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LETTER

Some Results on Primitive Words, Square-Free Words, 

and Disjunctive Languages

Tetsuo MORIYA•õa), Member

SUMMARY In this paper, we give some resuts on primitive words, 

square-free words and disjunctive languages. We show that for a word 

u•¸ƒ°+, every element of ƒÉ(cp(u)) is d-primitive iff it is square-free, where 

cp(u) is the set of all cyclic-permutations of u, and ƒÉ(cp(u)) is the set of all 

primitive roots of it. Next we show that pmqn is a primitive word for every 

n, m1 and primitive words p, q, under the condition that |p|=|q| and 

(m,n)•‚(1,1). We also give a condition of disjunctiveness for a language.
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1. Introduction

A lot of studies have been done for primitive words and 

square-free words, which concern the decomposition and 

combination of words. (See for example [4], [5].) On the 

other hand, various research have been done about proper-

ties of a disjunctive langauge. [2], [3].

In this paper, we give some resuts on primitive words, 

square-free words and disjunctive languages. In Sect. 2, 

some basic definitions are presented. In Sect. 3, we show 

that for a word u•¸ƒ°+, every element of ƒÉ(cp(u)) is d-

primitive if it is square-free, where cp(u) is the set of all 

cyclic-permutations of u, and ƒÉ(cp(u)) is the set of all prim-

itive roots of it. This is an arrangement of the relation be-

tween d-primitive words and squre-free words by means of 

a cyclic permutation. Next we show that pmqn is a primi-

tive word for every n, m1 and primitive words p, q, un-

der the condition that |p|=|q| and (m, n)•‚(1, 1). This 

strengthen the result in [6] that qmqn is primitive for two dis-

tinct primitive words p, q, and integers m, n2. In Sect. 4, 

we study disjunctive languages. We give a condition of dis-

junctiveness for a language. This result is an improved one 

for Proposition 4.7[4].

2. Preliminaries

Let ƒ° be an alphabet consisting of at least two letters. ƒ°* 

denotes the free moniod generated by ƒ°, that is, the set of 

all finite words over ƒ°, including the empty word 1, and 

ƒ°+=ƒ°*-1. For w in ƒ°* |w| denotes the length of w. A 

language over ƒ° is a set L•ºƒ°*. For a language L•ºƒ°*, we 

define L*=•¾•‡i=0 Li and L+=•¾•‡i=1 Li. For a word u•¸ƒ°+,

by u+ we mean the set {u}+.

For a word u•¸ƒ°+, if u=vw for some v, w•¸E*, then 

 v(w) is called a prefix (suffix) of u, denoted by vpu (ws

u, resp.). If vp u(wu) and u•‚v(w•‚u), then v(w) is 

called a proper prefix (proper suffix) of u, denoted by v<p u 

(w<s u, resp.).

For a language L•ºƒ°*, we define L(i)={wi|w•¸L} 

for i1. A nonempty word u is called a primitive word 

if u=fn, f•¸ƒ°+, n1 always implies that n=1. Let 

Q be the set of all primitive words over ƒ°. For u=pi, 

p•¸Q, i1, let ƒÉ(u)=p, and call p the primitive root 

of u. For a language L•ºƒ°+, let ƒÉ(L)={ƒÉ(u)|u•¸L}. A 

nonempty word u is a non-overlapping word if u=vx=yv 

for x, y•¸ƒ°+ always implies that v=1. Let D(1) be the 

set of all non-overlapping words over ƒ°. A word in D(1) is 

also called a d -primitive word. Let D=D(1)•¾[D(1)](2)•¾

[D(1)](3)•¾•c. By the definition, it is immediate that ƒÉ(D)=

D(1) and that Q•¿D=D(1). A word u•¸ƒ°+ is a square free 

word if u=v1w2v2 for any v1, w, v2•¸ƒ°* always implies 

w=1. For a word u•¸ƒ°+, u=xy, x, y•¸ƒ°*, yx is called a 

cyclic permutation of the word u. Let cp(u) be the set of all 

cyclic permutations of the word u. That is, cp(u)={yx|u=

xy, x, y•¸ƒ°*}. For a language L•ºƒ°+, let cp(L)={cp(u)|u•¸

L}.

