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New Rotation-Invariant Texture Analysis Technique Using Radon
Transform and Hidden Markov Models

Abdul JALIL†a), Anwar MANZAR††, Tanweer A. CHEEMA††, and Ijaz M. QURESHI††, Members

SUMMARY A rotation invariant texture analysis technique is proposed
with a novel combination of Radon Transform (RT) and Hidden Markov
Models (HMM). Features of any texture are extracted during RT which due
to its inherent property captures all the directional properties of a certain
texture. HMMs are used for classification purpose. One HMM is trained for
each texture on its feature vector which preserves the rotational invariance
of feature vector in a more compact and useful form. Once all the HMMs
have been trained, testing is done by picking any of these textures at any
arbitrary orientation. The best percentage of correct classification (PCC) is
above 98 % carried out on sixty texture of Brodatz album.
key words: radon transform, hidden Markov models, rotation-invariant
features

1. Introduction

Texture analysis, which is a an important issue for re-
searchers, finds many applications in image processing, pat-
tern recognition and computer vision. In all these appli-
cations generally texture features are extracted and then
fed to a classifier for classification. For texture analy-
sis methods that are translation, rotation and scale invari-
ant [1]. Ordinary wavelet transforms have been used widely
for texture analysis [2]–[5], but unfortunately they are not
rotation-invariant. They capture variation only along ver-
tical, horizontal and diagonal directions. Some attempts
were made towards rotation invariant texture analysis using
wavelet transform [6]–[8]. Some have also proposed pre-
processing step to make the analysis invariant to rotation
by defining some principal direction [9], [10]. After find-
ing its angle they have used wavelet decomposition in that
particular direction. Mao and Jain [11] have used rotation-
invariant symmetric autoregressive random field model in
which neighborhood points of a pixel are defined on sev-
eral circles around it. This approach, however, overlooks
the global information of the texture. Some approaches have
used HMM [12]–[14]. Chen and Kundu [13] decompose the
image into subbands using quadrature mirror filter and then
model these subbands by an HMM. Unfortunately, as the
number of classes (textures) increases, the performance de-
teriorates. Do and Vitterli [14] have used a steerable wavelet
domain HMM along with a maximum likelihood solution
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for model parameters. But they have experimented on a
limited scale and used only thirteen images from Brodatz
album. In this letter, we propose a new technique using a
combination of Radon Transform (RT) and one-dimensional
HMM (1-D HMM). Due to directional properties of RT we
capture the directional information of each texture at any ar-
bitrary orientation. Any orientation of texture gives us one
set of feature vectors (FV). These feature vectors are con-
sidered as observation vectors in order to train 1-D HMM to
give us rotationally invariant representation of this texture.
One set of FV for a texture trains one HMM model and so
for M textures we have M number of HMM model. For test-
ing purpose we pick up any one of these textures with any
arbitrary orientation, find its feature vectors using RT and
find the best match between these feature vectors and those
preserved by the HMMs. We have given comparison of the
proposed scheme with some other popular schemes in the
literature using percentage of correct classification (PCC)
as figure of merit.

2. Feature Extraction Using Radon Transform

The very first step after formulating disk image is its fea-
ture extraction using RT. A disc image is the disc shape
area from the middle of the image. It has been selected be-
fore calculating the Radon transform to make the method
isotropic. The RT of two-dimensional (2-D) function f (x, y)
is defined as [15]

g(s, θ) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y)δ(x cos θ+y sin θ−s)dxdy (1)

where θ is the angle formed by the line along which the inte-
gral is calculated while is the perpendicular distance of this
line from the origin as shown in Fig. 1. g(s, θ) is 1-D projec-
tion of f (x, y) at an angle θ with distance s from the origin.
In the case of an image which is discrete, the integration
along a line with orientation θ and distance s from the ori-
gin changes into a summation of the gray scale values of the
pixels lying along that line. It is then averaged by dividing
this sum by the total number of pixels on that line. The RT
of any texture is taken along lines at different orientations θ
and different offsets from the origin, s. The angle θ is vary-
ing from 0o to 180o in discrete steps of Δθ. For any fixed
value of θi, there will be projections of the image along dif-
ferent lines at different values of s from the origin as shown
in Fig. 1. The number of lines, denoted as N, determines the
length of the feature vector oiwhich is given as

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



LETTER
2907

Fig. 1 Radon transform of the image.

oi = [oi1oi2 · · · oiN]T (2)

where oik is value of g(s, θ) for θ = θi and s = sk where
N = 2s/Δs whereby Δs is the value of the discrete step of
the offset and s is the maximum offset from the origin in
any direction.L is the number of such feature vectors and it
is equal to the total number of discrete steps of θ between 0o

and 180o. If we take Δθ = 2 then L, the number of feature
vectors, will be 90. These feature vectors (FV) formulate
observation sequence for a particular texture. Any orienta-
tion of a texture gives us the observation sequence

