LETTER Some Results on Primitive Words, Square-Free Words, and Disjunctive Languages

Tetsuo MORIYA^{†a)}, Member

SUMMARY In this paper, we give some resuts on primitive words, square-free words and disjunctive languages. We show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is d-primitive iff it is square-free, where cp(u) is the set of all cyclic-permutations of u, and $\lambda(cp(u))$ is the set of all primitive roots of it. Next we show that p^mq^n is a primitive word for every $n, m \ge 1$ and primitive words p, q, under the condition that |p| = |q| and $(m, n) \neq (1, 1)$. We also give a condition of disjunctiveness for a language. **key words:** primitive word, square-free word, principal congruence, disjunctive language

1. Introduction

A lot of studies have been done for primitive words and square-free words, which concern the decomposition and combination of words. (See for example [4], [5].) On the other hand, various research have been done about properties of a disjunctive langauge. [2], [3].

In this paper, we give some resuts on primitive words, square-free words and disjunctive languages. In Sect. 2, some basic definitions are presented. In Sect. 3, we show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is dprimitive iff it is square-free, where cp(u) is the set of all cyclic-permutations of u, and $\lambda(cp(u))$ is the set of all primitive roots of it. This is an arrangement of the relation between d-primitive words and squre-free words by means of a cyclic permutation. Next we show that $p^m q^n$ is a primitive word for every $n, m \ge 1$ and primitive words p, q, under the condition that |p| = |q| and $(m, n) \neq (1, 1)$. This strengthen the result in [6] that $q^m q^n$ is primitive for two distinct primitive words p, q, and integers $m, n \ge 2$. In Sect. 4, we study disjunctive languages. We give a condition of disjunctiveness for a language. This result is an improved one for Proposition 4.7[4].

2. Preliminaries

Let Σ be an alphabet consisting of at least two letters. Σ^* denotes the free moniod generated by Σ , that is, the set of all finite words over Σ , including the empty word 1, and $\Sigma^+ = \Sigma^* - 1$. For *w* in $\Sigma^* |w|$ denotes the length of *w*. A *language* over Σ is a set $L \subseteq \Sigma^*$. For a language $L \subseteq \Sigma^*$, we define $L^* = \bigcup_{i=0}^{\infty} L^i$ and $L^+ = \bigcup_{i=1}^{\infty} L^i$. For a word $u \in \Sigma^+$,

Manuscript received March 5, 2008.

[†]The author is with School of Science and Engineering, Kokushikan University, Tokyo, 154–8515 Japan.

a) E-mail: moriya@kokushikan.ac.jp

DOI: 10.1093/ietisy/e91-d.10.2514

by u^+ we mean the set $\{u\}^+$.

For a word $u \in \Sigma^+$, if u = vw for some $v, w \in \Sigma^*$, then v(w) is called a *prefix* (*suffix*) of u, denoted by $v \leq_p u$ ($w \leq_s u$, *resp.*). If $v \leq_p u$ ($w \leq_s u$) and $u \neq v(w \neq u)$, then v(w) is called a *proper prefix* (*proper suffix*) of u, denoted by $v <_p u$ ($w <_s u$, resp.).

