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SUMMARY Even though weighted frequent pattern (WFP) mining is
more effective than traditional frequent pattern mining because it can con-
sider different semantic significances (weights) of items, existing WFP al-
gorithms assume that each item has a fixed weight. But in real world sce-
narios, the weight (price or significance) of an item can vary with time.
Reflecting these changes in item weight is necessary in several mining ap-
plications, such as retail market data analysis and web click stream analysis.
In this paper, we introduce the concept of a dynamic weight for each item,
and propose an algorithm, DWFPM (dynamic weighted frequent pattern
mining), that makes use of this concept. Our algorithm can address situa-
tions where the weight (price or significance) of an item varies dynamically.
It exploits a pattern growth mining technique to avoid the level-wise can-
didate set generation-and-test methodology. Furthermore, it requires only
one database scan, so it is eligible for use in stream data mining. An exten-
sive performance analysis shows that our algorithm is efficient and scalable
for WFP mining using dynamic weights.
key words: data mining, knowledge discovery, weighted frequent pattern
mining, dynamic weight

1. Introduction

In practice, the frequency of a pattern may not be a suffi-
cient indicator for finding the meaningful patterns in a large
transaction database because the frequency only reflects the
number of transactions in the database which contain that
pattern. In many cases, the items in a transaction can have
different degrees of importance (weight). For example, in
retail applications, an expensive product may contribute a
large portion of overall revenue even though it does not ap-
pear in many transactions. For this reason, WFP mining [3]–
[8], [28], [29] was proposed as a way to discover more use-
ful knowledge by considering the different weights of each
item. The weight-based pattern mining approach can be ap-
plied in many areas, such as market data analysis where the
prices of products are important factors, web traversal pat-
tern mining where each web page has a different strength of
impact, and biomedical data analysis where most diseases
are not caused by a single gene but by a combination of
genes.
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Even though WFP mining can consider diverse
application-specific weights during the mining process, it
still cannot reflect a real world environment where the sig-
nificance (weight) of an item varies with time. Most of the
existing WFP [3]–[8], [28] mining algorithms are based on
static databases. Zhang et al. [29] proposed a strategy to
maintain association rules in dynamic databases by weight-
ing. However, they considered one weight for a dataset
containing a group of transactions. By doing so, they high-
lighted recently added groups of transactions over the pre-
viously added groups. This assumption does not hold in
the realistic situation where the importance of each item or
itemset can vary with time.

In real world scenarios, the significance of each item
might be affected by many factors. Peoples’ buying behav-
iors change with time, and affect the significance of products
in retail markets. For example, in one period of time, jeans
may be the favorite item, but in some other period of time the
users’ preferred clothes may be trousers and T-shirts. The
popularity of seasonal products also varies when the season
changes. Consider the situation when the season changes
from winter to summer. In this case, the importance of elec-
tric fans increases rapidly. On the other hand, the impor-
tance of jackets and other warm clothes decreases sharply.
The opposite situation occurs when the season changes from
summer to winter. Web click stream analysis is another ex-
ample. The significance of each web site may change dy-
namically depending on its popularity, political issues, pub-
lic events, and so on.

Motivated by these real world scenarios, we propose
a new strategy for handling dynamic weights in WFP min-
ing. As in the business market the weight (importance or
price) of an item may vary due to environmental changes
over different time periods, in this paper, we introduce the
concept of applying a dynamic weight to every item in-
cluded in the WFP mining process. Our approach keeps
track of the varying weights of each item batch-by-batch in a
prefix-tree. To handle the dynamic weights during the min-
ing process, we propose a new algorithm called DWFPM
(dynamic weighted frequent pattern mining). Our algorithm
can handle dynamically changing item weights. It exploits
the pattern growth mining technique to remove the level-
wise candidate set generation-and-test methodology of the
existing algorithm [29]. Furthermore, it requires only one
database scan, so it is eligible for stream data mining [13]–
[16]. Our tree-structure achieves larger prefix-sharing and

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



AHMED et al.: HANDLING DYNAMIC WEIGHTS IN WEIGHTED FREQUENT PATTERN MINING
2579

is more space-efficient than the existing algorithm [29]. Ex-
tensive performance analyses show that our algorithm is ef-
ficient and scalable for dynamic weighted frequent pattern
mining, and outperforms the standard algorithm [29].

