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SUMMARY Consider an undirected multigraph G=(V, E) with n ver-

tices and m edges, and let Ni denote the number of connected spanning 

subgraphs with i(m•†i•†n) edges in G. Recently, we showed in [3] the 

validity of (m-i+1)N-1>(i-n+3+•ã9+8(i-n)/2)Ni for a simple graph and 

each i(m•†i•†n). Note that, from this inequality, (m-n)Nn/2N+1+Nn/(m-n+1)Nn-1•†2 

is easily derived. In this paper, for a multigraph G andi all i(m•†i•†n), we 

prove (m-i+1)Ni-1•†(i-n+2)Ni, and give a necessary and sufficient 

condition by which (m-i+1)Ni-1=(i-n+2)Ni. In particular, this means 

that (m-i+1)Ni-1>(i-n+3+•ã9+8(i-n)/2)Ni is not valid for all multigraphs, 

in general. Furthermore, we prove (m-+Nnn-1•†2, which is not 

straightforwardly derived from (m-i+1)Ni-1•†(i-n+2)Ni, and also intro-

duce a necessary and sufficent condition by which (m-n)Nn/2N+1+Nn/(m-n1)Nn -1=

2. Moreover, we show a sufficient condition for a multigraph to have 

>NN. As special cases of the sufficient condition, we show 

that if G contains at least 2(m-n)+1 multiple edges between some pair 

of vertices, or if its underlying simple graph has no cycle with length more 

than 4, then N>NN

key words: multigraph, the number of connected spanning subgraphs, 

network reliability polynomial, inequality

1. Introduction

In network reliability analysis, a network is usually modeled 

by an undirected graph with n vertices and m edges, where 

all vertices are reliable, and each edge is either operational 

or failed with the same independently operational probabil-

ity p(0<p<1). The reader may refer to [5] for background 

on network reliability.

Let Ni for an integer i(m•†i•†n-1) denote the 

number of connected spanning subgraphs with i edges in 

G. Then, Nn-1, Nn,•c, Nm, called the coefficient sequence 

of all-terminal reliability polynomial (see e.g., [1], [2], [5], 

[6], [8]), are used to estimate the all-terminal reliability 

RelA(G, p) defined by

RelA (G,p)= (1)

It is well known that computing RelA(G, p) is NP-hard, even 
if the granhs are restricted to be planar. since the problem of

computing Ni's is #P-complete [9], [10]. Thus, it is impor-

tant to find inequalities useful for approximately comput-

ing Ne's. Many extensive investigations on the computation 

problem have been done, and properties of Ni's have been 

summarized in [2], [5], [8].

Little, however, is known about the inequalities with 

respect to Ni-1, Ni or Ni-1, Ni, Ni+1 other than Sperner's in-

equality iNi•†(m-i+1)Ni-1 (see e.g., [5]). This may 

be a reason that it has been not shown whether G has uni-

modality or log-concavity on the sequence Nn-1, Nn,•c, Nm 

in [5], [6]. Here, unimodality is a property that there is some 

index i such that Nn-1•…Nn•…•c•…Ni•†Ni+1•†•c•†Nm, 

and log-concavity is a property that N2i•†Ni-1Ni+1 for 

m>i•†n. Furthermore, we easily see by (1) that for such a 

probabilistic graph (G, p) when p is very small, RelA(G, p) 

is mainly determined by the terms on the three coefficients 

Nn-1, Nn, Nn+1. Then, it is also interesting to investigate a 

formula on Nn-1, Nn, Nn+1.

In this paper, by introducing the average value h(ƒÓiG; d) 

of N(Gir, i-d)'s, where N(Gir; i-d) for each r(Ni•†r•†

1) denotes the number of connected spanning (i-d)-edge 

subgraphs in a connected spanning i-edge subgraph G. of G, 

we establish two formulas h(ƒÓiG;) Ni=(m-i+1)Ni-1 and 

i•†h(ƒÓiG;1)•†i-n+2 for all m•†i•†n. In particular, we 

show the characterizations of multigraphs where h(ƒÓiG;1)=

(i-n+2) for all m•†i•†n, and h(ƒÓiG;1) nearly equals to 

(i-n+2) for a fixed i, respectively.

