
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.3 MARCH 2008 

857

LETTER

A Checkpointing Method with Small Checkpoint Latency

Masato KITAKAMI•õa), Member, Bochuan CAI•õ•õ, Nonmember, and Hideo ITO•õb), Fellow

SUMMARY The cost of checkpointing consists of checkpoint over-
head and checkpoint latency. The former is the time to stop the process 
for checkpointing. The latter is the time to complete the checkpointing in-
cluding background checkpointing which stores memory pages. The large 
checkpoint latency increases the possibility that the error occurs in back-
ground checkpointing, which leads to long rollback distance. The method 
for small checkpoint latency has not been proposed yet. This paper pro-
poses a checkpointing method which achieves small checkpoint latency. 
The proposed method divides a checkpoint interval into several subcheck-
point intervals. By using the history of memory page modification in sub-
checkpoint intervals, the proposed method saves some pages which are not 
expected to be modified in the rest of checkpoint interval in advance. Com-
puter simulation says that the proposed method can reduce the checkpoint 
latency by 25% comparing to the existing methods.
key words: dependability, checkpointing, checkpoint overhead, checkpoint 
latency, subcheckpoint

1. Introduction

Recently, computers are widely used in many systems in the 
society. We depend on computers so deeply that computer 
errors have very serious damage on the society. Therefore, 
dependability of computers is very important.

Checkpointing and rollback have been used to improve 
system dependability [1]. In checkpointing, states of pro-
cesses, such as the values of registers, stacks, and contents 
of memory pages, are stored into stable storage, such as 
hard disks. If the failure occurs in computers, the previ-
ous checkpoint is restored and the process is restarted from 
the point where the checkpoint was taken previously. This 

procedure is called rollback. It is apparent that some cost 
is required for checkpointing. The checkpoint overhead is a 
class of checkpointing cost and the time to stop the process 
for checkpointing.

In order to reduce the checkpoint overhead, several 
methods which take checkpoint for memory pages as a back-

ground procedure have been proposed. In such methods, 
processes can be executed during checkpointing. Although 
background checkpointing has a small influence on the fore-

ground process usually, if an error occurs during the back-
ground checkpointing, it has serious damage on the process.

In this case, the checkpoint is not valid and the process has to 
roll back to the previous checkpoint. From this, another met-
rics of checkpointing cost becomes important. The metrics 
is called checkpoint latency. The checkpoint latency is the 
time to complete checkpointing and includes background 
checkpointing time. The larger the checkpoint latency is, 
the higher the probability that the error occurs in back-

ground checkpointing is. If an error occurs during the back-
ground checkpointing, the checkpoint which is being taken 
in background is not valid and the process has to roll back 
to the previous checkpoint, that is, the rollback distance 

gets longer. In parallel computers, especially, checkpoint 
latency is larger comparing to the single-processor com-

puter because of consistent checkpointing [2]-[4]. While 
many checkpointing methods achieving small checkpoint 
overhead have been proposed, any methods for small check-

pointing latency have not been proposed yet.
This paper proposes a class of checkpointing method 

which can reduce checkpointing latency. The proposed 
method reduces checkpointing latency by saving pages 
which are not expected to be modified in the rest of check-

point interval in advance. In order to determine the saved 
pages, a checkpoint interval is divided into some subcheck-
point intervals.

This paper includes 5 sections. Section 2 introduces 
checkpoint overhead and checkpoint latency; and illustrates 
the existing checkpointing methods. The proposed method 
is shown and evaluated in Sects. 3 and 4, respectively. Sec-
tion 5 concludes the paper.

2. Preliminaries

2.1 Existing Methods

Many checkpointing methods which reduce the checkpoint-
ing cost have been proposed [5]-[9]. These methods are 
classified into two types: frozen time, i.e., overhead, reduc-
tion and checkpointing information size reduction. The fol-
lowings show the existing methods for checkpointing cost 
reduction.

(1) Sequential Checkpointing 

 Sequential checkpointing is a very simple checkpointing. 
When an application process wants to take a checkpoint, it 

 pauses and saves all of its states on the stable storage. The 
time required to save the checkpoint is practically equal to 
the increase in the execution time of the process.

Manuscript received February 16, 2007.

Manuscript revised November 13, 2007.