The remainder of this paper is organized as follows. In
Sect. 2, we describe the background of the field. In Sect. 3,
we explain our proposed DWFPM algorithm for weighted
frequent pattern mining using dynamic weights. In Sect. 4,
our experimental results are presented and analyzed. In
Sect. 5, we discuss the contribution of our proposed algo-
rithm in practical application areas. Finally, in Sect. 6, our
conclusions are presented.

2. Background

2.1 Frequent Pattern Mining

Let I = {i1, i2, . . . . . . im} be a set of items, and let D be a
transaction database, {T1, T2, . . . . . .Tn}, where each trans-
action, Ti ∈ D, is a subset of I. The support/frequency
of a pattern, X{x1, x2, . . . . . . .xp}, is the number of transac-
tions containing the pattern in the transaction database. The
goal of frequent pattern mining is to find the complete set
of patterns satisfying a minimum support in the transaction
database. The downward closure property [1], [2] is used to
prune the infrequent patterns. This property says that if a
pattern is infrequent, then all of its super-patterns must be
infrequent. The Apriori [1], [2] algorithm is the initial so-
lution of the frequent pattern mining problem, but it suffers
from the candidate generation and test problem and requires
several database scans. During the first database scan, it
finds all of the 1-element frequent itemsets, and based on its
findings, generates the candidates for the 2-element frequent
itemsets. During the second database scan, it finds all of the
2-element frequent itemsets, and based on these findings,
generates the candidates for the 3-element frequent item-
sets, and so on. FP-growth [9] solves this problem by using
an FP-tree-based solution without any candidate generation
and using only two database scans. There has been a signif-
icant amount of research into finding frequent patterns [9]–
[13], [15], [19], [30].

An incremental updating technique called FUP [20]
was proposed for the maintenance of the association rules.
This work was based on the level-wise candidate set
generation-and-test methodology of the Apriori algorithm.
There has been some approaches [17]–[19], [30] into the sin-
gle pass mining of traditional frequent pattern mining us-
ing the pattern growth approach. This research has shown
that incremental prefix-tree structures are efficient using
currently available memory sizes (gigabyte-range). Some
other single pass research [13]–[16] has been done to find
frequent patterns in a data stream in real time. This tra-
ditional frequent pattern mining approach considers equal
profits/weights for all items.

Table 1 An example of retail database.

Item
Price Support Normalized
($) (frequency) Weight

Personal computer 800 500 0.8
Laser printer 450 320 0.45
Bubble jet printer 250 450 0.25
Digital Camera 600 700 0.6
Memory stick 200 825 0.2
Hard disk 130 350 0.13
DVD drive 100 450 0.1
CD drive 50 250 0.05

2.2 Weighted Frequent Pattern Mining

The weight of an item is a non-negative real number which is
assigned to reflect the importance of each item in the trans-
action database. For a set of items, I = {i1, i2, . . . . . . in}, the
weight of a pattern, P{x1, x2, . . . . . . .xm}, is given as follows:

Weight(P) =

∑length(P)
q=1 Weight(xq)

length(P)
(1)

A weighted support of a pattern is defined as the value
that results from multiplying the pattern’s support with the
weight of the pattern. So the weighted support of a pattern,
P, is given as follows:

Wsupport(P) = Weight(P) × Support(P) (2)

A pattern is called a weighted frequent pattern if the
weighted support of the pattern is greater than or equal to
the minimum threshold.

Table 1 shows an example of a retail database in which
normalized weight values are assigned to items based on
their prices. A normalization process is required to adjust
the differences between data from various sources to create
a common basis for comparison [3]–[5]. According to the
normalization process, the final item weights can be deter-
mined to be within a specific weight range. For example, in
Table 1 the weight values of the items are in the range from
0.05 to 0.8.

Some weighted frequent pattern mining algorithms
(MINWAL [6], WARM [7], WAR [8]) have been developed
based on the Apriori algorithm using the candidate genera-
tion and test paradigm. Obviously, these algorithms require
multiple database scans and result in poor mining perfor-
mance.

WFIM [3] is the first FP-tree-based weighted frequent
pattern algorithm using two database scans over a static
database. It makes use of a minimum weight and a weight
range. Items are assigned fixed weights randomly from
within the weight range. The FP-tree is arranged in weight
ascending order and maintains the downward closure prop-
erty. WCloset [28] is proposed for the calculation of the
closed weighted frequent patterns.