As a result, for a multigraph G and all m•†i•†n, we 

obtain (m-i+1)Ni-1•†(i-n+2)Ni in Sect. 2, and chara-

terize the multigraphs with (m-i+1)Ni-i=(i-n+2)Ni in 

Sect. 3. It implies that for all multigraphs, (m-i+1)Ni-1> 

(i-n+3+•ã9+8(i-n)/2)Ni does not hold in general, even though 

it has been applied to show several simple graphs with uni-

modality on Nn-1, Nn,•c, Nm in [4]. This, in fact, means 

that there is a difference in inequalities of Ni-1, Ni between 

simple graphs and multigraphs.

On the other hand, when G is a simple graph, 

2 has been shown in 3 by the fact that the length of ev-

ery cycle in a simple graph is at least 3. It is clear that /

+(m-n+1)Nn-1>2 by (m-n+1)Nn-1>0. However, 

when G is a multigraph, since G contains cycles of length 

2, (m-i+1)N•†(i-n+2)N holds with equality. 

In addition, we show that there exist some multigraphs 

so that not only Nn/N
n-1<1/2, but also (m-n)Nn/2Nn+1 nearly 

equals to 2. Then, it is not necessarily obvious whether 

+Nn/•†2 for some multigraphs. In Sect. 4,
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we prove that it is true for all multigraphs as well, and show 

that (m-n)Nn+1=2iff G is a connected multigraph 

containing a pair of vertices with m-n+2 multiple edges. 

It is well known that such a multigraph is the least reliable 

one for all-terminal network reliability (see e.g., [1], [2]). 

Before closing Sect. 4, we propose a sufficient condi-

tion for a multigraph G with N2n>Nn-1Nn+1. That is, G 

contains at least 2(h(ƒÓnG;1)-3)(m-n)/(h(ƒÓnG;1)+1 multiple edges be-

tween some pair of vertices. Moreover, we show that if G 

has at least 2(m-n)+1 multiple edges between some pair 

of vertices, or, no simple cycle with length more than 4, then 

it satisfies the sufficient condition.

2. Preliminaries

Consider an undirected multigraph G=(V, E) with no loop. 

Unless defined otherwise, graph theoretic terminology used 

in this paper follows Harary [7]. We always assume that a 

given multigraph G is connected, and has n vertices and m 

edges.

A simple graph is the graph without multiple edges. 

By replacing the multiple edges between every pair of ver-

tices with one edge, we can obtain a simple graph, called 

its underlying graph. One of the most basic facts is that a 

multigraph has some cycle with length 2, while the length 

of every cycle in a simple graph is at least 3.

For an edge subset U(<), let G-U denote the span-

ning subgraph obtained by removing all edges of U from G. 

An edge subset U(<E) is said to be an edge-cut if G-U is 

not connected, and let ƒÉG be the minimum cardinality of an 

edge-cut in G. An edge e is said to be a bridge if G-{e} is 

not connected. We denote by N(G;i), which is sometimes 

briefly denoted by N, the number of connected spanning i-

edge subgraphs of G. Note that G has exactly spanning 

i-edge subgraphs each of which is either connected or not. 

It is clear that whenever i<n-1, any spanning i-edge sub-

graph of G is not connected, and whenever i>m-ƒÉG, any 

spanning i-edge subgraph is connected by the definition of 

ƒÉ G. Thus,

Ni=0, i

Ni<(mi)

Ni=(mi.

Let ƒÓiG={Gi1, Gi2,•c, GiNi} denote the set of all con-

nected spanning i-edge subgraphs of G. Given a G. 

N(Gir;i-d) for an integer d(i-n+1•†d•†1) represents 

the number of connected spanning (i-d)-edge subgraphs of 

Gir. In other words, it is equal to the number of connected 

spanning subgraphs each of which is obtained by removing 

d edges from Gir. We further define h(ƒÓiG;d) by

(2)

which represents the average of Ni values: N(G1; i-d), 

N(Gi2; i-d),•c, N(GiNi; i-d).

Note that every connected spanning (i-d)-edge sub-

graph of G is contained as a subgraph in exactly (m(i-d)d) 

connected spanning i-edge subgraphs of ƒÓiG, and every Gir E 

iG contains N(Gir; i-d) connected spanning (i-d)-edge 

subgraphs of G. Consequently, we can show the validity of

(3)

Lemma 1: For a multigraph G and two integers i, d(m•†

i•†n,i-n+1•†1),

(4)

Proof. It is trivial by (2) and (3).

