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On Fault Testing for Reversible Circuits

Satoshi TAYU†a), Member, Shigeru ITO†, Nonmember, and Shuichi UENO†, Fellow

SUMMARY It has been known that testing of reversible circuits is rel-
atively easier than conventional irreversible circuits in the sense that few
test vectors are needed to cover all stuck-at faults. This paper shows, how-
ever, that it is NP-hard to generate a minimum complete test set for stuck-at
faults on the wires of a reversible circuit using a polynomial time reduction
from 3SAT to the problem. We also show non-trivial lower bounds for the
size of a minimum complete test set.
key words: 3-SAT, CNOT gate, complete test set, fault testing, NP-
complete, reversible circuit, stuck-at fault, test vector

1. Introduction

The power consumption and heat dissipation are major is-
sues for VLSI circuits today. Landauer [3] showed that con-
ventional irreversible circuits necessarily dissipate heat due
to the erasure of information. Bennett [1] showed, however,
that heat dissipation can be avoided if computation is carried
out without losing any information. This motivates the study
of reversible circuits. Furthermore, reversible circuits have
potential applications in nanocomputing [4], digital signal
processing [7], and quantum computing [5].

In order to ensure the functionality and durability of
reversible circuits, testing and failure analysis are extremely
important during and after the design and manufacturing.
It has been known that testing of reversible circuits is rel-
atively easier than conventional irreversible circuits, as re-
viewed below. This paper shows, however, that given a re-
versible circuit C, it is NP-hard to generate a minimum com-
plete test set for stuck-at faults, which fix the values of wires
in C to either 0 or 1. This is the first result on the complex-
ity of fault testing for reversible circuits, as far as the authors
know. We also show non-trivial lower bounds for the size of
a minimum complete test set.

A gate is reversible if the Boolean function it computes
is bijective. If a reversible gate has k input and output wires,
it is called a k × k gate. A circuit is reversible if all gates
are reversible and are interconnected without fanout or feed-
back. If a reversible circuit has n input and output wires, it
is called an n × n circuit.

We focus our attention on detecting faults in a re-
versible circuit C which cause wires to be stuck-at-0 or
stuck-at-1. Let W(C) be the set of all wires of C. W(C)
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consists of all output wires of C and input wires to the gates
in C. W(C) is the set of all possible fault locations in C.
For an n × n reversible circuit C, a test is an input vector in
{0, 1}n. A test set is said to be complete for C if it can de-
tect all possible single and multiple stuck-at faults on W(C).
Patel, Hayes, and Markov [6] showed that for any reversible
circuit C, there exists a complete test set for C. Let τ(C) be
the minimum cardinality of a complete test set for C.

We first show that it is NP-hard to compute τ(C) for a
given reversible circuit C. Let MTS (Minimum Test Size)
be a problem of deciding if τ(C) ≤ B for a given reversible
circuit C and integer B. We show in Sect. 3 that MTS is
NP-complete.

Patel, Hayes, and Markov [6] showed a general upper
bound for τ(C) as follows. They showed that

τ(C) = O(log |W(C)|) (1)

for any reversible circuit C. We show the first non-trivial
existential lower bound for τ(C). We show in Sect. 4 that
there exists a reversible circuit C such that

τ(C) = Ω(log log |W(C)|). (2)

A k-CNOT gate is a (k + 1) × (k + 1) reversible gate.
It passes some k inputs, referred to as control bits, to the
outputs unchanged, and inverts the remaining input, referred
to as target bit, if the control bits are all 1. The 0-CNOT gate
is just an ordinary NOT gate. A CNOT gate is a k-CNOT
gate for some k. Some CNOT gates are shown in Fig. 1,
where a control bit and target bit are denoted by a black dot
and ring-sum, respectively. A CNOT circuit is a reversible
circuit consisting of only CNOT gates. A k-CNOT circuit
is a CNOT circuit consisting of only k-CNOT gates. Any

Fig. 1 CNOT gates.
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Boolean function can be implemented by a CNOT circuit
since the 2-CNOT gate can implement the NAND function.

Chakraborty [2] showed that

τ(C) ≤ n (3)

if C is an n × n CNOT circuit with no 0-CNOT or 1-CNOT
gate. We show in Sect. 5 that there exists an n × n 2-CNOT
circuit C such that

τ(C) = Ω(log n). (4)

It is an interesting open problem to close the gap be-
tween the upper bound (1) and our lower bound (2), and the
gap between the upper bound (3) and our lower bound (4).

