark 1: Unfortunately, the previous Lemma does not

‘hold for k = 1. For example, for T = {a, b}, let x = abba,

%' = bbaabb. Then xx’x = (abbabba)® & Q.

Proposition 11: For p,g € Q with p # g and |p| = |gl,
pq" € Q and p"q € Q for every n > 2.

[Proof] It suffices to show that pg" € Q. Let p,q € Q and
p # g. Suppose that there exists y € Q such that pg" = y”
for some r > 2. If |y| = |p|, that is, p = y, then immediately
y = g. This contradicts that p # q.
(Case 1) yl < Ipl

Let p = y*x for some s > 1 and x € ¥ with x <, .
Thus x <, p, and x <; p. Lety = xx’ for x" € **. By
pq* =y, n>2, and |p| = |lg|, we have that ¢" = x)
withr > (n+1)s+1. Sincer—s—1>ns=2,and x'x € Q,
it follows that (x’ x)"*"'x’ is in Q by the Lemma 10. This is
a contradiction.
(Case 2) |p| < Iyl

If y = pg° for s > 1, then p € g*. This contradicts to
that p,g € Q and p # g. Thus y = pg'x for some ¢ > 0
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and x € Z* with x <, ¢g. Letg = xwforw € Z*. If r = 2,
then we have that pg’x = wg""! and |x| = |w| = (1/2)|q]. Tt
follows that ¢ = xw = wx. This implies that g ¢ Q. Thus
r>3.Letz=¢'x. .

Since y = pz € Q and pq" = y" = (pz)’, it follows that
q" = (zpY "'z € Q with r — 1 > 2 by Lemmas 6 and 10. This
is a contradiction::

Corollary 12: For p,q € Q with p # ¢q and |p| = gI,
p"q" € Q for every n,m > 1 with (n,m) # (1, 1).

[Proof] Let p,q € Q with p # g and |p| = |g|. If n > 2 and
m > 2, then p*q™ € Q in either |p| = |g| or not, by [3]. For
other cases, the result holds by Proposition 11. ::

Remark 2: As mentioned in [6], the previous corollary
does not hold forn = 1, m > 2 orn > 2, m = 1 without
the condition |p| = |g|. On the other hand, forn = m = 1, let
p = aba and q = bab. Then pq = (ab)’ ¢ Q.

Corollary 13: Let p,q € Q with p # g and |p| = |g|. Then
pqp" € Q and p"gp € Q forevery n > 2.

[Proof] Since n + 1 > 2, gp™! € Q and p*'q € Q by
Proposition 11. By Lemma 6, pgp” € cp(gp™!) € Q and
plap € cp(P"'g) € Q.

4. Disjunctive Languages

In this section, we study a condition of disjunctiveness for a
language. The following proposition is an improved result
for Proposition 4.7 [4].
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Proposition 14: Let A C Z*. Then the following are equiv-
alent.

(1) A is a disjunctive language.

Q) lfuveX,|u=,andu=v(P,),thenu =v.

B Ifu,ve Q,lul=,and u =v (Pa), thenu = v.

@ Ifu,ve D), |ul=v,and u = v (Ps), then u = v.

[Proof] (1) = (2), (2) = (3), and (3) = (4) are immediate.

[(3) = (1)] (See [4])

[(4) = (2)] Suppose (4) holds, and let x, y € X* be such that
|x| = [yl and x = y (P4). Take b € X. Then bxb = byb (P,).
For n > |bxb| = |byb|, consider the word @ = bxba" and
B = byba" with a # b. It is easy to see that o, 8 € D(1).
Since |a| = || and @ = B (P4), we have ¢ = B, and thus
x =y. Accordingly (2) holds. ::
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