Essentially, lemma 1 establishes a relation between 

h(ƒÓiG;d) and N. This means that the problem of computing 

h(ƒÓiG;d)'s is also #P-complete as that of computing Ni's, 

since Nn-1 represents the number of spanning trees of G and 

is counted in polynomial time. Moreover, when d=1, (4) 

is written by

(m-i+1)Ni-1=h(ƒÓiG;1)Ni. (5)

From (5) we obtain

(6)

which implies that if h(ƒÓiG;1)•†h(ƒÓiG;1) then N2i>

Ni-1Ni+1. Therefore, proving h(ƒÓiG;1)•†h(ƒÓiG;d) for all 

i(m>i•†n) is more hard than proving log-concavity on the 

sequence Nn-1, Nn,•c, Nm, in general.

An edge of G is said to be a non-bridge edge if it is 

not a bridge of G. By definition, N(Gir; i -1) and h(ƒÓiG;d) 

respectively expresses the number of non-bridge edges of G. 

and the average value of the numbers of non-bridge edges 

for Ni connected spanning i-edge subgraphs Gir,s of G. In 

the following lemma, we give an inequality on h(ƒÓiG;1).

Lemma 2: For a multigraph G and an integer i(m•†i•†n), 

i•†h(ƒÓiG;1)•†i-n+2.

Proof. It is clear that the number of (i-1)-edge subgraphs 

obtained by removing one edge from an i-edge graph is 

equal to at most i. Therefore, we obtain i•†N(Gir;i-1) 

for every Gir E which implies that i ? h(ƒÓiG;1) by defi-

nition.

On the other hand, we can see that the number of con-

nected spanning subgraphs obtained by removing one edge 

from a connceted i-edge graph is equal to at least i-n+2, 

since i•†n. Thus, N(Gr; i-1)•†i-n+2 for every Gir 

equivalently, h(ƒÓiG;d)•†i-n+2 by definition.

As straightforward results from lemma 2 and (5), we 

obtain two inequalities:
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iNi•†(m-i+1)Ni-1, (7)

which is well known as Sperner's inequality (see, e.g., [5]), 

and

(m-i+1)Ni-1•†(i-n+2)Ni. (8)

For a simple graph, however, it has been shown in [3] that 

the coefficient of Ni in the right-hand side of (8) is i-n+

[3+•ã9+8(i-n)/2], which is strictly greater than i-n+2.

3. The Characterizations of Multigraphs with h(ƒÓiG;1) 

=i-n+2, and with h(ƒÓiG;1) Nearly Equal to i-n+2, 

Respectively

In this section, we concentrate on investigating the charac-

terizations of multigraphs for which h(ƒÓiG;1)=i-n+2 for 

all m•†i•†n, and h(ƒÓiG;1) nearly equals to i-n+2 for a 

fixed i, respectively.

A multigraph is said to be simplified, if it has one 

pair of vertices with m-n+2 multiple edges. The multi-

graph shown in Fig. 1 (a) is simplified, while that shown in 

Fig. 1 (b) is not simplified. Note that the underlying graph 

of a simplified multigraph is a spanning tree, since a multi-

graph considered here is connected.

Lemma 3: If G is a simplified multigraph, then

(m-i+1)Ni-1=(i-n+2)Ni

forallm•†i•†n.

Proof. Since G is simplified, it is easy to see that for all 

m•†i•†n-1

which shows the validity of this lemma.

In fact, lemma 3 asserts that h(ƒÓiG;1)=i-n+2 for all 

m•†i•†n by (5). Indeed, it is easily verified that N(Gir; i-

1)=i-n+2 for every Gir E ƒÓiG when G is simplified. For 

i•†n, we can observe that every Gir E ƒÓiG has at most n-2 

bridges. This means that the number of connected spanning 

(i-1)-edge subgraphs of Gir E ƒÓiG is at least i-n+2, 

equivalently,

N(Gir,i-1)•†i-n+2.

We can also observe that if G is not simplified, then 

there is at least one connected spanning i-edge subgraph Gir 

so that N(Gir; i-1)>(i-n+2) for each i(m•†i•†n+1), 

equivalently, h(ƒÓiG;1)>(i-n+2). Hence the following 

theorem has been obtained by lemma 3 and (5).

(a) Simplified (b) Not simplified

Fig. 1 Two multigraphs whose underlying graphs are trees.

Theorem 1: For a multigraph G, h(ƒÓiG;1)=i-n+2 for 

all m•†i•†n+1 iff G is simplified.

