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LETTER

Complexity Oscillations in Random Reals

ChenGuang LIU•õa), Student Member and Kazuyuki TANAKA•õ, Nonmember

SUMMARY The C-oscillation due to Martin-Lof shows that {ƒ¿|

•Í n[C(ƒ¿n)n-O(1)]}=0, which also follows {ƒ¿|•Ín[K(ƒ¿n)

n+K(n)-O(1)]}=0. By generalizing them, we show that there does not 

exist a real ƒ¿ such that •Ín (K(ƒ¿n)n+ƒÉK(n)-O(1)) for any ƒÉ>0.
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1. Introduction

Most notations used in this letter are standard. We use C and 

K for plain Kolmogorov complexity and prefix-free Kol-

mogorov complexity, respectively. Let 2<ƒÖ be the set of 

finite binary sequences and 2ƒÖ the set of infinite binary se-

quences. We use ƒÐ, ƒÑ,...to denote the elements of 2<ƒÖ, 

and ƒ¿,ƒÀ,...to denote the elements of 2ƒÖ. Occasionally, we 

write ƒÐ•EƒÑ=ƒÐƒÑ to denote the concatenation of the strings ƒÐ

and ƒÑ. |ƒÐ| is the length of sequence ƒÐ. ƒ¿n is the prefix of 

with length n. We write 2i for the set {ƒÐ•¸2<ƒÖ: |ƒÐ|=i}.

By ƒËƒÒ we mean that ƒË is a prefix of ƒÒ.

We also say a member of Cantor space 2ƒÖ by a real. 

Any real member in [0, 1] can be associated with a real ƒ¿=

ƒ¿[1]ƒ¿[2]...ƒ¿[n]...via the function ƒÕ: 2ƒÖ•¨[0, 1] where 

ƒÕ(ƒ¿)=•‡ƒ°i=1ƒ¿[i]2-i. Let bin: N+•¨2<ƒÖ be the bijection 

which associates to every n1 its binary expansion without 

the leading 1, i.e., the binary expansion of n is 1bin(n).

We assume the reader is acquainted with the basic def-

initions and results of recursion theory and algorithmic ran-

domness. We refer to the textbooks of Soare [7], Calude [1], 

and Li and Vitanyi [3] for this background.

2. C-Oscillation

The main idea behind the theory of algorithmic randomness 

for finite strings is that a string ƒÐ is random if and only if it is 

incompressible, that is, the only way to generate the random 

string ƒÐ by an algorithm is to essentially hardwire it into the 

algorithm. Therefore, the minimal length of a program to 

generate the random string ƒÐ is essentially the same as that 

of ƒÐ itself.

Random reals should be those whose initial segments 

are all hard to compress. With such considerations, the first

attempt to define a random real would be to say that ƒ¿ is 

random if C(ƒ¿n)n-O(1) for all n. Unfortunately, no 

real satisfies this condition.

Theorem 1 (Martin-Lof [5], [6]): There does not exist a 

real a such that

•Í n(C(ƒ¿n)n-O(1)).

This is a fundamental observation of Martin-Lof. This 

reasoning is refined in the following theorem.

Theorem 2: For any real a, we have C(ƒ¿n)n-logn+

O(1) for infinitely many n.

Proof: Let ƒÐ1,ƒÐ2,...be an effective listing of all strings, 

with |ƒÐn|=•ulogn•v. If ƒ¿m=ƒÐn, then from the length of 

ƒ¿n we can recover ƒ¿m. Thus, to generate ƒ¿n, we 

need only generate the string ƒÑ such that ƒ¿n=ƒÐƒÑ and 

compute n from |ƒÑ|=n-logn, which gives us ƒÐn. This 

shows that for any ƒ¿,•‡n(C(ƒ¿n)n-logn+O(1)). • 

The highest prefix-free Kolmogorov complexity of 

string with length n can have n+K(n)+O(1). However, 

it is impossible for a real to have K(ƒ¿n)n+K(n)-O(1) 

for all n.

Theorem 3: There does not exist a real ƒ¿ such that

•Í n(K(ƒ¿n)n+K(n)-O(1)).

Proof: (Downey and Hirshfeldt [2]) From the definition of 

plain Kolmogorov complexity, we have C(ƒÐ)|ƒÐ|+O(1) 

for any ƒÐ•¸2<ƒÖ.

Let mc(ƒÐ)=|ƒÐ|-C(ƒÐ)+O(1). It is clear that C(ƒÐ)=

-mc(ƒÐ)+O(1). Then, we have

K(C(ƒÐ))=K(|ƒÐ|-mc(ƒÐ)+O(1))

K(|ƒÐ|)+K(mc(ƒÐ)-O(1))

K(|ƒÐ|)+O(logmc(ƒÐ)).

By the theorem C(ƒÐ)K(ƒÐ)-K(C(ƒÐ))-O(1). Con-

sequently, for any ƒÐ,

K(ƒÐ)|ƒÐ|-mc(ƒÐ)+K(|ƒÐ|)+O(logmc(ƒÐ)).

Rearranging this inequality, we get

|ƒÐ| +K(|ƒÐ|)-K(ƒÐ)mc(ƒÐ)-O(logmc(ƒÐ)).