2. Complete Test Sets

A wire w of a reversible circuit C is said to be controllable
by a test set T if the value of w can be set to both 0 and 1
by T . A set of wires S ⊆ W(C) is said to be controllable
by T if each wire of S is controllable by T . The following
characterization for a complete test set is shown in [6].

Theorem I: A test set T for a reversible circuit C is com-
plete if and only if W(C) is controllable by T .

3. NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1: MTS is NP-complete.

Proof. A minimum complete test set T for a reversible
circuit C can be verified in polynomial time, since |T | =
O(log |W(C)|) by (1). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a
well-known NP-complete problem, to MTS. Let x = (x1,
x2, . . . , xn) and

φ(x) =
m∧

j=1

ρ j

be a Boolean function in conjunctive normal form in which
each clause ρ j has 3 literals for j ∈ [m] = {1, 2, . . . ,m}. For
a Boolean variable x, literals x and x are denoted by x0 and
x1, respectively.

We use generalized CNOT gates for simplicity. A gen-
eralized k-CNOT gate has k control bits x1, x2, . . . , xk and a
target bit t. The output of the target bit is defined as

(xα1
1 ∧ xα2

2 ∧ · · · ∧ xαk

k ) ⊕ t.

A control bit xi is said to be positive if αi = 1, and negative
if αi = 0. Notice that a CNOT gate is a generalized CNOT
gate with no negative control bit. Notice also that a negative
control bit is equivalent to a positive control bit with a 0-
CNOT gate on the input and output wires. A generalized
CNOT [k-CNOT] circuit is a reversible circuit consisting of
only generalized CNOT [k-CNOT] gates.

We first construct a generalized CNOT gate G j for each
clause ρ j. Let

ρ j = x
σ j1

j1 ∨ x
σ j2

j2 ∨ x
σ j3

j3 ,

where σ jl ∈ {0, 1} and x jl ∈ {xi|i ∈ [n]} for l ∈ [3]. We
construct a generalized 3-CNOT gate G j for ρ j as follows.
The gate G j has 3 control bits x j1, x j2, x j3, and a target bit
t. A control bit x jl is defined to be positive if σ jl = 0, and
negative if σ jl = 1. For an n×n circuit C and an input vector
v ∈ {0, 1}n, we denote by C(v) the output vector of C for v.
The following lemma is immediate from the definition of
G j.

Lemma 1: G j(x j1, x j2, x j3, t) = (x j1, x j2, x j3, ρ j ⊕ t).

Lemma 1 means that G j changes the target bit t for
input vector (x j1, x j2, x j3, t) if and only if ρ j(x j1, x j2, x j3) =
0. As an example, for a Boolean function:

ψ(x1, x2, x3) = ρ1 ∧ ρ2,
ρ1 = x1 ∨ x2 ∨ x3, and
ρ2 = x1 ∨ x2 ∨ x3,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5)

generalized 3-CNOT gates G1 and G2 are shown in Fig. 2 (a)
and (b), respectively, where a negative control bit is denoted
by an empty circle.

We next construct a (2n + 1) × (2n + 1) generalized 6-
CNOT circuit C(φ) for φ. For x = (x1, x2, . . . , xn), y = (y1,
y2, . . . , yn) ∈ {0, 1}n, and t ∈ {0, 1}, let

x = (x1, x2, . . . , xn) and

(x, y, t) = (x1, x2, . . . , xn, y1, y2, . . . , yn, t).

Let G′j be a copy of G j with control bits x′j1, x′j2, x′j3, and a
target bit t for any j ∈ [m]. For any j, h ∈ [m], G jh is a
generalized 6-CNOT gate with control bits x j1, x j2, x j3, x′h1,
x′h2, x′h3, and a target bit t. A control bit x jl[x′hl] is positive in
G jh if and only if x jl[x′hl] is positive in G j[G′h]. We construct
a (2n+1)× (2n+1) generalized 6-CNOT circuit C(φ) which
is a cascade consisting of m2 gates G jh ( j, h ∈ [m]). As an
example, C(ψ) for the Boolean function ψ defined in (5) is
shown in Fig. 3. We have the following by Lemma 1.

Lemma 2: G jh

(
(x, x′, t)

)

=

(
x, x′,

(
ρ j(x) ∧ ρh(x′)

)
⊕ t
)
.