When i=n, we shall show that h(ƒÓnG;1)= 2 holds for a 

multigraph G whose underlying graph is a tree. This means 

that the condition that, G is simplified is not necessary for G 

to satisfy h(ƒÓiG;1)=2, since a multigraph whose underlying 

graph is a tree may not be simplified, in general. In order to 

characterize the multigraphs with h(ƒÓiG;1)=2, we need 

new notations.

Recall that ƒÓiG stands for the set of connected spanning 

i-edge subgraphs of G. Let ƒÓiG(k) ƒÓiG for an integer k(i•†

k•†i-n+2) denote the set of subgraphs with i-k bridges. 

See Fig. 2.

In particular, ƒÓiG(i) where k=i is the set of connected 

spanning i-edge subgraphs with no bridge, and cI (i-n+2) 

where k=i-n+2 is the set of connected spanning i-edge 

subgraphs with n-2 bridges. Evidently, ƒÓiG is partitioned 

into subsets ƒÓiG(i-n+2), ƒÓiG(i-n+3),•c ƒÓiG(i). Let, 

further, N(k) =|ƒÓiG;d|(k)| for i•†k•†i-n+2. Then,

(9)

Since N(Gir; i-1)=k for every Gir<ƒÓiG(k)

(10)

Thus, h(ƒÓiG;1) is rewritten as follows:

(11)

where

(12)

(a) A multigraph G 
with n=6, m=17.

(b) A subgraph of ƒÓ9G(7) 
for G shown in (a).

(c) A subgraph of ƒÓ9G(9) 
for G shown in (a).

(d) A subgraph of ƒÓ9G(5) 
for G shown in (a).

Fig. 2 Illustrating subgraphs of ƒÓiG (k).
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Clearly, h(ƒÓiG;1) is completely determined byƒÀi . From 

lemma 2, we immediately obtain n- 2•†ƒÀ3•†0. When 

i=n, by (11), (12),

(13)

It is not hard to verify that, whenever G has at least one 

simple cycle with length k•†3, it contains at least one con-

nected spanning n-edge subgraph with at most n-k bridges. 

This means that Nn(k)>0 for some k•†3, equivalently, 

h(ƒÓiG;1)>2 by (13). Hence the following lemma 4 holds. 

Lemma 4: If G contains at least one simple cycle with 

length at least 3, then h(ƒÓiG;1)>2, equivalently, 

Nn/(m-n+1)Nn-1<2 by (5) with i=n.

Theorem 2: For a multigraph G, h(ƒÓiG;1)=2 if the un-

derlying graph of G is a tree.

Proof. Necessity. It is trivial by lemma 4.

Sufficiency. Let G be a multigraph whose underlying graph 

is a tree. Then the length k of every cycle in G must be equal 

to 2. Therefore, ƒ°nk3(k-2)N(k)=0, which is equivalent 

to h(ƒÓiG;1)=2by(13).

In the following, we shall discuss the characterization 

of multigraphs for which h(ƒÓiG;1) nearly equals to i-n+2, 

namely, ƒÀi nearly equals to 0 for a fixed i.

Let Euv denote the set of multiple edges between a pair 

e=(u, v) of vertices in G. Let G -Euv and, for short, Ge 

denote the graph obtained by deleting all edges of EuV. See 

Fig. 3 (a).

We easily see that every Gir E ƒÓiG contains at most i-

n+2 edges in Euv, but may contain no edge in Euv. Clearly, 

if Gir E ƒÓiG(k) has i-n+2 edges in Euv, then it must contain 

n-2 bridges, which implies that k=i-n+2. In other 

words, if k>i-n+2, then Gir E ƒÓiG (k) contains at most 

i-n+1 edges in Euv.

For an integer t(i-n+2•†t•†1), we denote by 

ƒÓi-tGe (k; et) the set of spanning (i-t)-edge subgraphs of Ge, 

from each of which at least one connected spanning i-edge 

subgraph with i-k bridges is obtained by adding t edges of 

Euv. See Fig. 3 (b).

It is clear by definition that exactly Euvt connected 

spanning i-edge subgraphs of G are obtained from every 

Ge E ƒÓi-tGe(k; e)

Let ƒÓi-0Ge(k; e0) be the set of subgraphs of ƒÓiG(k) with no 

edge in Euv, and let NGei-t(k; et) =|ƒÓiGe|(k; et)|for i-n+2•†

t•†0.