To extract more interesting weighted frequent pat-
terns, the WIP [5] algorithm introduces the new parameter
of weight-confidence to measure the strong weight affin-
ity of a pattern. WIP also uses another parameter called
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hyperclique-confidence [21] to measure the strong support
affinity of the weighted patterns. WFIM and WIP use dif-
ferent pruning conditions to find interesting patterns, but
their overall mining procedures are almost the same. This
means that both of them require two database scans which
are not suitable for either stream data mining or incremen-
tal/interactive mining.

The WFIM [3] and WIP [5] algorithms show that the
main challenge of weighted frequent pattern mining is that
the weighted frequency of an itemset (or a pattern) does not
have the downward closure property. Consider that item “a”
has weight 0.6 and frequency 4, item “b” has weight 0.2 and
frequency 5, and itemset “ab” has frequency 3. According
to Eq. (1), the weight of itemset “ab” will be (0.6 + 0.2)/2 =
0.4, and according to Eq. (2) its weighted frequency will be
0.4 × 3 = 1.2. The weighted frequency of “a” is 0.6 × 4 =
2.4, and of “b” is 0.2 × 5 = 1.0. If the minimum threshold
is 1.2, then pattern “b” is weighted infrequent but “ab” is
weighted frequent. WFIM and WIP maintain the downward
closure property by multiplying each itemset’s frequency by
the global maximum weight. In the above example, if item
“a” has the maximum weight of 0.6, then by multiplying it
with the frequency of item “b”, 3.0 is obtained. So, pattern
“b” is not pruned at this early stage, and pattern “ab” will
not be missed. At the final stage, this overestimated pat-
tern “b” will finally be pruned by using its actual weighted
frequency.

Zhang et al. [29] proposed a new strategy for main-
taining the association rules in dynamic databases using the
weighting technique to highlight new data. Any recently
added transactions are assigned higher weights. Moreover,
all transactions in a group of databases are given the same
weight. For example, in dataset D, all transactions have
the same weight, w1; in dataset D+1 , all transactions have
the same weight, w2, and so on. They did not use different
weights for individual items or transactions. Their algorithm
is based on the level-wise candidate set generation-and-test
methodology of the Apriori algorithm. Therefore, for a par-
ticular dataset, they generate a large number of candidates
and need to perform several database scans to get the final
result.

In the existing weighted frequent pattern mining ap-
proaches, no one has proposed a method of dynamic
weighted frequent pattern mining in which the weight of
an item may be changed in any batch of transactions.
Moreover, the existing approaches require multiple database
scans. Therefore, we propose an algorithm for dynamic
weighted frequent pattern mining using a single database
scan.

3. DWFPM: Our Proposed Algorithm

3.1 Definitions

Definition 1: Dynamic weighted support of a pattern, P, is
defined by

Table 2 An example of transaction database with dynamic weights.

Batch TID Trans. Weight
T1 a, b, d a b c d e

1st T2 c, d 0.45 0.9 0.2 0.3 0.5
T3 a, b
T4 b a b c d e

2nd T5 b, c, d 0.6 0.7 0.4 0.5 0.4
T6 c, e
T7 a, c, e a b c d e

3rd T8 a 0.5 0.3 0.7 0.4 0.45
T9 a, c

DWsupport(P)=
N∑

j=1

Weight j(P)×S upport j(P) (3)

Here N is the number of batches, Weight j(P) and
S upport j(P) are the weight and support of pattern P re-
spectively in the jth batch. We can calculate the value of
Weight j(P) by using Eq. (1). For example, the DWsupport
of pattern “bd” in the first, second and third batches are ((0.9
+ 0.3)/2) × 1 = 0.6, ((0.7 + 0.5) / 2) × 1 = 0.6 and ((0.3 +
0.4) / 2) × 0 = 0, respectively in Table 2. So, the total DW-
support(“bd”) = 0.6 + 0.6 + 0 = 1.2.

Definition 2: A pattern is called a dynamic weighted fre-
quent pattern if the dynamic weighted support of the pattern
is greater than or equal to the minimum threshold. For ex-
ample, if the minimum threshold is 1.2, then “bd” is a dy-
namic weighted frequent pattern in Table 2.