A word u•¸ƒ°+ is ƒÉ-cyclic-squre free word if ƒÉ(cp(u)) 

is square-free. ƒÉ(u) is called a cyclic-square-free word if 

a word u is ƒÉ-cyclic-squre-free. Let S F be the set of all 

square-free words, CSF be the set of all cyclic-squre-free 

words, and ƒÉ-CSF be the set of all ƒÉ-cyclic-squre-free 

words.

For a language L, the equivalence relation PL on ƒ°*, 

called the principal congruence by L is defined as u•ß

v (PL) if and only if (xuy•¸L•Ìxvy•¸L for any 

x, y•¸ƒ°*). If PL is the equality, then we call L a disjunc-

tive language.

3. Primitive Words and Square-Free Words

In this section, we show that for a word u•¸ƒ°+, every ele-

ment of ƒÉ(cp(u)) is d-primitive if it is square-free.

Lemma 1: cp(cp(u))=cp(u) for every u•¸ƒ°+. In other 

words, for every u and w•¸ƒ°+, if w•¸cp(u), then cp(u)=

cp(w).

[Proof] Since u•¸cp(u), it is obvious that cp(u)•ºcp(cp(u)). 

Suppose that w•¸cp(cp(u)). We can write u=yx, and 

w•¸cp(xy) for x, y•¸ƒ°*. Let x=ai+i...an, y=ai...ai. It

Manuscript received March 5, 2008.

Manuscript revised June 13, 2008.

•õ The author is with School of Science and Engineering, 

Kokushikan University, Tokyo, 154-8515 Japan.

a)E-mail:moriya@kokushikan.ac.jp

DOI:10.1093/ietisy/e91-d.10.2514

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



LETTER 

2515

is obvious that w•¸cp(xy)•ºcp(u).::

Lemma 2: For u•¸ƒ°+, i1, cp(ui)=(cp(u))(i).

[Proof] Let xy=ui for x, y•¸ƒ°*. For yx•¸cp(ui), and 

u=u1u2 with u1•¸ƒ°+; u2•¸ƒ°*, we can write as yx=

u2u...uu1=(u2u1)i•¸(cp(u))(i). Thus cp(ui)•º(cp(u))(i). 

Conversely, suppose that u=vw for v•¸ƒ°+, w•¸ƒ°*. We 

have that (wv)i=w(vw)i-1v•¸cp((vw)i)=cp(ui). Hence 

(cp(u))(i)•ºcp(ui).::

Lemma 3: [1] Let u•¸ƒ°+. Then uD(1) if and only if 

there exists a unique word v•¸D(1) with |v|(1/2)|u| such 

that u=vwv for some w•¸ƒ°*.

Next two lemmnas are well-known results.

Lemma 4: [4] Let uv=fi, u, v•¸ƒ°+, f•¸Q, i1. Then 

vu=gi for some g•¸Q.

Lemma 5: [6] Let u, v•¸ƒ°+. If uv=vu, then u and v are 

powers of a common primitive word.

The following is immediate by Lemmas 4 and 5.

Lemma 6: If f•¸Q, then cp(f)•ºQ.

Proposition 7: For u•¸ƒ°+, the following are equivalent. 

(1) cp(u)•ºD(1).

(2) cp(u)•ºSF.

[Proof] [(1)•Ë(2)] Suppose that cp(u)SF. There ex-

ist x and y such that xy=u and yxSF. We can 

write yx=z1w2z2 for z1, z2•¸ƒ°*, and w•¸ƒ°+. Hence 

wz1z2w•¸cp(yx)•ºcp(cp(u))=cp(u) by Lemma 1. Thus 

cp(u)D(1).

[(2)•Ë(1)] Suppose that cp(u)D(1). There exist x and y 

such that xy=u and yxD(1). We can write yx=wvw for 

v•¸ƒ°*, and w•¸ƒ°+ by Lemma 3. Hence vw2•¸cp(yx)•º

cp(cp(u))=cp(u). Thus cp(u)SF.::

Lemma 8: For u•¸ƒ°+, A(cp(u))=cp(ƒÉ(u)).

