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SUMMARY In this paper, we present a clean and simple formulation 

of survey propagation (SP) for constraint-satisfaction problems as •gproba-

bilistic token passing•h. The result shows the importance of extending vari-

able alphabets to their power sets in designing SP algorithms.

key words: constraint-satisfaction problem, survey propagation, graph 

coloring, message passing

1. Introduction 

Survey propagation (SP) [1] is a heuristic message-passing 

algorithm proposed recently for solving the classical NP-

complete k-SAT problems. In [1], SP was shown as the first 

efficient solver for these problems even in the well-known 

hard regime. This celebrated discovery has since motivated 

the application of SP to other hard constraint-satisfaction 

problems (CSPs), such as the graph-coloring (or q-COL) 

problems [2], as well as problems in source coding [3] and 

channel coding [4], where great successes are demonstrated.

Since its discovery, much research attention has been 

attracted to a deeper understanding of the algorithmic na-

ture of SP. In the context of k-SAT problems, it has been 

shown and perhaps widely accepted that SP may be inter-

preted intuitively as propagating •gwarnings•h in a probabilis-

tic manner on the factor-graph representation of the problem 

instance [5]. This understanding allows one to craft the SP 

algorithm for some other CSPs, including the coloring prob-

lems.

As is derived from statistical physics, SP in most litera-

ture has been formulated using the language of physics. Al-

though for k-SAT problems, SP has been shown to be an in-

stance of the belief propagation (BP) algorithm [6]-[8] well 

known in the communities of error control coding and ar-

tificial intelligence, the connection between SP and BP for 

gernral CSPs is yet to be fully clarified. Additionally, lack-

ing simple mathematical formulations in the existing litera-

ture makes SP even harder for the wider community of in-

formation scientists. In this paper, we present a clean and 

simple formulation of SP for general CSPs, where SP is un-

derstood as •gprobabilistic token passing•h. Here a •gtoken•h 

has a precise mathematical definition, namely, a subset of
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the variable alphabet. This result asserts that extending vari-

able alphabets to their power sets plays an essential role in 

designing SP algorithms.

In this paper, we present such an interpretation of SP 

for arbitrary CSPs, where the graph-coloring problem is 

taken as a running example.

2. Constraint-Satisfaction Problems and SP

Let V be a finite set indexing a set of variables {xv : v •¸ V}, 

where each variable xv takes on values from some setxv. For 

any subset U •º V, we will use XU to denote the variable set 

{xv : v •¸ U}. We note that depending on the context, XU may 

also be interpreted as a configuration in XU := ƒ®v•¸UXv.

Let C be another finite set indexing a set of constraints 

{ƒ¡c : c •¸ C}, the form of which will be specified subse-

quently. For each c •¸ C, let V(c) be some subset of V, index-

ing the set of variables constrained by ƒ¡c. Symmetrically, 

for each v •¸ V, we will denote the set {c : v •¸ V(c)} by C(v), 

namely, C(v) indexes the set of all constraints involving vari-

able xv. Since each constraint ƒ¡c applies only on variables 

xV(c), we will identify constraint ƒ¡c as a subset of the Carte-

sian product XV(c). Thus a constraint-satisfaction problem 

(CSP) may be specified by (V, C, {Xv : v •¸ V}, {V(c) : c •¸ 

C}, {ƒ¡c : c •¸ C}), with the objective of finding a solution for 

equation

Πc∈C[XV(c)∈ Γc]=1. (1)

Here the notation [P], for any Boolean proposition P, is the 

Iverson's convention [9], namely, evaluates to 1 if P, and 

to 0 otherwise. Clearly, (1) can be represented by a factor 

graph [9], with variable vertices indexed by V and function 

vertices indexed by C.

Using the formulation of (1), the graph-coloring prob-

lem, or q-COL problem, on an undirected graph (ƒ¢, ƒ¬) with 

vertex set ƒ¢ and edge set (where each edge in ƒ¬ connect-

ing vertices a and b in ƒ¢ is identified with set {a, b}) is de-

fi ned by V :=ƒ¢, C := ƒ¬ xv := {1, 2, •c, q}, V(c) := c, 

ƒ¡c := XV(c) / {(r, r) : r=1, •c, q}.

SP has been developed for several classes of CSPs as 

a message-passing algorithm on the factor graph represent-

ing the problem. For those problems, messages are passed 

between variable vertices and constraint vertices, where the 

message passed from or to a variable xv is a function on set 

xv U {*}. The addition of the •gjoker•h symbol (*) to vari-

able alphabet xv plays an important role in SP for the stud-
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ied problems, where xv equal to the joker indicates that it is 

free to take any value from its original alphabet, and that xv 

equal to a non joker symbol indicates that it is constrained 

to taking the designated value. In hard k-SAT problems, it is 

shown that the •gjoker•h symbol connects the satisfying con-

fi gurations, which would otherwise form a large number of 

disconnected •gclusters•h, making local search strategies fail.