3.2 Tree Construction

In this section, we describe the construction process of our
tree structure which captures transactions having items with
dynamic weights. A header table is maintained in our tree
as in an FP-tree [9]. The first value in the header table is
the item id. After that, the frequency and weight informa-
tion associated with an item is kept in a batch-by-batch fash-
ion within the header table. The tree nodes only contain an
item’s id and its batch-by-batch frequency information. To
facilitate the tree traversals, adjacent links are maintained in
our tree structure as in an FP-tree (not shown in the figures
for simplicity).

Consider the example database shown in Table 2. Af-
ter reading a transaction from the database, first the items
inside it are sorted according to lexicographical order, and
then they are inserted into the tree. Figure 1 (a) shows the
tree after capturing the transactions from batch 1. After the
first batch, separate transaction count information must be
kept for each batch in both the header table and tree, while
weight information is only kept inside the header table. Fig-
ure 1 (b) shows the tree after inserting the first and second
batches. Because frequency information is kept separately
in each node of the tree, we can easily discover which trans-
actions have occurred in which batch. For example, from
Fig. 1 (b) we can easily determine that the batch numbers of
transactions “c, d” and “c, e” are 1 and 2 respectively. Fig-
ure 1 (c) shows the tree after inserting the first, second, and
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Fig. 1 Tree construction.

Fig. 2 Mining operation.

third batches. Our tree structure has the following proper-
ties:

Property 1: The ordering of items in the tree is not af-
fected by the changes in frequency of the items.

Property 2: The total frequency count at any node in the
tree is greater than or equal to the sum of total frequency
counts of its children.

Property 3: The tree structure can be constructed in a sin-
gle database pass.

3.3 Mining Process

In the FP-growth mining algorithm [9], when a prefix tree
is created for a particular item, then all branches prefixing
that item are taken with the frequency value of that item.
After that, the conditional tree is created from the prefix
tree by deleting all of the nodes containing infrequent items.
DWFPM performs the same type of mining operation. As
discussed in Sect. 2.2, the main challenge in this area is
that the weighted frequency of an itemset does not have the
downward closure property, so to maintain this property we
have to use the global maximum weight. The global max-
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Table 3 DWsupport calculations of the candidate patterns.

No. Candidate patterns DWsupport calculation Result
1 ce: 0,1,1 (((0.4+0.4)/2)×1) + ((( 0.7+0.45)/2)×1)= 0.4+0.575=0.975 Pruned
2 e: 0,1,1 0.4×1+0.45×1 = 0.85 Pruned
3 cd: 1,1,0 (((0.2+0.3)/2)×1) + (((0.4+0.5)/2)×1) = 0.25+0.45=0.7 Pruned
4 bd: 1,1,0 (((0.9+0.3)/2)×1) + ((( 0.7+0.5)/2)×1) = 0.6+0.6=1.2 Pass
5 d: 2,1,0 0.3×2+0.5×1 = 1.1 Pruned
6 ac: 0,0,2 ((0.5+0.7)/2) )×2 = 1.2 Pass
7 c: 1,2,2 0.2×1+0.4×2+0.7×2 = 2.4 Pass
8 ab: 2,0,0 ((0.9+0.45)/2) )×2 = 1.35 Pass
9 b: 2,2,0 0.9×2+0.7×2 = 3.2 Pass
10 a: 2,0,3 0.45×2+0.5×3 = 2.4 Pass

imum weight is the maximum weight of all of the items in
the global database. In our case, this is the highest weight
among every weight in all of the batches. For example, in
Table 2, item “b” has the global maximum weight of 0.9. We
will refer this term as GMAXW. The local maximum weight
is needed when we are doing the mining operation for a par-
ticular item, and is not always equal to GMAXW. For ex-
ample, in the database shown in Table 2, item “e” does not
occur with item “b” and “d”. As a result, in the mining oper-
ation, the prefix tree of “e” only contains items “a” and “c”.
Here we do not need to use GMAXW because the local max-
imum weight can maintain the downward closure property.
The local maximum weight for “e” is the maximum weight
of the items “c”, “a”, and “e”, which is 0.7. We will refer to
this local maximum weight as LMAXW. Using LMAXW in
place of GMAXW reduces a pattern’s probability of being a
candidate.

