
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.3 MARCH 2008 

713

PAPER Special Section on Test and Verification of VLSIs

An Architecture of Embedded Decompressor with 

Reconnigurability for Test Compression

Hideyuki ICHIHARA•õa), Member, Tomoyuki SAIKI•õ*, Nonmember, and Tomoo INOUE•õb), Member

SUMMARY Test compression/decompression scheme for reducing 
the test application time and memory requirement of an LSI tester has been 
proposed. In the scheme, the employed coding algorithms are tailored to 
a given test data, so that the tailored coding algorithm can highly com-
press the test data. However, these methods have some drawbacks, e.g., 
the coding algorithm is ineffective in extra test data except for the given 
test data. In this paper, we introduce an embedded decompressor that is re 
configurable according to coding algorithms and given test data. Its recon-
figurability can overcome the drawbacks of conventional decompressors 
with keeping high compression ratio. Moreover, we propose an architec-
ture of reconfigurable decompressors for four variable-length codings. In 
the proposed architecture, the common functions for four codings are im-
plemented as fixed (or non-reconfigurable) components so as to reduce the 
configuration data, which is stored on an ATE and sent to a CUT. Experi-
mental results show that (1) the configuration data size becomes reasonably 
small by reducing the configuration part of the decompressor, (2) the recon-
figurable decompressor is effective for SoC testing in respect of the test data 
size, and (3) it can achieve an optimal compression of test data by Huffman 
coding.
key words: test compression, ATE, reconfigurability, variable-length cod-
ing, test application

1. Introduction

As the size and complexity of LSI circuits increase, the size 
of test data for the circuits also increases. The increase in the 
test data size requires a larger storage and the longer time 
for LSI testing. Compression/decompression scheme of test 
data has been proposed to overcome this problem [1]-[6]. 
The scheme is shown in Fig. 1. In this scheme, a given test 
input data T is compressed into T' by a data compression al-

gorithm and stored in an LSI tester (ATE) storage. While a 
circuit-under-test (CUT) on a chip is tested, the compressed 
test input data T' is transported to a decompressor on the 
chip, and then it is restored to T, and given to the CUT. 
Note that, like the previous test input compression meth-
ods [1]-[6], we do not treat test responses in this paper. We 
assume that test responses from the CUT is also compressed 
by response compression techniques, e.g., MISR, [7]-[9].

Test input compression methods [1]-[6] are based on 
some data compression algorithms, e.g., Huffman cod-
ing [1], [2], Run-length coding [3], Golomb coding [4], FDR 
coding [5], VIHC coding [6], and so on.

Fig. 1 Overview of test data compression/decompression.

In these test compression methods, the employed cod-
ing algorithms are tailored for a given test data. For ex-
ample, in [1], [2] and [6], Huffman codewords used for test 
compression are constructed according to the frequency of 
block-patterns in a given test data. In [4], the authors sug-

gested suitably selecting the value of a parameter (group 
size) of Golomb coding according to the distribution of the 
length of successive Os in a test data.

Although this tailoring of the coding algorithm can 
achieve high compression of a given test data, it involves 
two drawbacks. One is that the coding algorithm and the 
corresponding decompressor must be designed after test 

generation, which is performed downstream of the design 
flow. This drawback makes the design flow lose its flexi-
bility, so that it may lengthen the period of designing LSIs. 
For example, let us consider that we design a decompressor 
after test generation and synthesize it with the CUT. In this 

phase, if we cannot satisfy some of design constraints, we 
have to return to an upstream design phase before synthe-
sizing the CUT.

The other drawback is that, since a decompressor is de-
signed for a particular test data, it may not be adapted to an 
extra test data but the particular test data, i.e., the extra test 
data cannot be applied to the CUT, or it may be hardly com-

pressed even if it can be applied.
In this paper, to overcome these drawbacks, we pro-

pose a reconfigurable embedded decompressor. The recon-
figurable embedded decompressor can switch its decoding 
algorithm according to a test data applied to the decompres-
sor in the test application phase. Hence, in design phase of a 
chip, the embedded decompressor can be designed indepen-
dent of the CUT and their test data, that is, the first drawback 
is overcome. Moreover, since the proposed decompressor 
can reconfigure itself so as to achieve high compression of 
a given test data, the latter drawback can be also removed. 
In addition, the reconfigurable embedded decompressor has 
another advantage for SoC testing. In conventional test com-

pression for SoC testing, each core has its own decompres-

Manuscript received April 9, 2007.
Manuscript revised August 10, 2007.
The authors are with the Graduate School of Information Sci-

ences, Hiroshima City University, Hiroshima-shi, 731-3194 Japan.
*Presently, with the Canon Inc.