For 3-COL problems, each constraint vertex has de-

gree 2. This allows the combination of the message passed 

from variable xu to a neighboring constraint, say ƒ¡c, with 

the message passed from constraint ƒ¡c to the other neighbor, 

say xv, of ƒ¡c. As a consequence, ƒ¡c may be suppressed in 

the factor graph, and messages are directly passed between 

variable vertices that are distance 2 apart (or equivalently, 

messages are passed on graph (ƒ¢, ƒ¬)). Following [2], a com-

pact version of SP message-passing rule is given as follows, 

where the message passed from variable xu to variable xv is 

a quadruplet of real numbers (ƒÅ1u•¨v, ƒÅ1u•¨v, ƒÅ3u•¨v, ƒÅ*u•¨v).

 (2)

forevery r ∈ {1, 2, 3}, where N(u) is the set {v : v∈ V, {u, v} ∈

Π}
, Π ωis the short form of Π ω∈N(u)＼{U} and Σp is the short

form of Σp=1 ,2,3; and

η*u→v=1-ΣpηPu→v (3)

The SP messages are usually initialized randomly. 

Upon convergence, SP computes a •gsummary message•h at 

each variable xv, which may be interpreted as the proba-

bility or •gbias•h of each symbol in xv U {*}. A decimation 

procedure is usually followed, where a variable is fixed to 

a symbol in xv if it is highly •gbiased•h to this symbol. After 

the decimation procedure, the problem is then simplified and 

SP is applied again. This process iterates until the reduced 

problem is simple enough for a local search algorithm.

3. SP as Probabilistic Token Passing

For each variable xv in a given problem, we define an

extended alphabet x*v as the Power set of xv (i.e., x*v =

{a : a ⊆ xv }). For 3-COL problems, x*v is then the set

{0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} for every v. For 

each non-empty element t ofx*v, we also write it as a

string containing the elements of t. For example, we may

write {1, 2} as 12. For any subset U ∈ V, a configuration

yU := {yv ∈ x*v :v∈ U} is referred to as a rectangle on U

and understood as the Cartesian product Πv∈U yv. We note

that if any component yv in the Cartesian product is 0, then

rectangle ｙU is 0. We denote by x*u the set of all rectahgles

on U, and clearly x*u = Πv∈ux*v.

For any U and S with S ⊂ U ⊆ V and any Ω ⊆_XU, we 

denote Ω ｜s:={α ∈ xs: (α, β)∈ Ωfor some β ∈xU＼S}, that

is, Ω|s is the projection of Ωon S.

Given an index v∈ V and a configuration yv(c)＼{v},

we define Fc(yv(c)＼{v}) := ((yv(c)＼{v}×xv)∩ Γc)|{
v}. That is, 

Fc(yv(c)＼{v}) is the largest subset of xv in which every ele-

ment, when paired with some sequence in xv(c)＼{v}, makes

constraint Γc satisfied.

Given a CSP with alphabets extended, we define the

deterministic tokenpassing algorithm on the factor-graph

representation of the CSP as follows. Tokens are passed

along the edges of the factor graph and the token passed

from and to each variable xv is an element of x*v. For a pair

of neighboring vertices Xv andΓc on the factor graph, the to-

ken tv→c passed from variable xv to constraint Γc depehds on

all incoming tokens passed to xv except that passed from Γc. 

Similarly, the token tc→v passed from constraint Γc to vari-

able xv depends on all incoming tokens passed to Γc except

that passed from xv. The token passing rules are given as

follows.

(4) 

(5)

This algorithm can be simply extended to the proba-

bilistic token passing (PTP) algorithm on the same factor 

graph, where token t passed along each edge is treated as 

a random variable not allowed to be 0. That is, in PTP, in-

stead of passing token t on an edge, the passed message is 

the distribution of t conditioned on t •‚ 0. Specifically, it 

is assumed that 1) all tokens passed to a given vertex are 

independent; 2) the distribution of each incoming token is 

the message associated with the token; 3) the distribution 

of an outgoing token is induced by the distributions of the 

incoming tokens where induction is according to functional 

dependency of the outgoing token on the incoming tokens 

specified in (4) and (5).

More precisely, the PTP message-passing rule is given 

as follows. We will use ƒÉv•¨c to denote the message passed 

from a variable xv to a constraint ƒ¡c, and use pc•¨v to denote 

the message passed from a constraint ƒ¡c to a variable xv.