Lemma 2 implies that G jh changes the target bit if and only

Fig. 2 Generalized 3-CNOT gates G1 and G2.
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if ρ j(x) = 0 and ρh(x′) = 0.
We now show that φ is satisfiable if and only if

τ(C(φ)) ≤ 2. For a gate G of C, G[v] is the output vector
of G generated by an input vector v of C. Also, w[v] is the
value of a wire w in C generated by v.

Lemma 3: A test set T = {v1, v2} of a generalized CNOT
circuit C with no 0-CNOT gate is complete if and only if T
satisfies the following conditions:

(i) v2 = v1, and

(ii) G[vi] = vi (i ∈ [2]) for every gate G of C.

Proof. It is easy to see that if T satisfies (i) and (ii), then
W(C) is controllable by T . Thus T is complete for C by
Theorem I.

Suppose T is complete for C. Then W(C) is control-
lable by T by Theorem I. Since the input wires of C are
controllable by T , we have v2 = v1. Thus, T satisfies (i).
Suppose T does not satisfy (ii), that is G[vi] � vi for some
generalized k-CNOT gate G and some i, say i = 1. That is,
if wti and wto are the input and output wires of the target bit
of G, we have

wto[v1] = wti[v1]. (6)

Since the input wires of G are controllable by T , we have

wci[v2] = wci[v1] (7)

for every input wire wci of G. Thus we conclude that

wti[v2] = wti[v1]. (8)

By (6), (7), and k ≥ 1, there exists an input wire wci of
control bit of G such that wci[v2] = 1 if wci is a negative
control bit, and wci[v2] = 0 otherwise. This implies that

wto[v2] = wti[v2]. (9)

By (6), (8), and (9), we have

wto[v1] = wto[v2],

which means that wto is not controllable by T , a contradic-
tion. Thus T satisfies (ii).

Now, we are ready to prove the following.

Fig. 3 Generalized 6-CNOT circuit C(ψ).

Lemma 4: φ is satisfiable if and only if τ(C(φ)) ≤ 2.

Proof. It is easy to see from Lemmas 2 and 3 that if φ(x) =
1 for some x ∈ {0, 1}n, then a test set {(x, x, 0), (x, x, 1)} is
complete for C(φ). Thus, τ(C(φ)) ≤ 2.

Notice that τ(C) ≥ 2 for any reversible circuit C by
Theorem I. Suppose τ(C(φ)) = 2, and let T be a complete
test set of size two. By Lemma 3, T = {(x, y, 0), (x, y, 1)}
for some x, y ∈ {0, 1}n. Also by Lemma 3, G jh[(x, y, 0)] =
(x, y, 0) and G jh[(x, y, 1)] = (x, y, 1) for any j, h ∈ [m]. Thus
by Lemma 2,

ρ j(x) ∧ ρh(y) = 0 and ρ j(x) ∧ ρh(y) = 0

for any j, h ∈ [m], that is,

ρ j(x) ∨ ρh(y) = 1 and ρ j(x) ∨ ρh(y) = 1

for any j, h ∈ [m]. If ρ j(x) = 1 for any j ∈ [m], then
φ(x) = 1, and φ is satisfiable. If ρ j(x) = 0 for some j ∈ [m],
then ρh(y) = 1 for any h ∈ [m]. Thus φ(y) = 1, and φ is
satisfiable.

Since C(φ) can be constructed in polynomial time, we
complete the proof of Theorem 1.

4. Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:

Theorem 2: There exists a 1-CNOT circuit C such that

τ(C) = Ω(log log |W(C)|).
Before proving the theorem, we need some preliminar-

ies.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as fol-
lows. The input wires of the circuit are at level 0, and the
output wires of a gate are at one plus the highest level of any
of input wires of the gate. In cases where an input wire of a
gate is at level i and the output wires are at level j > i + 1,
we say the input wire is at all levels between i and j − 1
inclusively.

It is easy to see the following lemmas.

Lemma 5: If C3 is a reversible 2 × 2 circuit consisting of
just one 1-CNOT gate, then τ(C3) = 3.

Lemma 6: If B is a 2 × 2 1-CNOT circuit shown in Fig. 4,
then B(v) = v for any v ∈ {0, 1}2.

Lemma 7: If C is an n × n 1-CNOT circuit with g gates,
then |W(C)| = n + 2g.