Consider the database presented in Table 2, the tree
constructed for that database in Fig. 1 (c), and its minimum
threshold = 1.2. Here GMAXW = 0.9. After multiplying
the total frequency of each item with GMAXW, the dynamic
weighted frequency list is <a:4.5, b:3.6, c:4.5, d:2.7, e:1.8>.
As a result, all items are single element candidates. Now we
will construct the prefix and conditional trees for these items
in a bottom up fashion, and mine the dynamic weighted fre-
quent patterns. First the prefix tree of the bottom-most item
“e” is created by taking all of the branches prefixing item
“e” shown in Fig. 2 (a). To create the conditional tree for
this item, we have to delete the nodes from its prefix tree
which cannot be candidate patterns. For item “e”, LMAXW
= 0.7. After multiplying the frequencies in the header table
with LMAXW in Fig. 2 (a), we get the dynamic weighted fre-
quency list <a:0.7, c:1.4>. As item “a” has a low dynamic
weighted frequency with item “e”, it must be deleted to get
the conditional tree of “e”. Figure 2 (b) shows the condi-
tional tree of item “e”. The candidate patterns “ce” and “e”
are generated at this point. The prefix tree of item “d” is
created in Fig. 2 (c). LMAXW = 0.9 here, and the dynamic
weighted frequency list is <a:0.9, b:1.8, c:1.8>. By delet-
ing item “a” from the prefix tree, we get the conditional tree
of item “d” (shown in Fig. 2 (d)). The candidate patterns
“bd”, “cd”, and “d” are generated here. The prefix tree of
pattern “dc” is shown in Fig. 2 (e). The dynamic weighted
frequency list is <b:0.9>. As a result, no conditional tree or
candidate pattern is generated here.

Fig. 3 The DWFPM algorithm.

The prefix tree of item “c” is created in Fig. 2 (f).
LMAXW = 0.9 here, and the dynamic weighted frequency
list is <a:1.8, b:0.9>. By deleting item “b” from the pre-
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fix tree, we get the conditional tree of item “c” (shown in
Fig. 2 (g)). The candidate patterns “ac” and “c” are gener-
ated here. The prefix tree of item “b” is created in Fig. 2 (h).
LMAXW = 0.9, and the dynamic weighted frequency list is
<a:1.8>. As a result, it is also the conditional tree for item
“b”, and patterns “ab” and “b” are generated here. The last
candidate pattern “a” is generated for the top-most item “a”.
We have to test all of the candidate patterns with their actual
dynamic weighted frequencies using Eq. (3), and mine the
actual dynamic weighted frequent patterns. Table 3 shows
these calculations. The actual dynamic weighted frequent
patterns are “bd”:1.2, “ac”:1.2, “c”:2.4, “ab”:1.35, “b”:3.2,
and “a”:2.4. Finally, pseudo-code of the DWFPM algorithm
is presented in Fig. 3.

4. Experimental Results and Analysis

4.1 Experimental Environment and Datasets

To evaluate the performance of our proposed algorithm,
we have performed several experiments on IBM syn-
thetic datasets (T10I4D100K, T40I10D100K) using syn-
thetic weights [22], real life datasets (retail, chess, mush-
room, kosarak) using synthetic weights [22], [23], and a real
dataset (Chain-store) using real weight values [24]. The per-
formance of our algorithm was compared with the existing
algorithm, “Weight” [29], with respect to execution time and
memory usage. Our programs were written in Microsoft Vi-
sual C++ 6.0, and run in a time sharing environment with
the Windows XP operating system on a Pentium dual core
2.13 GHz CPU with 1 GB main memory.

4.2 Performance Study on Execution Time

4.2.1 Synthetic Datasets with Synthetic Weights

In this section we used IBM synthetic datasets T10I4D100K
and T40I10D100K developed by the IBM Almaden Quest
research group and obtained from the frequent itemset min-
ing dataset repository [22]. These datasets do not pro-
vide the weight values of each item. Most of the pre-
vious weight-based frequent pattern mining research [3]–
[5], [7], [8], [28], [29] generated random numbers for the
weight values of each item, but when observing real world
datasets, most items are in the low weight range. There-
fore, the weight value of each item was heuristically chosen
to be between 0.1 and 0.9, and randomly generated using
a log-normal distribution. Some other pattern mining re-
search [26], [27] has adopted the same technique. Figure 4
shows the weight distribution of 2000 distinct items using
the log-normal distribution.