(6)

 (7)

We note that in (6) and (7), tv→c and tc→v range over all ele-

ments of x*v except 0.

On 3-COL problems, PTP, like SP, can be made more

compact. However, instead of passing messages between

variable vertices, the PTP messages more naturally reduce

to messages passed between constraint vertices that are dis-

tance 2 apart.-Note that for any two constraint vertices Γc
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and ƒ¡d, there is a unique variable vertex xv, for which ver-

tices ƒ¡c, xv, and ƒ¡d form a path of length 2 from ƒ¡c to ƒ¡d. 

We then use M(c, d) to denote the index, v, of the unique 

variable xv between ƒ¡c and ƒ¡d on the path. We now denote 

the message passed from constraint ƒ¡c to variable xM(c, d) by 

p*c•¨d. Then PTP-message update rules for 3-COL problems 

can be completely described, as in the following lemma, by 

the update of P*c•¨d for every pair of constraint vertices ƒ¡c 

and ƒ¡d that are distance 2 apart.

Lemma 1: The support of ƒÏ*c•¨d is {12, 13, 23, 123}, and 

when using {i, j, k} to represent the three distinct element 

of {1, 2, 3}

(8)

 (9)

where N(c) = {b : c∩b ≠ 0, b∈ Ξ}, and Z is a normalization

constant such that Σtρ*c→d(t) is 1.

Matching the equations in this lemma with (2) and (3), 

the equivalence between SP and PTP rules for 3-COL prob-

lems is evident, as formulated in the following theorem.

Theorem 1: The correspondence between update Eqs. (8) 

and (9) and Eqs. (2) and (3) is: P*c→d(ij) = ηku→v, and

ρ*c→d(123) = η*u→v, where v = M(c, d)and u is the other 

neighbor of c besides M(c, d).

We note that the equivalence between SP and PTP on

k-SAT problems can also be shown similarly.

4. Conclusion

In this paper, we present a clean and simple formulation of 

SP for arbitrary constraint-satisfaction problems in terms of 

•g probabilistic token passing•h, where we stress the role of 

extending variable alphabets.

We note that not only unifying SP algorithms for pre-

viously studied problems, the PTP algorithm is in fact more 

general. Specifically note that in SP, alphabet xv is extended 

to xv U {*}, but in PTP, xv is extended to its power set x*v. 

In other words, instead of adding one •gjoker•h symbol (*) to 

the original alphabet in SP, we add many •gjokers•h in PTP, 

where a •gjoker•h is a non-singleton subset of the original al-

phabet. This makes PTP more general than SP especially 

for problems involving non-binary variables. As such, PTP 

should be regarded as a general principle for constructing 

SP algorithms.

References

[1] M. Mezard, G. Parisi, and R. Zecchina, •gAnalytic and algorithmic 

solution of random satisfiability problems,•h Science, no.297, pp. 812-

815, 2002.

[2] A. Braunstein, R. Mulet,. A. Pagnani, M. Weigt, and R. Zecchina, 

•g Polynomial iterative algorithms for coloring and analyzing random 

graphs,•h Phys. Rev. E, vol.68, no.3, 036702, 2003.

[3] M.J. Wainwright and E. Maneva,•gLossy source encoding via 

message-passing and decimation over generalized codewords of 

LDGM codes,•h Proc. IEEE Int. Symp. Inform. Theory, pp. 1493-1497, 

Adelaide, Australia, 2005.

[4] W. Yu and M. Aleksic, •gCoding for the blackwell channel: A sur-

vey propagation approach,•h Proc. IEEE Int. Symp. Inform. Theory, 

pp. 1583-1587, Adelaide, Australia, 2005.

[5] A. Brauntein, M. Mezard, M. Weight, and R. Zecchina, •gConstraint 

satisfaction by survey propagation,•h in Computational Complexity 

and Statistical Physics, ed. A. Percus, G. Istrate, and C. Moore, 

pp. 107-124, Oxford University Press, 2003.

[6] A. Braunstein and R. Zeccchina, •gSurvey propagation as local equi-

librium equations,•h J. Stat. Mech., issue 06, p. 06007, June 2004.

[7] E. Maneva, E. Mossel, and M.J. Wainwright, •gA new look at survey 

propagation and its generalizations,•h SODA, pp. 1089-1098, 2005.

[8] R. Tu, Y. Mao, and J. Zhao, •gOn generalized survey propagation: 

Normal realization and sum-product interpretation,•h Proc. IEEE Int. 

Symp. Inform. Theory, pp. 2042-2046, 2006.

[9] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, •gFactor graphs and 

the sum-product algorithm,•h IEEE Trans. Inf. Theory, vol.47, no.2, 

pp. 498-519, 2001.