O = [o1o2 · · · oL]N×L (3)

The above FV sequence O is for one texture at one orienta-
tion. If we take more FV sequences for a texture at different
orientations, our HMM training should become more robust.
This process is repeated for other textures of Brodatz Al-
bum. For M number of textures there are M number of FV
sequences. For classification and testing purpose one may
use direct matching through correlation between FVs.Once
we have some target texture to be tested, we first find out its
FV sequence. Then we may take direct correlation between
FV sequence of target texture and all the reference FV se-
quences one by one. The one with maximum correlation
shall give us the class to which the target texture belongs.
Unfortunately after large experimentation we find that per-
centage of correct classification is less than 30%. The main
reason for such adverse results is that each FV sequence be-
longs to same texture but at particular orientation. Now once
we take a target texture and find its FV sequence at a differ-
ent orientation than the orientation at which its reference FV
sequence was taken, its FVs are cyclically shifted. With the
result, that correlation between the reference FV of a tex-
ture at some orientation and target FV of the same texture
but at some other orientation, the correlation is quite low. It
is possible to improve the situation by keeping many FVs
one texture at manny orientations. But this will result in
massive data base and testing will becoming time consum-
ing and expensive. This dilemma can be overcome if we use

(a)

(b)

Fig. 2 (a) Block diagram for the training phase. (b)Blck diagram for the
testing phase of the textures with different orientations.

a classifier that can be trained on these FVs to capture the ro-
tational invariance of the texture features. Discrete Hidden
Markov Model (HMM) is one such strong candidate. Once
HMM is trained on a set of FVs pertaining to different ori-
entations, the HMM parameters adjusted are robust against
any rotation of the texture.

3. Training of Hidden Markov Model for Classification
Purpose

Figure 2 (a) is a schematic diagram giving all the steps for
training phase of each texture. The observation sequence
formulated in the above section is used to train an HMM
model. This sequence of observations is modeled by one
HMM whose salient features are given below. For elaborate
review of HMMs one may see [16].
State transition probability matrixA = ai j where ai j =

pr(qt+1 = j|qt = i), i, j = 1, 2, · · ·N where qt is the state
at time t and N is the number of states in the model.
Observation probability density matrix B =

{
b j(ot)

}
where

b j(ot) = pr(ot|qt = j)
Initial state probability Π = {πi} where πi = pr(q1 = i), i =
1, 2, · · ·N

Each texture with different orientations is repre-
sented by one model which is usually denoted by λi =

(Ai, Bi,Πi) , ı = 1, 2, · · ·M where M is the number of Bro-
datz textures. One model is trained for each texture indepen-
dently. For M textures we have M HMM models. The train-
ing program for HMM uses learning problem which states:
Given observation sequence O = [o1o2 · · · oL], adjust the
model parameters of the HMM λm = (Am, Bm,Πm) in or-
der to maximize P (O|λm) which is the probability to have
these FVs O given the HMM,λm. The most popular algo-
rithm used to solve this learning problem is Baum-Welch
algorithm which is being presented as follows [16]:
First of all two variables are defined. The first variable is
ξt (i, j) which is the probability of being in state i at time t
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and in state j at time t+1.

ξt (i, j) = p (qt = i, qt+1 = j|O, λ)
=

p (qt = i, qt+1 = j,O|λ)
p (O|λ)

=
p (qt = i, qt+1 = j,O|λ)∑N

i=1
∑N

j=1 p (qt = i, qt+1 = j,O|λ) (4)

The second variable is γt(i) which is the a posterior proba-
bility is given as

γt (i) = p (qt = i|O, λ)
=

p (qt = i,O|λ)∑N
i=1 p (qt = i,O|λ)

=
αt(i)βt(i)∑N

i=1 αt(i)βt(i)
(5)

where αs and βs are forward and backward variables respec-
tively, defined as follows

αt(i) = P (o1, o2, · · · , ot|λ) (6)

βt(i) = P (ot+1, ot+2, · · · , oT |qt, λ) (7)

Having calculated ξs and γs and using (4) and (5), the HMM
parameters are updated according to the following equations

π = γ1(i), 1 ≤ i ≤ N (8)

ai j =

∑T−1
t=1 ξt (i, j)∑T−1

t=1 γt(i)
, 1 ≤ i ≤ N, 1 ≤ i ≤ N (9)

b j(k) =

∑T
t=1

ot=vk

ξt (i, j)
∑T−1

t=1 γt(i)
, 1 ≤ i ≤ N, 1 ≤ i ≤ O (10)

