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Traffic Light Detection Using Rotated Principal Component
Analysis for Video-Based Car Navigation System∗

Sung-Kwan JOO†, Yongkwon KIM†, Seong Ik CHO††, Kyoungho CHOI†††, Nonmembers,
and Kisung LEE†a), Member

SUMMARY This letter presents a novel approach for traffic light de-
tection in a video frame captured by an in-vehicle camera. The algorithm
consists of rotated principal component analysis (RPCA), modified ampli-
tude thresholding with respect to the histograms of the PC planes and final
filtering with a neural network. The proposed algorithm achieves an av-
erage detection rate of 96% and is very robust to variations in the image
quality.
key words: car navigation system, traffic light, crossroad detection, prin-
cipal component analysis

1. Introduction

Recently, video-based car navigation systems (CNS) have
come to be seen as representing the direction of future CNS
technology [1]. While conventional CNS provides guidance
information with a 2D map or 3D graphics [2], as shown
in Fig. 1, the video-based system provides guidance infor-
mation superimposed on real-time video captured by an in-
vehicle camera.

The detection of traffic lights in a video frame is one
of the important issues that still need to be solved in or-
der to locate crossroads in video-based CNS. Few stud-
ies have investigated traffic light detection. Hwang et al.
used hue-saturation-intensity (HSI) color-based segmenta-
tion and center detection using Gaussian mask, followed by
a verification step using an existence-weight map [3]. In
addition to the color features, the shapes of the lamp (cir-
cle) and the traffic light unit (rectangle) were also explored
for more precise detection by Lindner et al. [4]. The major
drawback of these methods is their high sensitivity to varia-
tions in the acquired image quality, which strongly depends
on the weather, acquisition time, camera performance, etc.
In addition, if the vehicle is located more than 100 m from
the traffic light unit, the lamp occupies a maximum of only
about five pixels in the video frame. In this case, it is diffi-
cult for the existing algorithms to detect the traffic lights.

We proposed a novel approach using rotated principal
component analysis (RPCA) features which are robust to
variations in the quality of the acquired image. The pur-
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Fig. 1 An example of the video-based car navigation systems (CNS).

pose of traffic light detection in this study is to determine
the location of the crossroad in a video frame, so that CNS
can provide reliable graphical guidance to drivers. Thus in
Sect. 3, we also present the video-based CNS equipped with
the proposed algorithm. The performance of the proposed
method was compared with that of the existing, color-based
segmentation method to demonstrate the superiority of the
algorithm.

2. Traffic Light Detection

2.1 Feature Plane Generation

PCA has been widely used in various image processing ap-
plications, due to its ability to rearrange data into orthogonal
basis vectors. In the proposed algorithm, a captured video
frame is decomposed into R, G, B, and gray level images.
After those four values are lined up at each pixel location,
PCA is used to extract the PC planes. Then, the first princi-
pal component p(x, y) is removed from the channel data by
means of the following relation:

Yn(x, y) = Xn(x, y) − E · p(x, y) (1)

where Yn(x, y),n = 1, . . . ,N is the image pixel at channel n
after the first PC data have been removed, Xn(x, y) the pre-
viously aligned channel data, E the eigenvector of PCA and
p(x, y) the first PC at each pixel location. Thus E · p(x, y) is
a reconstructed image using only the first PC plane. Yn(x, y)
is acquired by subtracting the reconstructed image from the
original image. This technique, known as RPCA, has been
successfully utilized in meteorology to emphasize meaning-
ful features by eliminating dominant but undesirable ele-
ments. For example, Barlow et al. used RPCA to extract
the primary modes of sea surface temperature by removing
seasonal variation which was considered to be a dominant
and intrinsic feature and was also conspicuous in the first
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PC vectors [5].
Figure 2 (a) displays the first PC plane, p(x, y), of a