a) E-mail: ichihara@hiroshima-cu.ac.jp
b) E-mail: tomoo@hiroshima-cu.ac.jp

DOI:10.1093/ietisy/e91-d.3.713

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



714 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO .3 MARCH 2008

sor. However, using a reconfigurable embedded decompres-
sor, we can decompress all the test data for all cores by the 
decompressor only.

Note that the proposed scheme can be combined with 
don't-care bit specification techniques so as to generate test 
sets highly compressed by these codings. For example, the 
authors of [5] show an effective don't-care specification for 
Run-length coding and the authors of [10], [11] have pro-

posed test generation methods for Huffman coding.
When the decompressor is reconfigured, it is necessary 

that a configuration data, which determines the decoding al-

gorithm of the decompressor, is sent from an ATE to the 
decompressor. Hence, a test data includes the configuration 
data in addition to an compressed test input data. To bring 
out the merit of the reconfigurable decompressor, the reduc-
tion in the configuration data is important. Therefore, we at-
tempt to decrease the configuration data by minimizing the 
reconfigured part of the reconfigurable decompressor. We 
show an architecture of a reconfigurable embedded decom-
pressor for four variable-length codings (Huffman, Golomb, 
FDR and VIHC), and then concretely discuss a common re-
configured part, which is needed by all the four codings, of 
the decompressor.

The remaining of this paper is organized as follows. 
Section 2 considers a scheme of a reconfigurable embed-
ded decompressor. Section 3 introduces two major variable-
length codings Huffman and Golomb codings. Section 4 

proposes an architecture of a reconfigurable embedded de-
compressor for the four variable-length codings, and dis-
cusses the division between a reconfigurable part and a fixed 
(non-reconfigurable) part of the decompressor for the reduc-
tion in the configuration data to be sent from an ATE. Sec-
tion 5 reports experimental results using the proposed recon-
figurable decompressor. Section 6 concludes this paper.

2. Scheme of Reconfigurable Embedded Decompressor

In this section, we show the scheme of test data decom-

pression using a reconfigurable embedded decompressor. 
The basic functions required for an embedded decompres-
sor are to receive a test data compressed from an ATE and 
to decompress it and to supply the decompressed test data 
to CUTs. The reconfigurable embedded decompressor can 
change its internal operation by receiving configuration data 
from the ATE prior to the test application phase. Therefore, 
test data compressed by various coding algorithms can be 
decompressed by the decompressor.

The decompressor has three operation modes: config-
uration, decompression and direct. In mode configuration, 
as a preprocess of testing, a decompressor receives config-
uration data from the ATE, and reconfigures itself. Modes 
decompression and direct are for testing. In mode decom-

pression, the decompressor receives a compressed test data 
and decompresses it according to the decoding function im-

plemented by the configuration, while, in mode direct, it re-
ceives a test data and outputs it directly, i.e., the test data 

passed through the decompressor. This mode is for apply-

(a) Block diagram.

(b) Sequence of test data.

Fig. 2 Reconfigurable embedded decompressor.

(a) Block diagram.

(b) Sequence of test data.

Fig. 3 Reconfigurable embedded decompressor for SoC.

ing an uncompressed test data to CUTS.
The block diagram of the reconfigurable embedded de-

compressor is shown in Fig. 2 (a). Signal input is an input 
of a decompressor for receiving test data. Signal mode di-
rects to the decompressor which mode is selected. Signal 

feedback is a feedback signal from a decompressor to an 
ATE, which indicates whether a decompressor can receive 
data. When the feedback signal is enable, the decompressor 
is ready to receive test data and the mode selection codes. 
Note that the ATE does not use this signal for retrieving test 
responses. Signal test data is for the decompressed test data 
which is supplied to the CUT. An input sequence of test data 
to the decompressor is shown in Fig. 2 (b). A decompressor 
is first reconfigured to a decompressor for a desirable cod-
ing algorithm (e.g. Huffman coding) by means of receiving 
a configuration data (CD1), and then the decompressor re-
ceives the compressed test data corresponding to CD1 and 
decompresses it. Next, since the decompressor receives an 
uncompressed test data, it outputs without decompression as 
the direct mode. Finally, it is reconfigured to a decompres-
sor for another coding algorithm (e.g. Golomb coding) by 
means of receiving a configuration data (CD2), and receives 
a test data decompressed by the coding algorithm.