When i•†k•†i-n+3, each subgraph of ƒÓiG(k) has

(a) Ge of G shown in Fig.2 (a).
(b) A subgraph of ƒÓ9-2Ge(7; e2) 

for G shown in Fig. 2 (a).

Fig. 3 Illustration of Ge and a subgraph of ƒÓi-tGe(k; et).

at most n-3 bridges by definition. This means that each 

subgraph of ƒÓiG (k) contains at least n-1 edges not in Euv , 

equivalently, at most i-n+1 edges in Euv, Then, for i•†

k•†i-n+3,

(14)

When k=i-n+2, each subgraph of ƒÓiG(i-n+2) has exactly 

n-2 bridges by definition. This means that if each subgraph 

of ƒÓiG (i-n+2) has some edges of Euv then it contains either 

only one edge, or exactly i-n+2 edges of Euv. Therefore, 

we obtain NGr(i-n+2; et)=0 for i-n +3•†t•†2. Note 

that each subgraph of ƒÓiG (i-n+2) might contain no edge 

of Euv. Then, for k=i-n+2

(15)

By definition, the value of NGei-t(k; et) is independent of |Euv| 

Then, ƒ°ik=i-n+3[k-(i-n+2)]Ni(k)/(|Euv|i-n+2) for a fixed i is a decreasing func-

tion in |Euv| by (14), which implies that

Moreover, it is verified that ƒ°ik=i-n+2Ni(k)/(|Euv|i-n+2) is at least NGen-2(i-n+

2; ei-n+2) by (14), (15). Consequently, we obtain an interest-

ing fact that the value of ƒÀi is reduced by adding a number 

of edges into a fixed pair e=(u, v) of vertices. 

Lemma 5: Suppose that G is a multigraph with (m-n)Nn/2Nn+1 

2. Then we can obtain a multigraph G' by adding some 

multiple edges between a fixed pair e=(u, v) of vertices 

in G so that (m-n)N'n/2N'n+1<2, where Nn', N'n+1 are respectively 

defined to correspond to G'.

Proof. Let E'uv be the set of edges between the pair e=(u, v) 

of vertices in G'. See Fig. 4.

By (5), (11), (12) with i=n+1, it is clear that if 

ƒÀ'n+1=ƒ°n+1k=4(k-3)N'n+1(k)/ƒ°n+1k=3N'n+1(k)<1then (m-n)N'n/2N'n+1<2
, where N'n+1(k) is 

defined to correspond to G'.

Fig. 4 Adding new multiple edges in a fixed pair of vertices.
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N'n+1(3) is the number of connected spanning (n+1)-
edge subgraphs of G', each of which contains n-2 bridges. 
A connected spanning (n+1)-edge subgraph with n-2 
bridges contains t edges of E'uv, where t=3, 1, 0. By (15) 
with i=n+1,

By(14)withi=n+1,

By solving ƒÀn+1 1, we obtain

Since the value of NGen+1-t (k; et) is independent of |E'uv|, the 

right-hand side of the above formula is a decreasing function 

in |E'uv|. Consequently, we can obtain some integer r so that 

if |E'uv|•†r then the above formula holds. This means that by 

adding |E'uv|-|Euv| new multiple edges between the pair e=

(u, v) of vertices we can obtain G' so that (m-n)N'n/2N'n+1<2.

More generally, we can similarily prove the following 

interesting result by employing the same method as that of 

proving lemma 5.

Theorem 3: Given a multigraph G with ƒÀi>1 for a fixed 

i(•†n). Then we can obtain a multigraph G' by adding a 

number of multiple edges into a fixed pair e=(u, v) of ver-

tices in G so that ƒÀ'i s 1, where ƒÀ'i corresponds to that of 

G'.

4. Inequalities on Nn-1, Nn, Nn+1

Lemmas 4 and 5 tell us that there are some multigraphs so 

that Nn/(m-n+1)Nn-1<1/2 and (m-n)Nn/2Nn+1<2, which implies that the 
validity of the following inequality (16) is not necessarily 
obvious. In this section, we shall prove it to be true for all
multigraphs as well.

(16)

From (11) with i=n, n+1 we have

h(ƒ³nG;1)=2+ƒÀn, (17)

h(ƒ³n+1G;1)=3+ƒÀn+1, (18)

which implies that lemma 6 holds.

