LETTER

Complexity Oscillations in Random Reals

ChenGuang LIU ${ }^{\dagger \text { a) }}$, Student Member and Kazuyuki TANAKA ${ }^{\dagger}$, Nonmember

SUMMARY The C-oscillation due to Martin-Löf shows that $\{\alpha \mid$ $\forall n[C(\alpha \upharpoonright n) \geq n-O(1)]\}=\emptyset$, which also follows $\{\alpha \mid \forall n[K(\alpha \upharpoonright n) \geq$ $n+K(n)-O(1)]\}=\emptyset$. By generalizing them, we show that there does not exist a real α such that $\forall n(K(\alpha \upharpoonright n) \geq n+\lambda K(n)-O(1))$ for any $\lambda>0$.
key words: algorithmic randomness, C-oscillation, Kolmogorov complexity

1. Introduction

Most notations used in this letter are standard. We use C and K for plain Kolmogorov complexity and prefix-free Kolmogorov complexity, respectively. Let $2^{<\omega}$ be the set of finite binary sequences and 2^{ω}. the set of infinite binary sequences. We use σ, τ, \ldots to denote the elements of $2^{<\omega}$, and α, β, \ldots to denote the elements of 2^{ω}. Occasionally, we write $\sigma \cdot \tau=\sigma \tau$ to denote the concatenation of the strings σ and τ. $|\sigma|$ is the length of sequence $\sigma . \alpha \upharpoonright n$ is the prefix of α with length n. We write 2^{i} for the set $\left\{\sigma \in 2^{<\omega}:|\sigma|=i\right\}$. By $v \sqsubset v$ we mean that v is a prefix of v.

We also say a member of Cantor space 2^{ω} by a real. Any real member in $[0,1]$ can be associated with a real $\alpha=$ $\alpha_{[1]} \alpha_{[2]} \ldots \alpha_{[n]} \ldots$ via the function $\varphi: 2^{\omega} \rightarrow[0,1]$ where $\varphi(\alpha)=\sum_{i=1}^{\infty} \alpha_{[i]} 2^{-i}$. Let bin : $\mathbb{N}_{+} \rightarrow 2^{<\omega}$ be the bijection which associates to every $n \geq 1$ its binary expansion without the leading 1 , i.e., the binary expansion of n is $1 \operatorname{bin}(n)$.

We assume the reader is acquainted with the basic definitions and results of recursion theory and algorithmic randomness. We refer to the textbooks of Soare [7], Calude [1], and Li and Vitányi [3] for this background.

2. C-Oscillation

The main idea behind the theory of algorithmic randomness for finite strings is that a string σ is random if and only if it is incompressible, that is, the only way to generate the random string σ by an algorithm is to essentially hardwire it into the algorithm. Therefore, the minimal length of a program to generate the random string σ is essentially the same as that of σ itself.

Random reals should be those whose initial segments are all hard to compress. With such considerations, the first

[^0]attempt to define a random real would be to say that α is random if $C(\alpha \upharpoonright n) \geq n-O(1)$ for all n. Unfortunately, no real satisfies this condition.

Theorem 1 (Martin-Löf [5], [6]): There does not exist a real α such that

$$
\forall n(C(\alpha \upharpoonright n) \geq n-O(1)) .
$$

This is a fundamental observation of Martin-Löf. This reasoning is refined in the following theorem.
Theorem 2: For any real α, we have $C(\alpha \upharpoonright n) \leq n-\log n+$ $O(1)$ for infinitely many n.

Proof: Let $\sigma_{1}, \sigma_{2}, \ldots$ be an effective listing of all strings, with $\left|\sigma_{n}\right|=\lfloor\log n\rfloor$. If $\alpha \upharpoonright m=\sigma_{n}$, then from the length of $\alpha \upharpoonright n$ we can recover $\alpha \upharpoonright m$. Thus, to generate $\alpha \upharpoonright n$, we need only generate the string τ such that $\alpha \upharpoonright n=\sigma \tau$ and compute n from $|\tau|=n-\log n$, which gives us σ_{n}. This shows that for any $\alpha, \exists^{\infty} n(C(\alpha \upharpoonright n) \leq n-\log n+O(1))$.