The training is done off-line and only once. For each new
texture, a new class is considered and so a new model is
trained. There is no need to retrain the others. A particular
tolerance factor is given in order to ensure proper training
and convergence of the HMM. All the vectors put together
capture directionality of the image in all direction from 0
to 180 degrees. The HMM trained on these vectors pre-
serves the rotational invariance. Even if we take the same
image at some other rotation, its feature vectors are still the
same, except that they are cyclically rotated. If an HMM
is trained on these cyclically rotated feature vectors, the pa-
rameters of HMM i.e. λm = (Am, Bm, Pim) , come out to be
still the same. Moreover, once testing is done, we are not us-
ing exactly the same orientation of the images from which
we extracted the feature vectors and trained the HMM. In
fact we used different orientations of the image, extracted
the feature vectors and used evaluation problem for carrying
out the testing. Percentage of correct classification (PCC) is
used as figure of merit for testing the proposed algorithm.

4. Testing and Classification

Figure 2 (b) gives the steps for testing phase of any tex-
ture with any orientation. We use evaluation problem [16]
of HMM for testing and classification purpose. The eval-
uation problem states: Given the observation sequence or
set of vectors O = [o1o2 · · ·oL] and an HMM λm, how
do we efficiently compute P (O|λm) which is the proba-
bility of the observation sequence generated by the given
model, λm. In testing, we find out the observation sequence
O = [o1o2 · · · oL] by using RT on the texture at any orienta-
tion being tested for classification. Then evaluate P (O|λm)
for allm = 1, 2 · · · ,M. Finally the class is found by using
maximum likelihood principle.

m∗ = arg

⎧⎪⎪⎪⎨⎪⎪⎪⎩ max︸︷︷︸
m

P(O|λm)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

This unknown texture is m∗ of the Brodatz album.

5. Simulation

For simulation purpose, we have used sixty textures taken
from Brodatz album (D1-D60) as given in Fig. 3. Each tex-
ture is treated as a class. The RT of every texture is taken
at constant discrete steps between 0o to 180o. The discrete
steps of θ have been taken as 6o, 4o, 3o and 2o , thus making
number of feature vectors L = 30, 45, 60 and 90, respec-
tively. The number of states has been given as N =1,2, 3, 4,
and 6 in order to see its effect on PCC. For testing we use all
60 textures at 20 arbitrary orientations which become 1200
in total. From Table 1, we observe that as the number of
features, L, increases, the value of PCC becomes higher and
higher. The states in HMM do not have any explicit physical
meaning. One cannot say that increase or decrease of states
would result in a better model in terms of PCC. For larger
values of L (60 and 90), N = 5 seems to be the best choice
in terms of PCC. Although one may increase the number of

Fig. 3 First 60 textures from Brodatz album (D01-D60). First row D01-
D10, second row D11-D20, and so on, and sixth row D51-D60.
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Table 1 1200 test samples have been carried out along with
their associated PCC %.

L N 1 2 3 4 5 6
30 92.05 93.66 95.75 95.50 95.00 94.08
45 93.55 94.00 96.91 96.41 96.83 95.83
60 94.81 95.70 97.91 97.33 97.66 97.00
90 94.99 95.50 98.16 97.83 98.25 97.83

Table 2 Comparison of the best results of the proposed method
with some of the methods from the literature.

Methods from the Literature Proposed
Methods

Chen and Kundu Khouzani and
Zadeh

Ojala et al

(10 textures) (25 textures) (16 textures) (60 textures)
93.33% 97.90% 95.80% 98.250%

training feature vectors in order to get a better HMM for any
texture, but it becomes computationally cumbersome. The
best value of PCC achieved in this letter is 98.25%. The
comparison of our result has been given with some tech-
niques in the literature in the form of Table 2. While the
proposed technique gives 98.25%, it has been tested on first
60 textures from Brodatz album which were isotropic, as
well as, anisotropic. Chen and Kundu [13] which gives 95
has been tested on 10 textures only. Ojal et. al. [17] gives
PCC as 97.90% and is tested on 16 textures while Jafri and
Khouzani [10] has 97.4 PCC which is tested on 25 textures
only. Moreover, textures used by these authors for testing
are mainly anisotropic.

6. Conclusion

The proposed technique, which is rotation invariant, uses
Radon transform to capture the feature vectors and HMMs
for training and classification. In this new technique there
is no need to defining a principal direction which is used
in anisotropic textures [18]. This technique has the ad-
vantage of being equally valid for anisotropic as well as
isotropic textures. The RT based HMM has an advantage
over wavelet transform based HMM. The two dimensional
wavelet transform 2DWT captures features only in the horo-
zontal, vertical and diagonal direction [10] while RT cap-
tures the directional features of the texture at all angles from
0o to 180o. Thus HMM trained on these FVz preserve ro-
tational invariance which HMMs trained on wavelet based
FVs do not. Lastly, we see this proposed technique giving
better PCC than the ones compared with in the papers [10],
[13], [17].
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