Here, let us show the impact of our reconfigurable de-
compressors in an application to SoC testing. Fig. 3 shows 
an example of using the model of reconfigurable embed-
ded decompressor for SoC testing. In conventional test data



ICHIHARA et al.: AN ARCHITECTURE OF EMBEDDED DECOMPRESSOR WITH RECONFIGURABILITY FOR TEST COMPRESSION 

715

compression/decompression for SoC testing, in order to ob-
tain a high compression ratio, an optimal coding algorithm 
must be applied to the test data for each core, and accord-
ingly its own decompressor must be designed. In contrast, 
our reconfigurable decompressor can decode the test data 
compressed optimally for each core, as shown in Fig. 3 (a). 
Figure 3 (b) shows an input sequence for testing two cores 1 
and 2 serially. Note that a reconfigurable embedded decom-

pressor can switch the coding algorithms used for decom-
pression during test application as shown in Fig. 3 (b). In 
this way, the reconfigurable embedded decompressor can be 
shared with several cores, and thus the area overhead of the 

proposed decompressor will be smaller than the area over-
head required for several decompressors in the conventional 
test data compression/decompression scheme, even though 
the proposed decompressor possesses a reconfigurable part. 
Detailed discussion on the area overhead of the proposed 
decompressor will appear in in Sect. 4.

3. Test Compression/Decompression Using Variable-
Length Codes

This section describes test data compression/decompres-
sion methods using variable-length codings. In general, 
variable-length codings can obtain high compression ratio.
Here we introduce two methods of test data compression 
and decompression by Huffman coding [1], [2], and Golomb 

 coding [4], which are variable-length codings. Note that 
each coding has distinct characteristics. Huffman coding 
can achieve high compression of test data whose entropy 
is low, i.e., some distinct block patterns appear frequently in 
the test data, while Golomb coding works effectively for test 
data including long sequences (or runs) of zero or one.

Table 1 shows an example of two codings. The given 
test data is 32 bits in size. The test data is encoded into eight 
codewords by Huffman coding, while it is encoded into six 
codewords by Golomb coding.

Huffman Coding [1], [2]
To encode a given test data using Huffman coding, first, 

the test data is divided into n-bit blocks, where n is a given 
block size, and the frequency of occurrence of each block 

pattern is counted. Each block pattern is represented by a 
binary codeword. Table 2 shows the frequency of occur-
rence of the block patterns and its codeword for the test data 
shown in Table 1. The test data is compressed by mapping a

Table 1 Example of codings.

high (low) frequency block pattern into a short (long) code-
word. For example, when the given test data of Table 1 is 
encoded using the Huffman codes of Table 2, the data size is 
compressed into 14 bits from 32 bits. In this case the com-

pression ratio R=14/32 43.8%.
Figure 4 shows a block diagram of a Huffman decom-

pressor. The decompressor consists of an FSM (finite state 
machine) which decodes a codeword into the corresponding 
block pattern, and a serializer which scans out into a sin-

gle internal scan chain of a CUT. Figure 5 shows a state 
diagram of the decoder designed for the Huffman code in 
Table 2. State S 0 is a initial state. Signal input is a serial in-

put from a tester channel. Signal data expresses n-bit block 
patterns and signal valid notifies whether a block pattern on 
signal data is prepared.

Golomb Coding [4]
Golomb coding is a kind of run-length coding, which 

is based on the length of 0-runs in a test data. A run consists 
of successive Os followed by a single 1, the length of a run 
is the number of Os. Golomb coding has group size as a pa-

Table 2 Example of Huffman table.

Fig. 4 Block diagram of Huffman decompressor.

Fig. 5 FSM of Huffman decompressor.

Table 3 Golomb table.



716 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.3 MARCH 2008

Fig. 6 Block diagram of Golomb decompressor.