Lemma 6: Proving (16) is equivalent to showing

2βn+1+β πβn+1≧ βη (19)

Proof. By (5), (17), (18), both and

hold. We rewrite (16) as follows:

which is equivalent to (19), as required.
In order to show the validity of (19), we further in-

troduce notations. Let m(e) denote the number of multiple 
edges between a pair e=(u, v) of vertices, and emax=(u, v) 
denote a pair of vertices with the maximum number of 
multiple edges among all pairs of vertices in G. Clearly, 
Nn+1(3)>0 if m(emax) 3. We give lemma 7 to express a 
basic relation between N(2) and N+1(3).

Lemma 7: Let emax=(u, v) be a vertex pair with the max-
imum number of multiple edges in G. Then

(20)

In addition, (20) holds with equality if either of the follow-

ing conditions holds.

(1) m(emax)•…2;

(ii) m(emax)>2, and the number of multiple edges between 

every pair of vertices, except for the vertex pairs having 

no edge, is identical.

Proof. When m(emax)=1, both Nn(2)=0 and Nn+1(3)=0 

hold by definition. Clearly, (20) holds with equality. In this 

case, in fact, G is a simple graph.

When m(emax)=2, Nn+1(3)=0 by definition. Thus, 

(20) also holds with equality.

When m(emax)•†3, we have Nn+1(3)>0 by definition. 

Since every subgraph of ƒ³n+1G(3) must be a tree with three 

multiple edges between only one pair of vertices, we obtain

where t(G; e) denotes the number of subgraphs, from each 

of which a spanning tree of G is obtained by adding an edge 

between a pair e=(u, v) of vertices u, v, and E denotes the 

edge set of underlying graph of G. Analogously, since every 

subgraph of ƒ³nG(2) must be a tree with two multiple edges 

between only one pair of vertices, we also have

Therefore, (20) is derived by the definition of emax. In ad-
dition, it is not difficult to see that (20) holds with equality 
if G has the same number of multiple edges between every 

pair of vertices, except for the vertex pairs having no edge.

Given a pair e=(u, v) of vertices in G, we define new 

notations for an integer l(n•†l•†2) as follows:
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△l(e):the subset of ΦnG(l), each of which has at least one 

edge of Euv but not as its bridge.

△l(e):the subset ofΦnG(l), each of which has exactly one

edge of Euv as its bridge。 Note that |△n(e)|=0

△l(e):the subset ofΦnG(l), each of which has no edge in Euv.

ΦnG(l)is partitioned into three subsets△l(e),△l(e),△l(e). Let

δl(e)=|△l(e)|where e=e, e, e, then

Nn(l)=δl(e)+δl(e)+δl(e). (21)

Recall thatΦn+1G+1(t)(n+1≧t≧3)stands for the set of

connected spanning(n+1)-edge subgraphs with n+1-t

bridges. For a pair e=(u, v)of vertices and an integer t(n+

1≧t≧4), we define

Θt(e):the subset ofΦn+1G(t),each of which has two edges of 

Euv but not as its edge-cut.

Θt(e):the subset ofΦn+1G(t), each of which has two edges of 

Euv as its edge-cut.

Θt(e): the subset ofΦn+1Ga(t), each of which has one edge of 

Euv but not as its bridge.

Θt(e): the subset of Φn+1G(t), each of which has one edge of 

Euv as its bridge.

Θt(e):the subset of Φn+1G(t), each of which has no edge in 

Euv

Φn+1G(t)is also partitioned into five subsets Θt(e), Θt(e), 

Θt(e), Θt(e), Θt(ve).Let θt(e)=|Θt(e)| where e=e, e, e, e, e, 

then

Nn+1(t)=θt(e)+θt(e)+θt(e)+θt(e)+θt(e)

(22)

The following lemmas state relations between ƒÂl() and ƒÆ

t(), which are also applied to prove (19).

Lemma 8: Let e=(u, v) be a pair of vertices with multiple 

edges in G. Then,

θl+1(e)=m(e)δl2(e)for n≧1≧3; (23)

θl+2(e)=m(e)(e)for n-1≧l≧3. (24)

Proof. By definition, it is clear that every subgraph of

Θl+l(e)is obtained from some G'∈ Δl(e)by adding one

edge Of Eu, not in G' , and that every subgraph ofΔl(e)is

also obtained from some G"∈ Θl+1(e)by deleting one edge 

of Euv in G". See Fig. 5.

Let G'∈ Δl(e)and G"∈ Θl+1(e), where G/and G" are

(a) A subgraph G' of ƒ¢l(e) 

with a cycle C1 of length l.