For a language $L \subseteq \Sigma^*$, we define $L^{(i)} = \{w^i | w \in L\}$ for $i \ge 1$. A nonempty word u is called a *primitive word* if $u = f^n$, $f \in \Sigma^+$, $n \ge 1$ always implies that n = 1. Let Q be the set of all primitive words over Σ . For $u = p^{i}$, $p \in Q, i \ge 1$, let $\lambda(u) = p$, and call p the primitive root of u. For a language $L \subseteq \Sigma^+$, let $\lambda(L) = \{\lambda(u) | u \in L\}$. A nonempty word *u* is a *non-overlapping word* if u = vx = yvfor $x, y \in \Sigma^+$ always implies that v = 1. Let D(1) be the set of all non-overlapping words over Σ . A word in D(1) is also called a *d-primitive word*. Let $D = D(1) \cup [D(1)]^{(2)} \cup$ $[D(1)]^{(3)} \cup \cdots$. By the definition, it is immediate that $\lambda(D) =$ D(1) and that $Q \cap D = D(1)$. A word $u \in \Sigma^+$ is a square free word if $u = v_1 w^2 v_2$ for any $v_1, w, v_2 \in \Sigma^*$ always implies w = 1. For a word $u \in \Sigma^+$, $u = xy, x, y \in \Sigma^*$, yx is called a *cyclic permutation* of the word u. Let cp(u) be the set of all cyclic permutations of the word u. That is, $cp(u) = \{yx|u = x\}$ $xy, x, y \in \Sigma^*$. For a language $L \subseteq \Sigma^+$, let $cp(L) = \{cp(u) | u \in U\}$ L}.

A word $u \in \Sigma^+$ is λ -cyclic-squre-free word if $\lambda(cp(u))$ is square-free. $\lambda(u)$ is called a cyclic-square-free word if a word u is λ -cyclic-squre-free. Let SF be the set of all square-free words, CSF be the set of all cyclic-squre-free words, and $\lambda - CSF$ be the set of all λ -cyclic-squre-free words.

For a language L, the equivalence relation P_L on Σ^* , called the *principal congruence* by L is defined as $u \equiv v$ (P_L) if and only if ($xuy \in L \iff xvy \in L$ for any $x, y \in \Sigma^*$). If P_L is the equality, then we call L a *disjunc-tive* language.

3. Primitive Words and Square-Free Words

In this section, we show that for a word $u \in \Sigma^+$, every element of $\lambda(cp(u))$ is d-primitive iff it is square-free.

Lemma 1: cp(cp(u)) = cp(u) for every $u \in \Sigma^+$. In other words, for every u and $w \in \Sigma^+$, if $w \in cp(u)$, then cp(u) = cp(w).

[Proof] Since $u \in cp(u)$, it is obvious that $cp(u) \subseteq cp(cp(u))$. Suppose that $w \in cp(cp(u))$. We can write u = yx, and $w \in cp(xy)$ for $x, y \in \Sigma^*$. Let $x = a_{i+1} \dots a_n, y = a_1 \dots a_i$. It

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers

Manuscript revised June 13, 2008.

LETTER

is obvious that $w \in cp(xy) \subseteq cp(u)$. ::

Lemma 2: For $u \in \Sigma^+$, $i \ge 1$, $cp(u^i) = (cp(u))^{(i)}$.

[Proof] Let $xy = u^i$ for $x, y \in \Sigma^*$. For $yx \in cp(u^i)$, and $u = u_1u_2$ with $u_1 \in \Sigma^+; u_2 \in \Sigma^*$, we can write as $yx = u_2u \dots uu_1 = (u_2u_1)^i \in (cp(u))^{(i)}$. Thus $cp(u^i) \subseteq (cp(u))^{(i)}$. Conversely, suppose that u = vw for $v \in \Sigma^+, w \in \Sigma^*$. We have that $(wv)^i = w(vw)^{i-1}v \in cp((vw)^i) = cp(u^i)$. Hence $(cp(u))^{(i)} \subseteq cp(u^i)$. ::

Lemma 3: [1] Let $u \in \Sigma^+$. Then $u \notin D(1)$ if and only if there exists a unique word $v \in D(1)$ with $|v| \le (1/2)|u|$ such that u = vwv for some $w \in \Sigma^*$.

Next two lemmnas are well-known results.

Lemma 4: [4] Let $uv = f^i$, $u, v \in \Sigma^+$, $f \in Q$, $i \ge 1$. Then $vu = g^i$ for some $g \in Q$.

Lemma 5: [6] Let $u, v \in \Sigma^+$. If uv = vu, then u and v are powers of a common primitive word.