[Proof] Let u=fi for f•¸Q. By Lemma 2, it follows that 

ƒÉ(cp(u))=ƒÉ(cp(fi))=ƒÉ((cp(f))(i)). Since cp(f)•ºQ by 

Lemma 6, we have that ƒÉ((cp(f))(i))=cp(f)=cp(ƒÉ(u)). 

Thus the result holds.::

Corollary 9: The following are equivalent for u•¸ƒ°+.

(1)ƒÉ(cp(u))•ºD(1).

(2)ƒÉ(cp(u))•ºSF.

[Proof] Let u=fi for f•¸Q, and i1. By Lemma 5, it 

follows that ƒÉ(cp(u))=cp(f). Since cp(f)•¸D(1) if and 

only if cp(f)•¸S F by Proposition 4, the result holds.::

Now we consider a word pmqn for m, n1, and p, q•¸

Q.

The next lemma is the key for results in this section.

Lemma 10: If y=xx'•¸Q with x, x'•¸ƒ°+, then (xx')kx

•¸ Q for every k2.

[Proof] Suppose that (xx')kxQ. Let (xx')kx=pj for some 

p•¸Q, and some j2.

(Case 1)|x|>|p|

If x=pt for some t2, then x'=ps for some s1. This 

contradicts that y•¸Q.

We can write x=psu1=u2ps with |u1|=|u2|<|p| for 

some s1, and p=u1u'1=u'2u2 with |u'1|=|u'2|. Since 

(u1u'1)su1=u2(u'2u2)s, we have that u'2=u'1, and u1=u2. 
Hence p=u1u'1=u'1u1. By Lemma 5 both u1 and u'1 are 

powers of some common primitive word q. Thus p=qi for 

some i2. This is a contradiction.

(Case 2)|x|<|p|

(2.1) p=(xx')sw=w'(x'x)s for s1, and some w, w'•¸

ƒ°+ with |w|=|w'|, and w<p x, w'<s x. Let x=wz=

z'w'. Since (wzx')sw=w'(x'wz)s, we have that w=w' and 

zx'w=x'wz. By Lemma 5 both x'w and z are powers of 

some common primitive word q. Let x'w=qi and z=ql 

for some i, l1. Then x'x=x'wz=qi+l By Lemma 9, 

x'x=cp(y)•ºQ. This is a contradiction.

(2.2) p=(xx')sxu=u'x(x'x)s for s0, and u, u'•¸ƒ°+ with 

| u|=|u'|, and u<p x',u'<sx'. Let x'=uv=v'u'.

(2.2.1) s1

Since (xuv)sxu=u'x(uvx)s, we have that uvx=vxu. Thus 

both vx and u are powers of some common primitive word 

q. Let vx=qi and u=ql for some i, l1. Hence x'x=

uvx=qi+l This is a contradiction.

(2.2.2) s=0

Since x<p p and v<p p, we have that xp v or vp x. 

If v<p x, then we can write x=vv1 for some v1•¸ƒ°+. 

Since (xx')kx=pj, we have that vv1u=v1uv. Thus 

xx'=vv1uv=qi for some q•¸Q and i2. This is 

a contradicion. If x<p v, then we can write x'=uptw, 

and p=ww' for some t0, and w, w'•¸ƒ°+. Since 

(xx')kx=pj, we have that w(pt+1w)k-1x=pj-t-1, that 

is, w((ww')t+1w)k-1x=(ww')j-t-1. Since w(pt+1w)k-1x=

www'ƒ¿ and pj-t-1=ww'wƒÀ for some ƒ¿,ƒÀ•¸ƒ°*, p=ww'=

w'w. This implies that pQ. If x=v, then we have 

that xu=ux=x' since (xux)kx=(xu)j for k2. Thus 

y=xx'Q.::

Remark 1: Unfortunately, the previous Lemma does not 

hold for k=1. For example, for ƒ°={a, b}, let x=abba, 

x'=bbaabb. Then xx'x=(abbabba)2Q.