(b) A subgraph G" of ƒ¦l+1(e) 

correspond ing to G' of (a).

Fig. 5 Illustration of a relation between ƒ¦l+t(e) and ƒ¢l(e).

obtained from each other by deleting and adding one edge 
of EuV. Clearly, the two subgraphs, respectively, obtained 

from G' and G" by deleting edges of Euv in G' and G", are 

the same tree. Consequently,

θl+1(e)=δl(e)

Similarly, (24) is proved by the same method.

Lemma 9; Given a pair e=(u, v) of vertices with multiple 

edges in G, and given a sequence al's where n•†l•†3 and 

0<a3•…a4•…•c•…an, then

n+=4 a1-1θ1(e)≧m(e)nlδl(e).

Proof. By definition, the subgraph obtained by adding one 

edge of Euv to any subgraph of ƒ¢l(e) must be in ƒ¦l+k(e) 

where k•†1. Furthermore, the two subgraphs, respectively, 

obtained from different two subgraphs of ƒ¢l(e) by adding 

one edge of Euv to them, is different. See Fig. 6.

Thus, for n•†k•†3, we obtain

n+1θl(e)≧m(e)δl(e).

Note that 0<a3≦a4≦ … ≦an.Let al+1=al+El+1 for

n-1≧1≧3, where ∈l+1≧0. For convenience, let ∈3=a3. 

Then al=Σlk=3 ∈l. As ∈l≧0, from the above inequality we 

obtain

∈kn=k+1θl(e)≧m(el(e).

By getting together the above inequalities obtained by 

putting k=3, 4,…,n, this lemma is valid.

Let al=1-2 for l=3, 4,…,n, then, the inequality of 

lemma 9 is rewritten as follows:

n4(l-3)θl(e)≧m(e)n, (25)

which is employed to prove the following lemma.

Lemma 10:Let e=(u, v)be a pair of vertices in a multi-

graph G. Then,

t-3)Nn+1(t)≧3(1-2n(l).

(a) A subgraph of ƒ¢l(e) 
with a cycle Cl of length l.

(b) A subgraph of ƒ¦l+k(e) 

corresponding to that of (a).

Fig. 6 Illustration of a relation between ƒ¦l+k(e) and ƒ¢l(e).
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Proof. The above inequality is derived as follows:

(by setting t=l+1, l+2, l, respectively)

as requirea.

Lemma 11: For a multigraph G,

 (3)

Proof. Let emax=(u, v) be a pair of vertices with the 

maximum number of multiple edges. If m(emax)<3 then 

Nn+1(3)=0. Clearly, the assertation is true.

Now, we prove the case of m(emax)•†3. Note that 

n•†0 by definiton. Thus,

(26)

Therefore, we have

which completes the proof of this lemma.
Now we can prove the following desired result.

Lemma 12: For a multigraph G,

2ƒÀn+i+ƒÀnƒÀn+1•†ƒÀn

In addition, it holds with equality if G is simplified. 

Proof. When G is simplified, both fin=0 and ƒÀn+1=0 by 

definition, which means that 2ƒÀn+i+ƒÀnƒÀn+i=ƒÀn.

When G is not simplified,ƒ°n+1t=4 3)Nn+1(t)>0 by 

definition. From lemma 11,

which implies that we obtain

By definition, 2ƒÀn+1+ƒÀnƒÀn+1>ƒÀn is equivalent to the above 

inequality. Hence, 2ƒÀn+i+ƒÀnƒÀn+1>ƒÀn.

Theorem 4: For a multigraph G,

In addition, this formula holds with equality if G is a sim-

plified multigraph.

Proof. It is trivial by lemmas 6 and 12.
Before closing this section, we show a sufficient condi-

tion for a multigraph with Nn>Nn-1Nn+1.

By (6), it is clear that if (m-n+1)h(ƒ³n+1G;1)/(m-n)h(ƒ³nG;1)•†1 then 

N2n/Nn-1Nn+1•†1 Since h(ƒ³n+1G; 1)=3+ƒÀn+1 and h(ƒ³nG)=

2+ƒÀn, it is obvious that if ƒÀn•…1 then N2n>Nn-1Nn+1. It 

is clear by definition that if G has simple cycles with length 

at most 3, then h(ƒ³nG;1)•…3, equivalently, ƒÀs•…1. Fig-

ure 7 (a) illustrates an instance of multigraphs within s 1. 