•õ The authors are with the Graduate School of Advanced Inte-

gration Science, Chiba University, Chiba-shi, 263-8522 Japan.

•õ•õ The author is with the Graduate School of Science and Tech-

nology, Chiba University, Chiba-shi, 263-8522 Japan.

a) E-mail: kitakami@faculty.chiba-u.jp

b) E-mail: h.ito@faculty.chiba-u.jp

DOI: 10.1093/ietisy/e91-d.3.857

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



858 
IEICE TRANS. INF. & SYST., VOL .E91-D, NO.3 MARCH 2008

(2) Copy-on-Write Checkpointing 

This method stops the process only during the checkpoint , 
excluding memory pages, is copied to the memory in check-
pointing. After the checkpoint is copied to the memory, all 
memory pages are set to read-only mode and the process is 
restarted. The checkpoint stored in the memory and mem-
ory pages are stored to the stable storage as background pro-
cess. The memory page which has been stored to the stable 
storage are set to read-write mode. If the foreground pro-
cess tries to write to a memory page which has not already 
been stored to the stable storage, the page is set to read-write 
mode after it is stored to the buffer, called copy-on-write 
buffer. The page stored to the copy-on-write buffer is stored 
to the stable storage.

(3) Incremental Checkpointing

Incremental checkpointing is a technique for reducing the 
checkpoint size by using virtual memory primitives. In this 
method, all memory pages are set to read-only mode after 
checkpointing. When a program attempts to write a read-
only page, an access violation occurs. In this case, the mem-
ory page is set to read-write mode and its index is stored. At 
the next checkpointing, only pages that have caused access 
violations are stored.

The combination of this method and the copy-on-write 
checkpointing, mentioned above, is also used in some sys-
tems.

2.2 Checkpoint Overhead and Checkpoint Latency

Checkpoint overhead is a time while processes are stopped 
for checkpointing. In sequential checkpointing, all check-

pointing time is included in checkpoint overhead. It is ap-
parent that checkpoint overhead is small in copy-on-write 
checkpointing because memory pages occupy the most of 
the checkpoint information and are saved by background 

process. In this case, another type of checkpointing time 
cost should be considered. Checkpoint latency is a time re-
quired to save the checkpoint information to stable storage 
at check points. It includes the time for background pro-
cess to save memory pages in copy-on-write checkpointing. 
In the copy-on-write checkpointing, checkpoint latency is 
much larger than checkpointing overhead, while both are 
equal to each other in sequential checkpointing and incre-
mental check pointing.

It is apparent that the large checkpoint overhead require 
long process freeze time and decreases the performance of 

processing. The large checkpoint latency also decreases 
the performance. If an error occurs during the background 
checkpointing, the checkpoint is not valid and the process 
has to roll back to the previous checkpoint. Since proba-
bility that error occurs during background checkpointing is 
large if check point latency is large, large checkpoint latency 
leads to long rollback distance and decreases the perfor-
mance. Therefore, checkpointing method with small check-

point latency as well as small checkpoint overhead should

be considered.

3. Proposed Method

Most of the existing checkpointing methods focus on re-

ducing checkpoint overhead and their checkpoint latency 

is sometimes large. If the error occurs when the check-

point is saved as background procedure, this checkpoint is 

not valid and the process have to roll back to the previous 

checkpoint. That is, large checkpoint latency leads to long 

rollback distance. For single-process applications, most of 

existing checkpointing schemes achieve small checkpoint 

overhead, while resulting in a large checkpoint latency [2] , 

[3], [10].

The proposed method reduces checkpoint latency by 

saving pages which are not expected to be modified in the 

remaining checkpoint interval before the next checkpoint. In 

order to select such pages, the proposed method introduces 

subcheckpoints between checkpoints. A checkpoint inter-

val is divided into N subcheckpoint intervals. The pages 

which satisfy the following conditions are saved before the 

next checkpoint; 1) the page is modified in subcheckpoint 

intervals located between the last checkpoint and the last 

subcheckpoint, and 2) the page is not modified in the last 

subcheckpoint interval.

In other words, the proposed method distributes saving 

pages at each checkpoint to subcheckpoints and checkpoint. 