The highest prefix-free Kolmogorov complexity of string with length n can have $n+K(n)+O(1)$. However, it is impossible for a real to have $K(\alpha \upharpoonright n) \geq n+K(n)-O(1)$ for all n.

Theorem 3: There does not exist a real α such that

$$
\forall n(K(\alpha \upharpoonright n) \geq n+K(n)-O(1))
$$

Proof: (Downey and Hirshfeldt [2]) From the definition of plain Kolmogorov complexity, we have $C(\sigma) \leq|\sigma|+O(1)$ for any $\sigma \in 2^{<\omega}$.

Let $m_{c}(\sigma)=|\sigma|-C(\sigma)+O(1)$. It is clear that $C(\sigma)=$ $|\sigma|-m_{c}(\sigma)+O(1)$. Then, we have

$$
\begin{aligned}
K(C(\sigma)) & =K\left(|\sigma|-m_{c}(\sigma)+O(1)\right) \\
& \leq K(|\sigma|)+K\left(m_{c}(\sigma)-O(1)\right) \\
& \leq K(|\sigma|)+O\left(\log m_{c}(\sigma)\right) .
\end{aligned}
$$

By the theorem $C(\sigma) \geq K(\sigma)-K(C(\sigma))-O(1)$. Consequently, for any σ,

$$
K(\sigma) \leq|\sigma|-m_{c}(\sigma)+K(|\sigma|)+O\left(\log m_{c}(\sigma)\right) .
$$

Rearranging this inequality, we get

$$
|\sigma|+K(|\sigma|)-K(\sigma) \geq m_{c}(\sigma)-O\left(\log m_{c}(\sigma)\right)
$$

For any $\sigma \in 2^{<\omega}, K(\sigma) \leq|\sigma|+K(|\sigma|)+O(1)$. Let $m_{k}(\sigma)=|\sigma|+K(|\sigma|)-K(\sigma)+O(1)$. Suppose there is real
α with $\exists c \forall n(K(\alpha \upharpoonright n) \geq n+K(n)-c)$. Set $\sigma \sqsubset \alpha$, say $\sigma=\alpha \upharpoonright n$. Hence, $m_{K}(\sigma)=m_{K}(\alpha \upharpoonright n) \leq c$ for some fixed c (independent of σ). By $m_{K}(\sigma) \geq m_{c}(\sigma)-O\left(\log m_{c}(\sigma)\right)$, we have $m_{c}(\alpha \upharpoonright n)-O\left(\log m_{c}(\alpha \upharpoonright n)\right) \leq c$, which clearly implies that $m_{c}(\alpha \upharpoonright n) \leq c^{\prime}$ for some fixed c^{\prime}. Hence, $\exists c \forall n\left(C(\alpha \upharpoonright n) \geq n-c^{\prime}\right)$, a contraction.

3. The Generalization of C-Oscillation

In this section, we provide a generalization of C-oscillation. More precisely, we have the following theorem.

Theorem 4: For any $\lambda>0$, there does not exist a real α such that

$$
\forall n(K(\alpha \upharpoonright n) \geq n+\lambda K(n)-O(1))
$$

In proving this theorem, we will use the following theorem.

Theorem 5: For any n, we have

$$
K(n) \leq \log n+O(\log \log n)
$$

Proof: Since the length of the binary representation of n is $1+|\operatorname{bin}(n)|$ and $|\operatorname{bin}(n)|=\lfloor\log n\rfloor$, we have $C(n) \leq \log n+$ $O(1)$.

Recall $K(\sigma) \leq C(\sigma)+C^{(2)}(\sigma)+C^{(3)}(\sigma)+\ldots+C^{(n)}(\sigma)+$ $O\left(C^{(n+1)}(\sigma)\right)$ for any n. Hence, we have $K(n) \leq \log n+$ $O(\log \log n)$.