The T10I4D100K dataset contains 100,000 transac-
tions and 870 distinct items. Its mean transaction size is
10.1, and it is a sparse dataset. Around 1.16% ((10.1 / 870)
× 100) of its distinct items are present in every transac-
tion, so it has short dynamic weighted frequent patterns.
The T40I10D100K dataset contains 100,000 transactions

Fig. 4 Weight generation for 2000 distinct items using lognormal distri-
bution.

Fig. 5 Execution time on the T10I4D100K dataset.

and 942 distinct items. Its mean transaction size is 39.61,
and it is a moderately sparse dataset. Around 4.2% ((39.61
/ 942) × 100) of its distinct items are present in every trans-
action, so it has long dynamic weighted frequent patterns
compared to T10I4D100K.

We have divided these two datasets into 3, 4, 5, 7,
and 10 batches, and will use N to represent the number of
batches. For N = 4, 5, and 10, all batches contain 25,000,
20,000, and 10,000 transactions, respectively. For N = 3
and 7, all batches contain 35,000, 15,000, and 10,000 trans-
actions, respectively, except the last batch. The numbers
of transactions in the last batches are the transactions re-
maining at the end. For each batch of transactions, we have
considered dynamic variation in weights for all items. We
have used N = 3 for the existing algorithm “Weight”. Fig-
ure 5 and Fig. 6 show the execution time performance curves
for T10I4D100K and T40I10D100K respectively. The mini-
mum threshold ranges of 1% to 5% and 5% to 25% are used
in Fig. 5 and Fig. 6 respectively.

It is obvious from these results that the execution time
increases with increasing values of N due to the additional
calculations required for each batch. The existing algorithm,
“Weight”, uses the level-wise candidate set generation-and-
test approach and therefore generates a large number of can-
didates. Moreover, for a particular dataset, it must scan
the dataset several times. For example, to find all of the
weighted frequent patterns from DB1, it has to scan DB1
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Fig. 6 Execution time on the T40I10D100K dataset.

several times using the level-wise candidate generation-and-
test procedure. It must follow the same process for DB2,
DB3, and so on. In contrast to the existing approach, our al-
gorithm scans each DBi exactly once, uses an efficient tree
structure, and exploits a pattern growth technique to avoid
the level-wise candidate set generation-and-test problem.
The experimental results in Fig. 5 and Fig. 6 demonstrate
that by using an efficient tree structure, the single database
scan approach, and the pattern growth mining technique, our
algorithm performs better than the existing algorithm.

4.2.2 Real-Life Datasets with Synthetic Weights

In this section, we use real-life datasets (retail, mushroom,
chess, and kosarak) obtained from the frequent itemset min-
ing dataset repository [22] and the UCI machine learning
repository [23]. These datasets do not provide the weight
values of each item. As in Sect. 4.2.1, we have generated
weights for each item using a lognormal distribution.

The dataset retail is provided by Tom Brijs, and con-
tains the retail market basket data from an anonymous Bel-
gian retail store [22], [25]. It contains 88,162 transactions
and 16,470 distinct items. Its mean transaction size is 10.3,
and it is a large sparse dataset. Around 0.0625%((10.3 /
16470) × 100) of its distinct items are present in every trans-
action.

We have divided the retail dataset into 4, 6, and 9
batches. For N = 4, 6, and 9, all of the batches contain
25,000, 15,000, and 10,000 transactions, respectively, ex-
cept the last batch. For each batch of transactions, we have
considered dynamic variation of the weights for all items.
We have used N = 4 for the existing algorithm, “Weight”.
Figure 7 shows the execution time performance curves for
retail. The minimum threshold range of 0.6% to 1.4% is
used in Fig. 7.

The dataset mushroom includes descriptions of hy-
pothetical samples corresponding to 23 species of mush-
rooms [22], [23]. It contains 8,124 transactions and 119 dis-
tinct items. Its mean transaction size is 23, and it is a mod-
erately dense dataset. Almost 20% ((23/119) × 100) of its
distinct items are present in every transaction, so it has long

Fig. 7 Execution time on the retail dataset.