The following is immediate by Lemmas 4 and 5.

Lemma 6: If $f \in Q$, then $cp(f) \subseteq Q$.

Proposition 7: For $u \in \Sigma^+$, the following are equivalent. (1) $cp(u) \subseteq D(1)$.

(2) $cp(u) \subseteq SF$.

[Proof] $[(1) \Rightarrow (2)]$ Suppose that $cp(u) \notin SF$. There exist x and y such that xy = u and $yx \notin SF$. We can write $yx = z_1w^2z_2$ for $z_1, z_2 \in \Sigma^*$, and $w \in \Sigma^+$. Hence $wz_1z_2w \in cp(yx) \subseteq cp(cp(u)) = cp(u)$ by Lemma 1. Thus $cp(u) \notin D(1)$.

[(2) ⇒(1)] Suppose that $cp(u) \notin D(1)$. There exist *x* and *y* such that xy = u and $yx \notin D(1)$. We can write yx = wvw for $v \in \Sigma^*$, and $w \in \Sigma^+$ by Lemma 3. Hence $vw^2 \in cp(yx) \subseteq cp(cp(u)) = cp(u)$. Thus $cp(u) \notin SF$. ::

Lemma 8: For $u \in \Sigma^+$, $\lambda(cp(u)) = cp(\lambda(u))$.

[Proof] Let $u = f^i$ for $f \in Q$. By Lemma 2, it follows that $\lambda(cp(u)) = \lambda(cp(f^i)) = \lambda((cp(f))^{(i)})$. Since $cp(f) \subseteq Q$ by Lemma 6, we have that $\lambda((cp(f))^{(i)}) = cp(f) = cp(\lambda(u))$. Thus the result holds. ::

Corollary 9: The following are equivalent for $u \in \Sigma^+$. (1) $\lambda(cp(u)) \subseteq D(1)$. (2) $\lambda(cp(u)) \subseteq SF$.

[Proof] Let $u = f^i$ for $f \in Q$, and $i \ge 1$. By Lemma 5, it follows that $\lambda(cp(u)) = cp(f)$. Since $cp(f) \in D(1)$ if and only if $cp(f) \in SF$ by Proposition 4, the result holds. ::

Now we consider a word $p^m q^n$ for $m, n \ge 1$, and $p, q \in Q$.

The next lemma is the key for results in this section.

Lemma 10: If $y = xx' \in Q$ with $x, x' \in \Sigma^+$, then $(xx')^k x \in Q$ for every $k \ge 2$.

[Proof] Suppose that $(xx')^k x \notin Q$. Let $(xx')^k x = p^j$ for some $p \in Q$, and some $j \ge 2$. (Case 1)|x| > |p| If $x = p^t$ for some $t \ge 2$, then $x' = p^s$ for some $s \ge 1$. This contradicts that $y \in Q$.

We can write $x = p^s u_1 = u_2 p^s$ with $|u_1| = |u_2| < |p|$ for some $s \ge 1$, and $p = u_1 u'_1 = u'_2 u_2$ with $|u'_1| = |u'_2|$. Since $(u_1 u'_1)^s u_1 = u_2 (u'_2 u_2)^s$, we have that $u'_2 = u'_1$, and $u_1 = u_2$. Hence $p = u_1 u'_1 = u'_1 u_1$. By Lemma 5 both u_1 and u'_1 are powers of some common primitive word q. Thus $p = q^i$ for some $i \ge 2$. This is a contradiction.

(Case 2) |x| < |p|

(2.1) $p = (xx')^s w = w'(x'x)^s$ for $s \ge 1$, and some $w, w' \in \Sigma^+$ with |w| = |w'|, and $w <_p x, w' <_s x$. Let x = wz = z'w'. Since $(wzx')^s w = w'(x'wz)^s$, we have that w = w' and zx'w = x'wz. By Lemma 5 both x'w and z are powers of some common primitive word q. Let $x'w = q^i$ and $z = q^l$ for some $i, l \ge 1$. Then $x'x = x'wz = q^{i+l}$. By Lemma 9, $x'x = cp(y) \subseteq Q$. This is a contradiction.