Now, we prove Theorem 4 below.
Proof of Theorem 4: Suppose not. Let $\lambda>0$ and $\alpha \in 2^{\omega}$ be a real such that

$$
\forall n(K(\alpha \upharpoonright n) \geq n+\lambda K(n)-O(1))
$$

1) For $\lambda=1$, this was proved in Theorem 3 .
2) For $\lambda>1$. Recall $K(\sigma) \leq|\sigma|+K(|\sigma|)+O(1)$ for any $\sigma \in 2^{<\omega}$. Consequently,
$K(\alpha \upharpoonright n) \leq n+K(n)+O(1)$.
Then, we have
$n+\lambda K(n) \leq n+K(n)+O(1)$.
Since $K(n)>0$, this is a contraction.
3) For $1>\lambda>0$. In the proof of Theorem 3, we have proved that, for any σ,

$$
K(\sigma) \leq C(\sigma)+K(|\sigma|)+O\left(\log m_{c}(\sigma)\right)
$$

Set $\sigma \sqsubset \alpha$, say $\sigma=\alpha \upharpoonright n$. Hence, we have

$$
K(\alpha \upharpoonright n) \leq C(\alpha \upharpoonright n)+K(n)+O(\log (n-C(\alpha \upharpoonright n))) .
$$

With respect the supposition, we have

$$
\forall n(n-C(\alpha \upharpoonright n)-O(\log (n-C(\alpha \upharpoonright n))) \leq(1-\lambda) K(n))
$$

Fix δ with $1-\lambda<\delta<1$. Then, we have

$$
\forall^{\infty} n\left(\frac{\delta}{1-\lambda}(n-C(\alpha \upharpoonright n)) \leq K(n)\right)
$$

Recall Theorem $2 \exists^{\infty} n(n-C(\alpha \upharpoonright n)+O(1) \geq \log n)$ and Theorem $5 \forall n(K(n) \leq \log n+O(\log \log n))$. So,

$$
\exists^{\infty} n\left(\frac{\delta}{1-\lambda} \log n<\log n+O(\log \log n)\right)
$$

which is a contradiction.
Sum up the the above three cases, we have $\{\alpha \mid \forall n(K(\alpha \mid$ $n) \geq n+\lambda K(n)-O(1))\}=\emptyset$ for any $\lambda>0$.

The proof completes.
This generalization is very useful in exploring the relations between the various definitions of partial randomness, for details to see [4].

Acknowledgments

This research is supported in part by the Mitsubishi Foundation. The first author is also partially supported by a grant-in-aid for special research of the 21st century Center of Excellence (COE) program "Exploring new Science by Bridging Particle-Matter Hierarchy" from Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] C.S. Calude, Information theory and randomness: An algorithmic perspective, 2nd ed., Springer-Verlag, 2002.
[2] R. Downey and D. Hirshfeldt, "Algorithmic randomness and complexity," in Monographs in mathematical logic, Springer-Verlag, in preparation.
[3] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applications, 2nd ed., Springer-Verlag, 1997.
[4] C.G. Liu, Computational aspects of randomness, Doctor Thesis, Tohoku University, Dec. 2007.
[5] P. Martin-Löf, "The definition of random sequences," Information and Control, vol.9, no.6, pp.602-619, 1966.
[6] P. Martin-Löf, "Complexity oscillations in infinite binary sequences," Z. Wahrscheinlichkeit-Theorie Verw, Gebiete, vol.19, pp.225-230, 1971.
[7] R.I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, 1987.

[^0]: Manuscript received February 18, 2008.
 ${ }^{\dagger}$ The authors are with Tohoku University, Sendai-shi, 9800815 Japan. The first author is also with Xi'an University of Technology, Xi' an 710054 China.
 a) E-mail: liu@mail.tains.tohoku.ac.jp

 DOI: 10.1093/ietisy/e91-d.10.2517