Fig. 8 Execution time on the mushroom dataset.

dynamic weighted frequent patterns. We have divided this
dataset into 3, 5, 6, and 9 batches. When N = 3, the first
and second batches contain 3000 transactions, and the third
batch contains 2124 transactions. For N = 5, 6, and 9, all of
the batches contain 2000, 1500, and 1000 transactions, re-
spectively, except the last batch. For each batch of transac-
tions, we have considered dynamic variation of the weights
for all items. We have used N = 3 for the existing algo-
rithm, “Weight”. Figure 8 shows the execution time perfor-
mance curves for mushroom. The minimum threshold range
of 10% to 30% is used in Fig. 8.

The chess dataset was compiled from chess game state
information [22], [23]. It contains 3196 transactions and 75
distinct items. Its mean transaction size is 37, and it is a
huge dense dataset. Almost 50% ((37/75) × 100) of its to-
tal distinct items are present in every transaction, so it has
long dynamic weighted frequent patterns. We have divided
this dataset into 3, 5, and 6 batches. For N = 3, 4, and 5,
all of the batches contain 1500, 1000, and 700 transactions,
respectively, except the last batch. For each batch of transac-
tions, we have considered dynamic variation of the weights
for all items. We have used N = 3 for the existing algorithm,
“Weight”. Figure 9 shows the execution time performance
curves for chess. The minimum threshold range of 50% to
70% is used in Fig. 9.
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Fig. 9 Execution time on the chess dataset.

Fig. 10 Execution time on the kosarak dataset.

The dataset kosarak was provided by Ferenc Bodon
and contains click-stream data of a Hungarian on-line news
portal [22]. It contains 990,002 transactions and 41,270 dis-
tinct items. Its mean transaction size is 8.1, and it is a large
sparse dataset. Around 0.0196% ((8.1/41270) × 100) of its
distinct items are present in every transaction, so it has too
many short dynamic weighted frequent patterns. We have
divided this dataset into 3, 4, 5, 7, and 10 batches. For N
= 3, 4, 5, 7, and 10, all of the batches contain 350,000,
250,000, 200,000, 150,000, and 100,000 transactions, re-
spectively, except the last. For each batch of transactions,
we have considered dynamic variation of the weights for
all items. We have used N = 3 for the existing algorithm,
“Weight”. Figure 10 shows the execution time performance
curves for kosarak. The minimum threshold range of 4% to
8% is used in Fig. 10.

4.2.3 Real-Life Dataset with Real Weights

In this section, we use a real-life dataset adopted from NU-
MineBench 2.0, a powerful benchmark suite consisting of
multiple data mining applications and databases [24]. This
dataset called Chain-store was taken from a major chain in
California and contains 1,112,949 transactions and 46,086
distinct items [24], [27]. We have taken real weight values

Fig. 11 Execution time on the real-life Chain-store dataset.

Table 4 Memory comparison(MB).

Datasets
No. of

DWFPM Weight
Batches(N)

T10I4D100K 3 12.72 17.61
T40I10D100K 3 63.51 85.49
retail 4 13.96 21.38
mushroom 3 0.59 1.26
chess 3 0.52 1.13
kosarak 3 196.35 348.67
Chain-store 4 244.61 423.15

for items from their price table.
The mean transaction size of this real-dataset is 7.2,

and it is a large sparse dataset. Around 0.0156% ((7.2 /
46086) × 100) of its distinct items are present in every trans-
action, so it has too many short dynamic weighted frequent
patterns. We have divided this dataset into 4, 6, 8, and 12
batches. For N = 4, 6, 8, and 12, all of the batches con-
tain 300,000, 200,000, 150,000, and 100,000 transactions,
respectively, except the last. We have used N = 4 for the
existing algorithm, “Weight”. Figure 11 shows the execu-
tion time performance curves for this dataset. The minimum
threshold range of 0.15% to 0.35% is used in Fig. 11.

The experimental results on real datasets with real and
synthetic weights reflect the execution time analyses done in
Sect. 4.2.1 for synthetic datasets with synthetic weights. Our
algorithm, DWFPM, outperforms the existing algorithm,
“Weight”, by using a single database scan, an efficient tree
structure, and the pattern growth mining technique.