(2.2) $p = (xx')^s xu = u'x(x'x)^s$ for $s \ge 0$, and $u, u' \in \Sigma^+$ with |u| = |u'|, and $u <_p x', u' <_s x'$. Let x' = uv = v'u'. (2.2.1) $s \ge 1$

Since $(xuv)^s xu = u'x(uvx)^s$, we have that uvx = vxu. Thus both vx and u are powers of some common primitive word q. Let $vx = q^i$ and $u = q^l$ for some $i, l \ge 1$. Hence $x'x = uvx = q^{i+l}$. This is a contradiction.

 $(2.2.2) \ s = 0$

Since $x <_p p$ and $v <_p p$, we have that $x \le_p v$ or $v \le_p x$. If $v <_p x$, then we can write $x = vv_1$ for some $v_1 \in \Sigma^+$. Since $(xx')^k x = p^j$, we have that $vv_1u = v_1uv$. Thus $xx' = vv_1uv = q^i$ for some $q \in Q$ and $i \ge 2$. This is a contradicion. If $x <_p v$, then we can write $x' = up^t w$, and p = ww' for some $t \ge 0$, and $w, w' \in \Sigma^+$. Since $(xx')^k x = p^j$, we have that $w(p^{t+1}w)^{k-1}x = p^{j-t-1}$, that is, $w((ww')^{t+1}w)^{k-1}x = (ww')^{j-t-1}$. Since $w(p^{t+1}w)^{k-1}x = www'a$ and $p^{j-t-1} = ww'w\beta$ for some $\alpha, \beta \in \Sigma^*$, p = ww' = w'w. This implies that $p \notin Q$. If x = v, then we have that xu = ux = x' since $(xux)^k x = (xu)^j$ for $k \ge 2$. Thus $y = xx' \notin Q$. ::

Remark 1: Unfortunately, the previous Lemma does not hold for k = 1. For example, for $\Sigma = \{a, b\}$, let x = abba, x' = bbaabb. Then $xx'x = (abbabba)^2 \notin Q$.

Proposition 11: For $p, q \in Q$ with $p \neq q$ and |p| = |q|, $pq^n \in Q$ and $p^n q \in Q$ for every $n \ge 2$.

[Proof] It suffices to show that $pq^n \in Q$. Let $p, q \in Q$ and $p \neq q$. Suppose that there exists $y \in Q$ such that $pq^n = y^r$ for some $r \ge 2$. If |y| = |p|, that is, p = y, then immediately y = q. This contradicts that $p \neq q$. (Case 1) |y| < |p|

Let $p = y^s x$ for some $s \ge 1$ and $x \in \Sigma^+$ with $x <_p y$. Thus $x <_p p$, and $x <_s p$. Let y = xx' for $x' \in \Sigma^+$. By $pq^n = y^r$, $n \ge 2$, and |p| = |q|, we have that $q^n = (x'x)^{r-s-1}x'$ with $r \ge (n+1)s+1$. Since $r-s-1 \ge ns \ge 2$, and $x'x \in Q$, it follows that $(x'x)^{r-s-1}x'$ is in Q by the Lemma 10. This is a contradiction.

(Case 2) |p| < |y|

If $y = pq^s$ for $s \ge 1$, then $p \in q^+$. This contradicts to that $p, q \in Q$ and $p \ne q$. Thus $y = pq^t x$ for some $t \ge 0$

and $x \in \Sigma^+$ with $x <_p q$. Let q = xw for $w \in \Sigma^+$. If r = 2, then we have that $pq^t x = wq^{n-t-1}$ and |x| = |w| = (1/2)|q|. It follows that q = xw = wx. This implies that $q \notin Q$. Thus $r \ge 3$. Let $z = q^t x$.