Fig. 7 FSM of Golomb decompressor.

rameter. A codeword is divided into prefix and tail. Table 3 
shows Golomb codes whose group size is four. The prefix 
identifies each group to which the run belongs according to 
the number of is. The tail is fixed in length and identifies 
a member within the group. A run-length of the codeword 
is obtained by adding the numbers which the prefix and tail 
express [4].

Figure 6 shows a block diagram of a decompressor for 
Golomb coding. The decompressor consists of an FSM and 
a serializer, as well as Huffman coding. The FSM decodes a 
received codeword into the corresponding run according to 
the rule of Golomb coding, as shown in Table 3, and then 
send to the serializer the decoded run with its length via sig-
nals data and length. Signal valid becomes one if the both 
signals are valid. Fig. 7 shows a state diagram of the FSM.

The serializer receives a decoded run with its length, 
and then serially shifts the decoded run out. The group size, 
i.e., the number of members in each group, denotes the max-
imum length of 0-runs received by the serializer at a time, 
and hence the size of the serializer should be larger than the 

group size.

4. Reconfigurable Embedded Decompressor Architec-
 ture

In this section, we consider an architecture of reconfigurable 
embedded decompressors. The architecture employs not 
only Huffman and Golomb codings, as explained in Sect. 3, 
but also FDR [5] and VIHC [6] codings, which are variable-
length codings based on run-length, like Golomb coding.

When the decompressor is reconfigured, a configura-
tion data, which determines the decoding algorithm of the 
decompressor, is sent from an ATE to the decompressor. 
Hence, a test data includes the configuration data in addi-
tion to a compressed test input data. To bring out the merit 
of the reconfigurable decompressor, the decrease in the con-
figuration data is important. The function of a decompres-
sor is divided into two sub functions: one depends on cod-
ing algorithms while the other does not. In order to reduce

Fig. 8 Reconfigurable embedded decompressor architecture .

Table 4 Mode assignment.

the configuration data, hence, it is desirable that the func-
tions independent of coding algorithms are implemented as 
common fixed components, i.e., not reconfigurable, while 
the function dependent on each coding algorithm is imple-
mented as reconfigurable components.

A decompressor for variable-length codings necessar-
ily includes an FSM to control itself, although the function 
of the FSM differs among the decoding algorithms. There-
fore, in our architecture, a reconfigurable FSM is imple-
mented as a common reconfigurable component and other 

parts, e.g., serializer, are implemented as a fixed component.
The common reconfigurable component is called Iden-

tifier and the fixed component is called Generator after [6]. 
The proposed reconfigurable embedded decompressor ar-
chitecture is shown in Fig. 8.

The three modes, configuration, decompression, and 
direct, are switched by 2-bit signal model and mode2. The 
assignment of the signals for each mode is shown in Ta-
ble 4. When the value of signal model is zero, signal data 
is directly applied into the CUT, and it goes into the Identi-
fier when the value is 1. Signal mode2 notifies the Identifier 
the content of signal data. When the value of signal mode2 
is zero, signal data is for a configuration data, and then the 
value is one, data is for a test data.

The CUT receives its test data through signal generator 
output, and the CUT clock becomes valid only when signal 
output valid is high or signal model is low.

The details of the Identifier and the Generator as fol-
lows.

Identifier
The Identifier achieves the FSM composed of decom-

pressors as shown in Figs. 5 and 7, and it can be reconfig-
ured. Therefore, it should be a reconfigurable device which 
specializes in description of FSMs. The Identifier works 
when signal model is one. It is reconfigured when signal 
mode2 is zero, and it decompresses test data when the sig-
nal is one.

Generator
The Generator is a fixed part and can be used in com-

mon. The block diagram of the Generator is shown in Fig. 9. 
The Generator consists of a controller (Generator-FSM), 
two counters (p-counter and c-counter) and a shift-register.



ICHIHARA et al.: AN ARCHITECTURE OF EMBEDDED DECOMPRESSOR WITH RECONFIGURABILITY FOR TEST COMPRESSION 

717

Fig. 9 Block diagram of the Generator.

Fig. 10 State diagram of Generator-FSM.

It has eight inputs from the Identifier, two outputs to the 
Identifier and two outputs to the CUT.