Fig. 4 2 × 2 1-CNOT circuit B.
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4.2 Proof of Theorem 2

We prove the theorem by constructing such circuits. Let
Ch (h ≥ 3) be a 1-CNOT circuit defined as follows. Let
C3 be a 1-CNOT circuit consisting of just one 1-CNOT
gate. For h ≥ 4, Ch is recursively defined as follows. Let
C(0)

h−1,C
(1)
h−1, . . . ,C

(�h−1)
h−1 be �h−1 + 1 copies of Ch−1, where

�h−1 = |W(Ch−1)|. Construct an nh−1 × nh−1 1-CNOT circuit
Dh−1 by concatenating C(1)

h−1,C
(2)
h−1, . . . ,C

(�h−1)
h−1 , where nh−1 is

the number of input wires of Ch−1. Let

W(C(k)
h−1) = {w(k)

1 ,w(k)
2 , . . . ,w(k)

�h−1
}

for 0 ≤ k ≤ �h−1 such that if the level of w(k)
i is not greater

than the level of w(k)
j , then i ≤ j. Ch is constructed from Dh−1

and C(0)
h−1 by inserting a copy of 1-CNOT circuit B shown in

Fig. 4 for each wire of C(i)
h−1, i ∈ [�h−1], such that the wire

of C(i)
h−1 is the control bit and w(0)

i is the target bit of the 1-
CNOT gates. As an example, D3 and C4 are shown in Fig. 5
and Fig. 6, respectively.

Let gh be the number of gates in Ch. From the definition
of Ch, we have

nh = 2h−2 (10)

for h ≥ 3. We also have

gh =
(
�h−1 + 1

)
gh−1 + 2�2

h−1

=
(
nh−1 + 2gh−1 + 1

)
gh−1 + 2(nh−1 + 2gh−1)2 (11)

= 10g2
h−1 + gh−1(9nh−1 + 1) + 2n2

h−1 (12)

for h ≥ 4, where (11) follows from Lemma 7. Since each
input wire of Ch is an input wire of a gate, and every 1-
CNOT gate has two input wires, we have

Fig. 5 1-CNOT circuit D3.

Fig. 6 4 × 4 1-CNOT circuit C4.

nh ≤ 2gh (13)

for h ≥ 3.

Lemma 8: h = Ω(log log |W(Ch)|).
Proof. By (12) and (13), we have

gh = 10g2
h−1 + gh−1(9nh−1 + 1) + 2n2

h−1

≤ 36g2
h−1 + gh−1

≤ 37g2
h−1.

It follows that 37gh ≤ (37gh−1)2, and so

log gh + log 37 ≤ 2(log gh−1 + log 37)

≤ 2h−3(log g3 + log 37)

≤ 2h−3 log 37

since g3 = 1. Thus, we have

log gh ≤ 2h−3 log 37. (14)

By Lemma 7 and (13), we have

�h = nh + 2gh

≤ 4gh

for h ≥ 4, and so

log log�h ≤ log log gh + 1

≤ h − 3 + log log 37 + 1

by (14). Thus we conclude that

h = Ω(log log�h).

Lemma 9: t τ(Ch) ≥ h.

Proof. The proof is by induction on h. τ(C3) = 3 by
Lemma 5. Suppose τ(Ch−1) ≥ h − 1. We will show that
τ(Ch) ≥ h. Suppose contrary that τ(Ch) = h − 1. Let

T = {v1, v2, . . . , vh−1}
be a complete test set for Ch, and vl = (v(1)

l , v(2)
l ) for
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v(1)
l , v(2)

l ∈ {0, 1}nh−1 (l ∈ [h − 1]). Let

T ′ = {v1, v2, . . . , vh−2}, and

T ′k = {v(k)
1 , v(k)

2 , . . . , v(k)
h−2}

for k ∈ [2].
Since τ(Ch−1) ≥ h − 1 by the inductive hypothesis,

W(Ch−1) is not controllable by T ′k, k ∈ [2]. Thus there ex-
ists i such that w(0)

i in C(0)
h−1 is not controllable by T ′2. There

also exists j such that w(i)
j in Dh−1 is not controllable by T ′1.

Thus, we have

(w(i)
j [v(1)

l ],w(0)
i [v(2)

l ]) = (w(i)
j [v(1)

m ],w(0)
i [v(2)

m ]) (15)

for any vl, vm ∈ T ′.
Let G be the left 1-CNOT gate of a copy of B whose

control bit is at w(i)
j and target bit is at w(0)

i , wc be the input
wire of control bit of G, and wt be the input wire of target
bit of G. Then by Lemma 6,

(wc[vl],wt[vl]) = (w(i)
j [v(1)

l ],w(0)
i [v(2)

l ]) (16)

for any vl ∈ T ′. By (15) and (16), we have

(wc[vl],wt[vl]) = (wc[vm],wt[vm]) (17)

for any vl, vm ∈ T ′. By Lemma 5 and (17), we conclude that
W(G) is not controllable by T = T ′ ∪ {vh−1}, a contradiction.
Thus, we have τ(Ch) ≥ h.