Since $y = pz \in Q$ and $pq^n = y^r = (pz)^r$, it follows that $q^n = (zp)^{r-1}z \in Q$ with $r-1 \ge 2$ by Lemmas 6 and 10. This is a contradiction::

Corollary 12: For $p, q \in Q$ with $p \neq q$ and |p| = |q|, $p^n q^m \in Q$ for every $n, m \ge 1$ with $(n, m) \ne (1, 1)$.

[Proof] Let $p, q \in Q$ with $p \neq q$ and |p| = |q|. If $n \ge 2$ and $m \ge 2$, then $p^n q^m \in Q$ in either |p| = |q| or not, by [3]. For other cases, the result holds by Proposition 11. ::

Remark 2: As mentioned in [6], the previous corollary does not hold for n = 1, $m \ge 2$ or $n \ge 2$, m = 1 without the condition |p| = |q|. On the other hand, for n = m = 1, let p = aba and q = bab. Then $pq = (ab)^3 \notin Q$.

Corollary 13: Let $p, q \in Q$ with $p \neq q$ and |p| = |q|. Then $pqp^n \in Q$ and $p^nqp \in Q$ for every $n \ge 2$.

[Proof] Since $n + 1 \ge 2$, $qp^{n+1} \in Q$ and $p^{n+1}q \in Q$ by Proposition 11. By Lemma 6, $pqp^n \in cp(qp^{n+1}) \subseteq Q$ and $p^nqp \in cp(p^{n+1}q) \subseteq Q$. ::

4. Disjunctive Languages

In this section, we study a condition of disjunctiveness for a language. The following proposition is an improved result for Proposition 4.7 [4].

Proposition 14: Let $A \subseteq \Sigma^*$. Then the following are equivalent.

(1) A is a disjunctive language.

(2) If $u, v \in X^*$, |u| = |v|, and $u \equiv v (P_A)$, then u = v.

(3) If $u, v \in Q$, |u| = |v|, and $u \equiv v (P_A)$, then u = v.

(4) If $u, v \in D(1)$, |u| = |v|, and $u \equiv v (P_A)$, then u = v.

[Proof] (1) \Rightarrow (2), (2) \Rightarrow (3), and (3) \Rightarrow (4) are immediate. [(3) \Rightarrow (1)] (See [4])

 $[(4) \Rightarrow (2)]$ Suppose (4) holds, and let $x, y \in X^*$ be such that |x| = |y| and $x \equiv y$ (P_A). Take $b \in X$. Then $bxb \equiv byb$ (P_A). For n > |bxb| = |byb|, consider the word $\alpha = bxba^n$ and $\beta = byba^n$ with $a \neq b$. It is easy to see that $\alpha, \beta \in D(1)$. Since $|\alpha| = |\beta|$ and $\alpha \equiv \beta$ (P_A), we have $\alpha = \beta$, and thus x = y. Accordingly (2) holds. ::

References

- S.C. Hsu, M. Ito, and H.J. Shyr, "Some properties of overlapping order and related languages," Soochow J. Mathematics, vol.15, pp.29– 45, 1989.
- [2] C.M. Reis and H.J. Shyr, "Some properties of disjunctive languages on free monoid," Information and Control, vol.37, pp.334–344, 1978.
- [3] H.J. Shyr, "Disjunctive languages on a free monoid," Information and Control, vol.34, pp.123–129, 1977.
- [4] H.J. Shyr, Free monoids and languages, Hon Min Book Company, Taichung, Taiwan, 2001.
- [5] C.-M. Fan, H.J. Shyr, and S.S. Yu, "d-words and d-languages," Acta Informatica, vol.35, pp.709–727, 1998.
- [6] R.C. Lyndon and M.P. Shützenberger, "The equation $a^M = b^N c^P$ in a free group," Michigan Math. J., vol.9, pp.289–298, 1962.