4.3 Scalability of DWFPM

It is shown in Fig. 11 that our algorithm has easily handled
the 46,086 distinct items and more than 1 million transac-
tions in the real-life Chain-store dataset. Figure 10 also
shows that it has efficiently handled the 41,270 distinct items
and around 1 million transactions in the kosarak dataset.
Therefore, these experimental results demonstrate the scal-
ability of our algorithm to handle large number of distinct
items and transactions.
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4.4 Memory Usage

Research into prefix-tree-based frequent pattern min-
ing [17]–[19], [30] has shown that the memory requirement
for the prefix trees is low enough to use the gigabyte-range
memory now available. We have also handled our tree very
efficiently and kept it within this memory range. Our prefix-
tree structure can represent transaction information in a very
compressed form because transactions have many items in
common. By utilizing this type of path overlapping (pre-
fix sharing), our tree structure can save on memory space.
Table 4 shows that by using our prefix-tree structure, our
proposed algorithm requires much less memory space than
the existing algorithm, “Weight”.

5. Discussion

In this section, we discuss additional practical applications
of the proposed approach. In a stock market, the importance
of a share can change rapidly over time due to the economic
conditions of a country and national or international affairs.
Therefore, the unstable values of importance of the different
share patterns can be represented by our proposed dynamic
weights. By finding dynamic weighted frequent share pat-
terns over a desired time period, stock investors can obtain
useful information. In a similar way, our approach can be ef-
fective in extracting important knowledge from the auction
market in which buyers enter competitive bids and sellers
enter competitive offers simultaneously, as opposed to the
over-the-counter market, where trades are negotiated.

In application domains such as financial data analy-
sis, the telecommunications industry, and the retail indus-
try, weighted frequent pattern mining can be used to de-
tect unusual access patterns or sequences related to financial
crimes, fraudulent telecommunications activities, and the
purchase of many expensive items within a short time [28].
In this case, higher weights are given to items which have
been previously found in fraudulent patterns [28]. To find
these important patterns using static weights, prior informa-
tion must be given about the items. Our approach of dy-
namic weighted frequent pattern mining solves this problem
by considering weight variation for different items in each
batch of transactions.

The importance of a website may change dynamically.
For example, during any big international football tourna-
ment, the popularity of football-related websites may in-
crease rapidly. These changes in web click stream databases
can be handled by our dynamic weight concept. Dynamic
weighted frequent pattern mining is also useful for biologi-
cal gene databases, as each type of gene has a specific im-
portance which changes for different drug analyses.

Global Positioning System (GPS) of Telematics can be
found another important application area of weighted fre-
quent pattern mining. In WIP [5], one possible application
was the determination of a traffic pattern (a set of links) that
considers speed and traffic volume using the weight and fre-

quency information of each link. Candidate weighted fre-
quent patterns (the combination of links) can be calculated
according to a user’s request to find a path between two lo-
cations. The research work WIP [5] used static weights for
this real-life application. However, it can be better handled
by our proposed dynamic weighted frequent patterns. The
speed and traffic volume of each link may vary dynamically
over time, so considering the dynamic weight of each link
instead of a static weight can provide a more accurate com-
bination of links.

The discussion presented in this paper shows that al-
though there have been some efforts in mining weighted fre-
quent patterns, they have not been suitable for handling real-
world scenarios when the importance of a pattern varies dy-
namically over time. Our proposed dynamic weighted fre-
quent pattern mining approach can effectively handle that
situation.

6. Conclusions

The purposes of this paper are to introduce the concept of a
dynamic weight for each item in weighted frequent pattern
mining, and to provide a new tree-based algorithm to effi-
ciently mine dynamic weighted frequent patterns. By stor-
ing batch-by-batch frequency and weight information, our
algorithm, DWFPM, discovers accurate knowledge about
dynamic weighted frequent patterns. It can mine dynamic
weighted frequent patterns with an easy-to-construct tree
structure and a fixed sort order. It is also applicable to real
time data processing because it requires only one database
scan. Our algorithm exploits a pattern growth mining tech-
nique to avoid the level-wise candidate generation-and-test
problem, and by using an efficient tree structure, can save
memory space. Extensive performance analyses show that
our algorithm is efficient when applied to both dense and
sparse datasets, and can handle a large number of distinct
items and transactions.
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