From Lemma 8 and 9, we obtain Theorem 2.

5. Lower Bounds for 2-CNOT Circuits

The purpose of this section is to prove the following.

Theorem 3: There exists an n × n 2-CNOT circuit C such
that τ(C) = Ω(log n).

Proof. We need the following two lemmas, which can be
easily seen.

Lemma 10: If E3 is a 3 × 3 2-CNOT circuit shown in
Fig. 7 (a), then τ(E3) = 3.

Lemma 11: If F is a 3 × 3 2-CNOT circuit shown in
Fig. 7 (b), then F(v) = v for any v ∈ {0, 1}3.

We prove the theorem by constructing such circuits.
Let Eh (h ≥ 3) be a 2-CNOT circuit defined as fol-
lows. Let E3 be a 2-CNOT circuit shown in Fig. 7 (a).
For h ≥ 4, Eh is recursively defined as follows. Let
E(i)

h−1 for 0 ≤ i ≤ �h−1 and E( j,k)
h−1 for j, k ∈ [�h−1] be

copies of Eh−1, where �h−1 = |W(Eh−1)|. Construct an
nh−1 × nh−1 2-CNOT circuit Hh−1 by concatenating E(1)

h−1,

E(2)
h−1, . . . , E

(�h−1)
h−1 , and construct an nh−1 × nh−1 2-CNOT cir-

cuit Jh−1 by concatenating E(1,1)
1 , E(1,2)

1 , . . . , E(1,�h−1)
1 , E(2,1)

2 ,

E(2,2)
2 , . . . , E(2,�h−1)

2 , . . . , E(�h−1,�h−1)
�h−1

, where nh−1 is the num-
ber of input wires of Eh−1. Let

W(E(i)
h−1) = {w(i)

1 ,w
(i)
2 , . . . ,w

(i)
�h−1
} and

W(E( j,k)
h−1 ) = {w( j,k)

1 ,w( j,k)
2 , . . . ,w( j,k)

�h−1
}

Fig. 7 3 × 3 2-CNOT circuits E3 and F.

such that if the level of w(∗)
i is not greater than the level of

w(∗)
j , then i ≤ j. Eh is constructed from Jh−1, Hh−1, and E(0)

h−1

by inserting a copy of F for each wire w(i, j)
k with i, j, k ∈

[�h−1] such that w(i, j)
k of E(i, j)

h−1 in Jh−1 is the top bit of the
copy of F, w(i)

j of E(i)
h−1 in Hh−1 is the middle bit of the copy

of F, and w(0)
i of E(0)

h−1 is the bottom bit of the copy of F.
From the definition of Eh, we have nh = 3h−2, and so

the following.

Lemma 12: h = Ω(log nh).

The following lemma can be proved similarly to Lemma 9.

Lemma 13: τ(Eh) ≥ h.

Proof. The proof is by induction on h. τ(E3) = 3 by
Lemma 10. Suppose τ(Eh−1) ≥ h − 1. We will show that
τ(Eh) ≥ h. Suppose contrary that τ(Eh) = h − 1, and let

T = {v1, v2, . . . , vh−1}
be a complete test set for Eh. Since τ(Eh−1) ≥ h−1, W(Eh−1)
is not controllable by T ′ = {v1, v2, . . . vh−2}. Thus there ex-
ist i, j, k ∈ [�h−1] such that none of w(0)

i , w(i)
j , and w(i, j)

k is
controllable by T ′. So, by similar arguments to the proof of
Lemma 9, we conclude that if Fi, j,k is a copy of F with the
top bit on w(i, j)

k , and Ei, j,k is a copy of E consisting of the
left three gates of Fi, j,k, then W(Ei, j,k) is not controllable by
Lemmas 10 and 11, which is a contradiction. Thus, we have
τ(Eh) ≥ h.

From Lemmas 12 and 13, we obtain Theorem 3.

6. Concluding Remarks

It should be noted that (1) is merely an existential upper
bound. It is an interesting open problem to find a polynomial
time algorithm to construct a complete test set of such size.

We can show that τ(Eh) = Ω(log log |W(Eh)|), though
the proof is rather complicated.
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