sample video frame. In order to speed up the performance
and prevent possible noise factors, the region-of-interest
(ROI) is determined first by removing the road area. We
used the lane detection algorithm proposed in [6] to do this
work. Because the camera is mounted on the same spot, we
do not need to detect the road in all frames. After collecting
the results of the algorithm in the first hundreds of frames,
the size of ROI window was determined by calculating sta-
tistical mean of the boundary positions of the detected ar-
eas. The determined ROI window was applied to the entire
video clip. Since the PCA gives optimal compaction of the
information, the first principal component p(x, y) contains
the most dominant features or the largest variations from the
image data (R, G, B and gray level images) [7]. As shown
in Fig. 2 (a), even though p(x, y) contains such important in-
formation to our eyes, in our application it further increases
the difficulty in finding the target by imposing complexity of
the image. Meanwhile, the PC image (Fig. 2 (b)) of Yn(x, y)
after eliminating p(x, y) from the original image Xn(x, y) is
much less complex than Fig. 2 (a) and even emphasizes the
target objects with simpler background. Our observations
indicated that the area for traffic lights appears most obvi-
ously in the first or second PC planes of Yn(x, y). In addi-
tion, we focus on red and green traffic lights for this study.
These lights look clear in the first and/or second PC images
of Yn(x, y). We, however, use red lights as an example to
describe the proposed algorithm.

2.2 Object Segmentation

The histogram of the PC plane that was acquired in the pre-
vious step is used to segment the possible candidates of the
traffic lights by the modified version of the amplitude thresh-
olding method [7].

Figure 3 shows the histogram h(k) of p(x, y) in
Fig. 2 (b) where k is the value of p(x, y). In Fig. 3, the higher
values of k belong to background area of Fig. 2 (b) while the
traffic lights belong to the bins with lower values (left-hand
side of the plot). The starting point, Ks, of the accumulation
window in the histogram, is determined by:

Ks = arg min
k

(h(k) = Hs) (2)

where Hs is the threshold value for deciding the starting
point of k. Since a traffic light usually occupies five to fifteen
pixels in the video frame, we set Hs = 5 for the experiment.

Then the function for the accumulated histogram is de-
fined as:

A(u) =
u∑

k=Ks

h(k). (3)

where u is a histogram bin representing the end of accu-
mulation window in Fig. 3. The threshold value Vth of the
histogram bin is determined by finding u which minimizes
the term inside the parenthesis of Eq. (4).

Fig. 2 Region of interest (ROI) images in a video frame during detection
process for red lights: (a) PC plane, p(x, y), of the original image Xn(x, y),
(b) PC plane of Yn(x, y), (c) after modified amplitude thresholding, and
(d) after artificial neural network (ANN)-based target selection.

Fig. 3 Histogram of a rotated PC plane (i.e., PC plane of Yn(x, y)). The
graph is truncated at the right-hand side in order to zoom in on the ac-
cumulation window area. The arrow in the search window represents the
direction of accumulation for Eq. (3).

Vth = arg min
u

(|A(u) − C|) (4)

where C is a constant related to the occupied area of the
target objects (i.e. traffic lights). Even though the area of
the traffic lights in the PC plane is small (5∼15 pixels) and
depends on the distance between the traffic lights and the
vehicle, the value C is determined by taking into account
the area occupied by the objects with similar color, as well
as by the traffic lights. To include as many candidate objects
as possible, we set the constant C to 300 for this study.

Once Vth is determined, the masks for the candidate
objects in the video frame are segmented as follows:

b(x, y) =

{
1, if h(p(x, y)) ≥ Vth

0, if h(p(x, y)) < Vth
(5)

After morphological dilation to refine the segmented masks,
the size and shape of b(x, y) were also investigated to select
the highly likely candidates.

As shown in Fig. 2 (c), the segmentation algorithm de-
tects not only the regions containing the traffic lights, but
also the other objects considered as possible traffic light can-
didates.

2.3 Target Region Selection

The candidates segmented in the segmentation step indi-
cated that the traffic lights have a different shape and colored
texture from those of other objects in the street such as signs
and buildings. Figure 4 illustrates these differences of the
segmented candidates.

Artificial neural networks (ANNs) [8] offer great po-
tential for quickly and accurately evaluating various pattern
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Fig. 4 Texture of objects in the video frame: (a) traffic signal, (b) an
example of other candidates (a part of sign board in a building), (c) surface
plot of (a), and (d) surface plot of (b).

Fig. 5 Three-layer neural network structure to classify traffic lights.

recognition problems. In this research, ANN is adopted to
filter out the wrong candidates and finalize the traffic light
areas.

R, G, B, and gray planes of each segmented object are
normalized to 8×8 pixels to enable the feature vectors to be
composed with 256 elements. After various trials with dif-
ferent neural network topologies, a three-layer, neural net-
work structure with 256 inputs, 1 output and 4 neurons in
one hidden layer was selected. Figure 5 shows a schematic
ANN structure used to classify the traffic lights.