For any ƒÐ•¸2<ƒÖ K(ƒÐ)|ƒÐ|+K(|ƒÐ|)+O(1). Let 

mk(ƒÐ)=|ƒÐ|+K(|ƒÐ|)-K(ƒÐ)+O(1). Suppose there is real
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withc•Ín(K(ƒ¿n)n+K(n)-c). Set ƒÐƒ¿, say 

ƒÐ=ƒ¿n. Hence, mK(ƒÐ)=mK(ƒÐn)c for some fixed 

c (independent of ƒÐ). By mK(ƒÐ)m(ƒÐ)-O(logmc(ƒÐ)), 

we have mc(ƒ¿n)-O(logmc(ƒ¿n))c, which clearly 

implies that mc(ƒ¿n)c' for some fixed c'. Hence, 

c•Í n(C(ƒ¿n)n-c'), a contraction. • 

3. The Generalization of C-Oscillation

In this section, we provide a generalization of C-oscillation. 

More precisely, we have the following theorem.

Theorem 4: For any ƒÉ>0, there does not exist a real ƒ¿ 

such that

•Ín (K(ƒ¿n)n+ƒÉK(n)-O(1)).

In proving this theorem, we will use the following the-

orem.

Theorem 5: For any n, we have

K(n)logn+O(loglogn).

Proof: Since the length of the binary representation of n is 

1+|bin(n)| and |bin(n)|=•ulogn•v, we have C(n)logn+

O(1).

Recall K(ƒÐ)C(ƒÐ)+C(2)(ƒÐ)+C(3)(ƒÐ)+...+C(n)(ƒÐ)+

O(C(n+1)(ƒÐ)) for any n. Hence, we have K(n)logn+

O(loglogn). • 

Now, we prove Theorem 4 below.

Proof of Theorem 4: Suppose not. Let ƒÉ>0 and ƒ¿•¸2ƒÖ 

be a real such that

•Ín(K(ƒ¿n)n+ƒÉK(n)-O(1)).

1) For ƒÉ=1, this was proved in Theorem 3.

2) For ƒÉ>1. Recall K(ƒÐ)|ƒÐ|+K(|ƒÐ|)+O(1) for any 

ƒÐ•¸2<ƒÖ. Consequently,

K(ƒ¿n)n+K(n)+O(1).

Then, we have

n+ƒÉK(n)n+K(n)+O(1).

Since K(n)>0, this is a contraction.

3) For 1>ƒÉ>0. In the proof of Theorem 3, we have 

proved that, for any ƒÐ,

K(ƒÐ)C(ƒÐ)+K(|ƒÐ|)+O(logmc(ƒÐ)).

Set ƒÐƒ¿, say ƒÐ=ƒ¿n. Hence, we have

K(ƒ¿n)C(ƒ¿n)+K(n)+O(log(n-C(ƒ¿n))).

With respect the supposition, we have

•Í n(n-C(ƒ¿n)-O(log(n-C(ƒ¿n)))(1-ƒÉ)K(n))

Fix ƒÂ with 1-ƒÉ<ƒÂ<1. Then, we have

•Í•‡ n((ƒÂ/1-ƒÉ(n-C(ƒ¿n))K(n)).

Recall Theorem 2•‡n(n-C(ƒ¿n)+O(1)logn) and 

Theorem 5 •Ín(K(n)logn+O(loglogn)). So,•‡

n(ƒÂ/1-ƒÉlogn<logn+O(loglogn),

which is a contradiction.

Sum up the the above three cases, we have {ƒ¿|•Ín(K(ƒ¿

n)n+ƒÉK(n)-O(1))}=0 for any ƒÉ>0.

The proof completes. • 

This generalization is very useful in exploring the rela-

tions between the various definitions of partial randomness, 

for details to see [4].

Acknowledgments

This research is supported in part by the Mitsubishi Founda-

tion. The first author is also partially supported by a grant-

in-aid for special research of the 21st century Center of Ex-

cellence (COE) program •gExploring new Science by Bridg-

ing Particle-Matter Hierarchy•h from Ministry of Education, 

Culture, Sports, Science and Technology, Japan.

References

[1] C.S. Calude, Information theory and randomness: An algorithmic per-

spective, 2nd ed., Springer-Verlag, 2002.

[2] R. Downey and D. Hirshfeldt, •gAlgorithmic randomness and com-

plexity,•h in Monographs in mathematical logic, Springer-Verlag, in 

preparation.

[3] M. Li and P. Vitanyi, An introduction to Kolmogorov complexity and 

its applications, 2nd ed., Springer-Verlag, 1997.

[4] C.G. Liu, Computational aspects of randomness, Doctor Thesis, To-

hoku University, Dec. 2007.

[5] P. Martin-Lof, •gThe definition of random sequences,•h Information and 

Control, vol.9, no.6, pp. 602-619, 1966.

[6] P. Martin-Lof, •gComplexity oscillations in infinite binary sequences,•h Z

. Wahrscheinlichkeit-Theorie Verw, Gebiete, vol.19, pp.•@225-230, 

1971.

[7] R.I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, 

1987.