Proposition 11: For p, q•¸Q with p•‚q and |p|=|q|, 

pqn•¸Q and pnq•¸Q for every n2.

[Proof] It suffices to show that pqn•¸Q. Let p, q•¸Q and 

p•‚q. Suppose that there exists y•¸Q such that pqn=yr 

for some r2. If |y|=|p|, that is, p=y, then immediately 

y=q. This contradicts that p•‚q.

(Case 1) |y|<|p|

Let p=ysx for some s1 and x•¸ƒ°+ with x<p y. 

Thus x<p p, and x<s p. Let y=xx' for x'•¸ƒ°+. By 

pqn=yr, n2, and |p|=|q|, we have that qn=(x'x)r-s-1x' 

with r(n+1)s+1. Since r-s-1ns2, and x'x•¸Q, 

it follows that (x'x)r-s-1x' is in Q by the Lemma 10. This is 

a contradiction.

(Case 2) |p|<|y|

If y=pqs for s1, then p•¸q+. This contradicts to 

that p, q•¸Q and p•‚q. Thus y=pqtx for some t0
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and x•¸ƒ°+ with x<p q. Let q=xw for w•¸ƒ°+. If r=2, 

then we have that pgtx=wqn-t-1 and |x|=|w|=(1/2)|q|. It 

follows that q=xw=wx. This implies that qQ. Thus 

r3. Let z=qtx.

Since y=pz•¸Q and pqn=yr=(pz)r, it follows that 

qn=(zp)r-1z•¸Q with r-12 by Lemmas 6 and 10. This 

is a contradiction::

Corollary 12: For p, q•¸Q with p•‚q and |p|=|q|, 

pnqm•¸Q for every n, m1 with (n, m)•‚(1, 1).

[Proof] Let p, q•¸Q with p•‚q and |p|=|q|. If n2 and 

m2, then pnqm•¸Q in either |p|=|q| or not, by [3]. For 

other cases, the result holds by Proposition 11.::

Remark 2: As mentioned in [6], the previous corollary 

does not hold for n=1, m2 or n2, m=1 without 

the condition |p|=|q|. On the other hand, for n=m=1, let 

p=aba and q=bab. Then pq=(ab)3Q.

Corollary 13: Let p, q•¸Q with p•‚q and |p|=|q|. Then 

pqpn•¸Q and pnqp•¸Q for every n2.

[Proof] Since n+12, qpn+1•¸Q and pn+1q•¸Q by 

Proposition 11. By Lemma 6, pqpn•¸cp(qpn+1)•ºQ and 

pqp•¸cp(pq)•ºQ.::

4. Disjunctive Languages

In this section, we study a condition of disjunctiveness for a 

language. The following proposition is an improved result 

for Proposition 4.7 [4].

Proposition 14: Let A•ºƒ°*. Then the following are equiv-

alent.

(1) A is a disjunctive language.

(2) If u, v•¸X*, |u|=|v|, and u•ßv (PA), then u=v.

(3)If u, v•¸Q, |u|=|v|, and u•ßv (PA), then u=v.

(4) If u, v•¸D(1), |u|=|v|, and u•ßv (PA), then u=v.

[Proof] (1)•Ë(2), (2)•Ë(3), and (3)•Ë(4) are immediate. 

[(3)•Ë(1)] (See [4])

[(4)•Ë(2)] Suppose (4) holds, and let x, y•¸X* be such that 

| x|=|y| and x•ßy (PA). Take b•¸X. Then bxb•ßbyb (PA). 

For n>|bxb|=|byb|, consider the word ƒ¿=bxban and 

ƒÀ =byban with a•‚b. It is easy to see that ƒ¿, ƒÀ•¸D(1). 

Since |ƒ¿|=|ƒÀ| and ƒ¿•ßƒÀ (PA), we have ƒ¿=ƒÀ, and thus 

x=y. Accordingly (2) holds.::
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