The three-layer structure with the back-propagation al-
gorithm is used to train the ANN. The weight is progres-
sively updated until the maximum root mean square error
becomes less than 0.01 during the neural network train-
ing. A total of 4000 sets of video frames captured by an
in-vehicle camera were used for training the green and red
traffic light units and the error percentage for the test sets
was 98.7%. Figure 2 (d) shows the traffic lights correctly
detected by ANN application.

3. Experimental Results

We tested the proposed approach using multiple sets of
video clips which were acquired by a test vehicle [9] devel-
oped by the Electronics and Telecommunications Research
Institute (ETRI), in Daejon City, Korea. The condition of
the acquired video is shown in Table 1. Each video clip was
recorded on different days and under varying weather condi-

Table 1 Descriptions of the tested video clips.

Fig. 6 Results of the proposed approach in comparison with the color-
based approach: (a) original image, (b) the first PC plane, p(x, y), removed
in the RPCA process of Eq. (1), (c) the PC plane of Yn(x, y) in Eq. (1),
(d) the detected traffic lights and other candidates after object segmentation
(Sect. 2.2), (e) final results after the target selection with ANN (Sect. 2.3),
and (f) results of the color-based approach.

tions which lead to variation in the clips’ intensity. The test
data set includes a downtown area, which is very crowded
with many buildings and cars, and a residential and subur-
ban area with few vehicles on the road.

The video sequences are 640 × 480 pixels/frame and
24 frames/sec. The algorithm was tested using a Pentium
2.0 GHz PC with 1 GB RAM. A total of 9,473 frames were
used to test the detection rates within the distance range of
30–140 m.

Figure 6 shows the results of the proposed method. The
first PC plane, p(x, y), of the four channels’ data (i.e., R, G,
B and gray image planes) is displayed in Fig. 6 (b). Accord-
ing to Eq. (1), Fig. 6 (b) was multiplied by the eigenvector
E and subtracted from the original 4 channel images. Then,
the PC planes were calculated again from Yn(x, y) for the
second iteration. In the second PC plane shown in Fig. 6 (c),
the red areas are clearly distinguished from the other com-
ponents in the video frame. Figure 6 (d) represents the de-
tected traffic lights and other candidates after the object seg-
mentation described in Sect. 2.2 and Fig. 6 (e) shows the fi-
nal results for classifying traffic lights with ANN. While
the proposed method accurately detected the target objects,
the color-based approach [3] missed the targets, as shown in
Fig. 6 (f).

Figure 7 illustrates the detection rates of the two ap-
proaches. The proposed method outperformed the exist-
ing colour-based method over all distance ranges. Hwang
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Fig. 7 Detection rates in terms of the distance between the test vehicle
and the traffic light units.

Fig. 8 Detection rates of the test video clips described in Table 1.

Fig. 9 Snapshot of the video-based car navigation system (CNS) which
includes the proposed traffic light detection module. The blue box in the
center represents the detected traffic lights.

et al. reported that the HSI-based method afforded an aver-
age detection rate of more than 90% from a distance of 30
to 90 m [3]. In our application, however, which uses a low-
quality, cost-effective camera, the detection rate of the HSI-
based method decreased dramatically to 52%, while that of
the proposed method was as high as 96%.

Figure 8 also demonstrates the superiority of our
method over the existing method based on the video clips
in Table 1 that were acquired under different external con-
ditions. The proposed method produced high and consis-
tent detection rates while the HSI-based method was very

sensitive to the variations in the image quality.
Figure 9 shows a snapshot of the demonstration system

for the video-based CNS developed in ETRI Korea. The
figure shows that the proposed algorithm works well and
helps the system to guide the driver using graphical icons.

4. Conclusion

We have proposed a robust, traffic light detection method for
video-based CNS. The algorithm consists of RPCA, ampli-
tude thresholding on the histograms of the PC planes, and
neural network-based refinement.

The proposed method afforded a detection rate of 96%,
compared to the existing color-based method which recog-
nizes only 52% of the traffic lights under the same condition.
The results also demonstrated the robustness of our method
when exposed to variations in the external conditions of the
vehicle, acquired image quality, and camera capability. Our
method was successful in locating the crossroad for graphi-
cal guidance in the video-based CNS developed by ETRI.
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