The following theorem gives a sufficient condition stronger 

than ƒÀn•…1.

Theorem 5: Let e=(u, v) be a vertex pair having multiple 

edges in G. If m(e) 2(13(3+x
1j) + 1 then Nn>Nn-1 Nn+1. 

Proof. When ƒÀn•…1, it is true by the above argument. 

Nextly, assume that ƒÀn>1, and prove this lemma.

By lemma 10, and formulas (9), (12) with i=n, n+1, 

we obtain 

Nn+1ƒÀn+1•†m(e)-1/2 NnƒÀn

(a) (b)

Fig. 7 Two instances of multigraphs with N2n>Nn-1Nn+1



CHENG and MASUYAMA: INEQUALITIES ON THE NUMBER OF CONNECTED SPANNING SUBGRAPHS IN A MULTIGRAPH 

185

which leads to the following formula by (5), (11) with i=
n+1.

Asn>1, from the above inequality, we have

By (6), (17), (18), if 1 then Nn>NN. Thus, 

from •†1, we obtain m(e)•†. 

This means that if m(1+1 then ƒÀ/ƒÀn-1•†1.

Since 2/ (m-n)m-n)ƒÀn/(3+ƒÀn+1), we can say by theorem 

5 that N2>NN for such a multigraph with at least 

[(m-n)]+1 multiple edges between some pair of vertices. 

Figure 7 (b) illustrates an instance of multigraphs with at 

least (m-n)1+1 multiple edges between a pair of vertices.

5. Concluding Remarks

In this paper, for an n-vertex m-edge multigraph G and an 

integer i(m•†i•†n), by introducing the notation h(ƒ³G;1) 

to represent the average value of the numbers of non-bridge 

edges for Ni connected spanning i-edge subgraphs of G, we 

have established (m-i+1)Ni-1=h(ƒ³iG;1)Ni to exploit a 

relation between h(ƒ³iG;1) and Ni. This means that proving 

log-concavity on Nn-1, Nn,•c, Nm is reducible to proving 

h(ƒ³i+1G;1)•†h(ƒ³iG,1) for all i(m>i•†n).

We have further obtained h(ƒ³iG;1)•†i-n+2, equiva-

lently, (m-i+1)Ni-1•†(i-n+2)Ni for all i(m•†i•†n). 

In particular, we have shown the characterizations of multi-

graphs, respectively, where h(ƒ³iG; 1)=i-n+2 for each 

i(m•†i•†n), and h(ƒ³iG;1) nearly equals to i-n+2 for a fixed 

i. Since there are multigraphs where h(ƒ³iG;1)=i-n+2, 

equivalently, (m-i+1)Ni-1=(i-n+2)Ni for each i(m•†i•†

n), the inequalities are said to be fundamental. Moreover, we 

have shown that (m-i+1)N-1>(i-n+Ni for 

all multigraphs does not hold, in general, which essentially 

points out a difference between simple graphs and multi-

graphs for inequalities of Ni-1, Nti.

The inequality (+•†2 for all multi-

graphs has been proved. It has been shown that +

=2(m-n+1)Nn-1/ iff G is simplified. Hence we can also call 

it a fundamental inequality on Nn-1, Nn, Nn+1. In fact, the 

inequality is rewritten as follows:

which implies that (m-n)Nn•†3Nn+1, namely, (m-i+

1)NN-1; (i-n+2)Ni of the case i=n+1, has been improved 

since 4/1+(n-m)(m-n+1)Nn-1Nn+1•†3 by (m-i+1)N-1•†(i-n+2)Ni

where i=n and i=n+1, respectively.

Moreover, by proving a sufficient condition by which 

h(ƒ³n+1G;1)•†h(ƒ³nG;1), we have shown that N2n>Nn-1Nn+1 

if G contains at least +1 multiple edges in a 

pair of vertices. In particular, it is easy to verify that if a 

multigraph G contains 2+1 multiple edges be-

tween some pair of vertices, or, no simple cycle with length 

more than 4, it satisfies the sufficient condition. Note that, in 

general, proving Nn•† N1N, however, is also remained 

as an interesting subject.

Since there exits a relation between h(ƒ³iG;1) and Ni, 

by further investigating properties on h(ƒ³iG;1), we may 

get more useful information to solve some open problems 

such as the log-concavity conjecture on Nn-1, Nn,•c, Nm, 

or, to find an efficient algorithm for approximately comput-

ing Nn-1, Nn,•c, Nm.
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