The basic operation of the Generator is that the value 
memorized in shift-register is shifted out by the number cor-
responding to the value memorized in c-counter. The details 
are as follows. First, a value is set to c-counter serially or 

parallel via length by the Identifier when signal set is en-
abled. When signal s/p select denotes serial (parallel), the 
value is set serially (in parallel). Next, when signal valid 
is enabled, Generator-FSM makes input signal data read 
into shift-register, and sends signal dec to c-counter. Sig-
nal dec decrements c-counter until the value of c-counter 
becomes zero. When c-counter reaches zero, signal res is 
sent to Generator-FSM. Generator-FSM makes the value of 
shift-register shift out to the signal generator output until it 
receives signal res. Note that the value is shifted out only 
when signal output select selects the output of shift-register; 
the other selections, fixed zero and one, are used for FDR 
coding. The state diagram of Generator-FSM which per-
forms the above operation is shown in Fig. 10.

In the case where the Identifier is used for Huffman 
coding and Golomb coding, c-counter memorizes the block 
size for Huffman coding, and the length of 0-runs for 
Golomb coding, while shift-register memorizes the blocks 

patterns for Huffman coding, and the 0-run for Golomb cod-
ing. Note that input signals data, valid and length of the 
Identifier are corresponding to the signals in the state di-

agram of Huffman and Golomb decoders shown in Figs. 5 
and 7. The other unused inputs are fixed to proper values.

VIHC coding is a coding algorithm combining Huff-
man coding and Run-length coding. Therefore, the opera-
tion of the Identifier for VIHC coding is the same as that 
for Golomb, i.e., the shift-register and c-counter memorize 
a 0-run and its length, respectively.

FDR coding is a kind of run-length coding, and is sim-
ilar to Golomb coding. However, the operation of the Iden-
tifier for FDR coding is not similar to that for Golomb cod-
ing. In the case where FDR coding is used, 0-runs are 
constructed by controlling signal output select of the mul-
tiplexer of the Generator from the Identifier, i.e., selecting 
the fixed one and zero appropriately. The c-counter and p-
counter are used for memorizing the length of the prefix and 
tail of FDR codewords. The shift-register is not used in this 
case.

Here, let us discuss the are overhead of the proposed 

method. In general, the area efficiency of reconfigurable de-

vices is lower than that of non-reconfigurable devices owing 

to the reconfigurable mechanism. The proposed decompres-

sor, however, can keep its size small because of the follow-

ing two reasons. One is that the separation of the proposed 

decompressor into the Identifier and the Generator will work 

for reducing the area overhead, not only reducing the config-

uration data. The second is that the reconfigurable part (or 

the Identifier) for the proposed decompressor specializes in 

description of FSMs required for coding algorithms.

5. Evaluation of Reconfigurable Embedded Decom-

 pressor

To validate the efficiency of the proposed architecture, three 

experiments were performed on the full-scan version of 

large ITC99 benchmark circuits [12]. Their test data were 

obtained using Synopsys TetraMAX ATPG. In the proposed 

decompressor, the common Generator and each Identifier 

for Huffman coding, Golomb coding, VIHC coding, and 

FDR coding are described by Verilog-HDL. To estimate the 

size of each Identifier these are synthesized and mapped to 

slices, which are reconfigurable blocks on FPGAs, using a 

tool •gXilinx-ISE-Foundation•h for synthesis, place and route 

of FPGAs. Here, we assume that the configuration data size 

is increasing in proportion to the area of the Identifier.

5.1 Configuration Data Size

Table 5 shows comparisons between the configuration data 

size required for the non-divided architecture, i.e., the whole 

function is implemented on a reconfigurable device, and the 

proposed architecture for b14. The table lists the number of 

slices corresponding to the configuration data for the non-

divided architecture and the proposed architecture. We em-

ployed Huffman coding, Golomb coding, and VIHC coding 

with three different block (group) sizes 4, 8, and 16, and 

FDR coding.

From Table 5, for each coding algorithm, we can see



718 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO .3 MARCH 2008

that the proposed architecture reduces the size of the config-
uration data. We can also see that FDR coding can greatly 
reduce the configuration data size. This is because the main 
decoding functions for FDR coding, is achieved by the Gen-
erator, and they are larger than the circuits achieved by the 
Identifier.

5.2 Application to SoC Testing

Next, since the proposed reconfigurable embedded decom-

pressor can change its coding algorithm during test appli-
cation, we attempted to use the reconfigurability in order to 
improve a compression ratio in SoC testing. In the experi-
ment, we suppose that circuits b15 and b21.1 are cores on 
an SoC. We employed Huffman and FDR codings, and com-

pared the following two cases. A conventional case is that 
a Huffman (FDR) decompressor is used for decompressing 
test data, encoded by Huffman (FDR) coding, for both cores. 
The proposed case is that a reconfigurable decompressor is 
used, and the decoding algorithm is switched between Huff 
man and FDR codings according to the encoding algorithm 
of the applied test data. Table 6 shows comparisons between 
two cases.

In Table 6, we show the size of given test data TD and

Table 5 Comparisons on configuration data size (b14).

•õ block size (Huffman), group size (Golomb, VIHC)

•õ•õ(reduction ratio)={(non-divided)-(ours)}/(non-divided)

the size of compressed test data TR . Column configsize 

shows the size of the configuration data. This is calcu-

lated as follows. Since the tool •gXilinx-ISE-Foundation•h 

reports the size of configuration data of the whole FPGA , 
say Allcon f igsize, with its utilization ratio , which is the ra-

tio of the number of the used slices to the number of the 

all slices, say Ru, con f igsize is the product of Allcon f igsize 

and Ru. Note that TR for SoC (b15+b21_1) in column •gHuff-

man Decompressor•h is different from the sum of the TR for 

b15 and b21_1. This is because these Huffman decoders are 

optimally designed based on the different test sets, so that 

the Huffman codings employed in the decoders for the SoC 

and for cores b15 and b21_1 are different from one another .

Columns R1 and R2 report the compression ratios of the 

conventional case and the proposed case, respectively. They 

are given by

(1)

Note that R2 depends on con f igsize because the test data 
includes the configuration data in the proposed method.

From the table, b15 obtains a high compression ra-
tio with FDR coding, while b21.1 obtains a high compres-
sion ratio with Huffman coding. Therefore, in the pro-

posed case, the reconfigurable embedded decompressor se-
lects FDR coding for b15, and selects Huffman coding for 
b21_1, so that the compression ratio R2 of the proposed case 
is lower than the R1 s of the conventional cases.

5.3 Parameter Adjustment of Huffman Coding

Finally, we show an experimental result for adjusting a pa-
rameter of Huffman coding algorithm, i.e., the block size, in 
order to minimize the size of test data. The proposed recon-
figurable decompressor can adjust the parameters of an im-

plemented coding algorithm on itself. In Huffman coding, 
the size of a compressed test data theoretically decreases 
as the block size increases, while the size of configuration

Table 6 Experiment result for SoC and their cores.

Table 7 Relationship between block size and data sizes.



ICHIHARA et al.: AN ARCHITECTURE OF EMBEDDED DECOMPRESSOR WITH RECONFIGURABILITY FOR TEST COMPRESSION 

719

data innreases as it increases. Accordingly the relationship 

between the size of compressed test input data and that of 

configuration data is trade-off. This means that there is an 

optimal block size that minimizes the test data, which is the 

sum of the test input data and the configuration data.

Table 7 shows the size of the configuration data
, 

configsize, and the test data, TR+configsize, for block sizes 

from two to eight. An optimal block size which minimizes 

the test data is shown in the bold type. The last column 

shows the size of the test input data, TD. From the table, 

we can see that the optimal block size is different for each 

circuit, and the block size becomes large as the size of test 

data becomes large.

6. Conclusion

We proposed an architecture of reconfigurable embedded 

decompressor for test compression. The proposed archi-

tecture reconfigures its internal operation by sending con-

figuration data, and therefore it can deal with various cod-

ing algorithms. This gives the flexibility in design flow of 

LSIs as well as in test application. By isolating the Iden-

tifier from the decompressor, we reduced the data size for 

reconfiguration. The proposed decompressor achieved high 

compression of given test data by selecting an appropriate 

coding algorithm with its parameters, even though the test 

data includes its configuration data.

Acknowledgements

The authors would like to thank Prof. Yuki Yoshikawa and 

members of Computer Design Laboratory, Hiroshima City 

University for their valuable comments. This research was 

supported in part by Japan Society for the Promotion of Sci-

ence (JSPS) under the Grand-in-Aid for Scientific Research 

(No.15300021).

References

[1] V. Iyengar, K. Chakrabarty, and B.T. Murray, •gBuilt-in self testing of 

sequential circuits using precomputed test sets,•h Proc. VTS, pp. 418-

423, 1998.

[2] A. Jas, J. Ghosh-Dastidar, and N.A. Touba, •gScan vector compres-

sion/decompression using statistical coding,•h Proc. VTS, pp. 114-

120, 1999.

[3] A. Jas and N.A. Touba, •gTest vector decompression via cyclical scan 

chains and its application to testing core-based designs,•h Proc. ITC, 

pp. 458-464, 1998.

[4] A. Chandra and K. Chakrabarty, •gSystem-on-a-chip test data com-

pression and decompression architectures based on Golomb codes,•h 

I EEE Trans. CAD/ICAS, vol.20, no.3, pp. 355-368, March 2001.

[5] A. Chandra and K. Chakrabarty, •gFrequency-directed run-length 

(FDR) codes with application to system-on-a-chip test data com-

pression,•h Proc. VTS, pp. 42-47, 2001.

[6] P.T. Gonciari, B.M. Al-Hashitni, and N. Nicolici, •gVariable-length 

input huffman coding for system-on-a-chip test,•h IEEE Trans. 

Comput.-Aided Des. Integr. Circuits Syst., vol.22, no.6, pp. 783-

796, 2003.

[7] A. Morosov, K. Chakrabarty, M. Gossel, and B. Bhattacharya, •gDe-

sign of parameterizable error-Propagating space compactors for 

response observation,•h Proc. VTS, pp. 48-53, 2001.

[8] B. Pouya and N.A. Touba, •gSynthesis of zero -Aliasing elementary

- Tree space compactors
,•h Proc. VTS, pp. 70-76, 1998.

[9] K. Chakrabarty, B.T. Murray, and J.P. Hayes, •gOptimal zero-

Aliasing space compaction of test responses,•h IEEE Trans . Comput., 

vol.47, no.11, pp. 1171-1187, Nov. 1998.

[10] S. Kajihara, K. Taniguchi, K. Miyase, I. Pomeranz, and S.M. Reddy, 

•g Test data compression using don't-care identification and statistical 

encoding,•h IEICE Trans. Inf. & Syst., vol.E87-D, no.3, pp . 544-550, 

March 2004.

[11] H. Ichihara and T. Inoue, •gA test generation for compressible and 

compact test sets,•h IEICE Trans. Inf. & Syst. (Japanese Edition), 

vol.J88-D-I, no.6, pp. 1021-1028, June 2005.

[12] http://www.cert.utexas.edu/itc99-benchmarks/bench.html

Hideyuki Ichihara received his M.E. and 

Ph.D. degrees from Osaka University in 1997, 

1999, respectively. He was a research scholar 

of University of Iowa, U.S.A. from February 

to July in 1999. Since December 1999, he had 

been an assistant professor of Hiroshima City 

University, and he is currently an associate pro-

fessor of the university. He received IEICE Best 

Paper Award 2004 and Workshop on RTL and 

High Level Testing 2004 Best Paper Award. His 

research interests are VLSI testing and design 

for testability. He is a member of the IEEE.

Tomoyuki Saiki received his Bachelor and 

M.E. degrees of Information Engineering from 

Hiroshima City University in 2004 and 2006, re-

spectively. He is currently with Canon Inc.

Tomoo Inoue is a professor of Faculty 
of Information Sciences, Hiroshima City Uni-
versity. His research interests include test gen-
eration and high-level synthesis and design for 
testability and dependability, as well as design 
and test of reconfigurable devices such as field-

programmable gate arrays. He received the BE, 
ME and Ph.D. degrees from Meiji University, 
Kawasaki, Japan, in 1998, 1990 and 1997, re-
spectively. From 1990 to 1992, he was with 
Matsushita Electric Industrial Co., Ltd. From 

1993 to 1999, he was an assistant professor of Graduate School of Infor-
mation Science, Nara Institute of Science and Technology. In 1999, he 
joined Faculty of Information Sciences, Hiroshima City University as an 
associate professor. Tomoo Inoue received WRTLT (Workshop on RTL 
and High Level Testing) 2004 Best Paper Award. He is a member of the 
IEEE and IPSJ.