That is, the number of saving pages which should be stored 

in each checkpoint and subcheckpoint is reduced, although 

the total number of saved pages are not reduced. Since pro-

cesses roll back to only checkpoints, not to subcheckpoints, 

in the case of error, the pages saved at subcheckpoints are 

not counted into checkpoint latency according to the defini-

tion of checkpoint latency. Therefore, the proposed method 

can reduce checkpoint latency.

In the proposed algorithms, the following notations are 

used.

• CPi: the ith checkpoint

• [CPi, CPi+1]: the checkpoint interval between CPi and 

CPi+1

• N: the number of subcheckpoint intervals included in 

a checkpoint interval

• SCPi ,j: the jth subcheckpoint in [CPi, CPi+1], where 

0<j<N

• [SCPi,j, SCPi,j+1]: the subcheckpoint interval between 

SCPi ,j and SCPi,j+1

Also, we assume that SCPi ,0 and SCPi,N are equivalent to 

CPi and CPi+1, respectively.

(1) Proposed Method 1

The proposed method 1 consists of the procedure at the 

subcheckpoint and the one at the checkpoint. The following 

show the procedures. Here, MTi ,j is a set of indices of pages 

which are modified in [SCPi,j-1, SCPi,j] and we assume that 

MTi ,0=0.

Algorithm 1: Procedure at subcheckpoint SCPi,j



LETTER 

859

1. Store indices of pages which are modified in 

[SCPi,j-1, SCPi,j] into MTi,j•E

2. If j=1, the procedure at SCPi ,j is terminated; other-

wise, go to Step 3.

3. Save the pages whose indices are in 

where A is a complementary set of A. 

4. Let 

Algorithm 2: Procedure at checkpoint CPi+1

1. Freeze the process.

2. Save the checkpoint information excluding memory 

pages.

3. Restart the process.

4. Save the pages whose indices are in MTi
,N-1 by back-

 ground precess.

(2) Proposed Method 2

The proposed method 2 reduces the number of the 

saved pages by using the queue FQ. The queue is con-

structed based on the frequency of modification. At sub-

checkpoints, pages whose indices are located near the top 

of FQ are stored first, because modification frequency of 

these pages are low and are the probability that these pages 

are modified again is considered to be low. The following 

shows the procedure at subcheckpoint.

Algorithm 3: Procedure at subcheckpoint SCPi,j

1. Store indices of pages which are modified in 

[SCPi,j-1, SCPi,j] into MTi,j.

2. If j<•uN/2•v, the procedure at SCPi ,j is terminated; 

otherwise, go to Step 3.

3. Ifj=•uN/2•v, construct the queue FQ satisfying the fol-

lowing conditions; 1) the less frequently the page ap-

pears in MTi,1,..., MTi,•uN/2•v-1, the former part of FQ 

the index of the page is located at; 2) the pages which 

are not modified in [CPi, SCPi,•uN/2•v-1] are located at 

the top of the queue; 3) the indices having the same 

frequency are ordered so that smaller index is closer to 

the top. And let 

4. Save the pages whose indices are in MTi,j-1 •¿ MTi,j,

according to the order located in FQ.

5. Let 

Here, MTi ,0=0 and •ux•v is the largest integer not greater 

than x.

The procedure at the checkpoint is same as the above 

Algorithm 2.

Figure 1(a) shows an example for the proposed method

1 for N=4. At the SCPi,1, since the memory pages 1, 2, and 

3 are modified in the last subcheckpoint interval, MTi,1=

{1, 2, 3}. In the same manner, MTi,2={3} is obtained. Since 

MTi,1 •¿ MTi,2={1, 2}, the memory pages 1 and 2 are saved 

as checkpoint information for CPi+1 at SCPi,2. The pages 

1 and 2 which should be saved at CPi+i are saved by using 

background process. The procedure for the following SCPs

(a) propose method 1

(b) proposed method 2

Fig.1 Examples of the proposed methods.

is same as the above.

Figure 1(b) shows an example for the proposed method 

2. At SCPi ,1,...,SCPi,•uN/2•v-1, we just write the indices 

of memory pages modified in last subcheckpoint interval. 

At SCPi ,•uN/2•v, we analysis MTi,1,..., MTi,•uN/2•v-1 and store 

indices of pages into FQ based on the frequency of the 

modification of each memory page. Here, we assume that 

FQ=(5, 4,1, 3, 6, 2), as shown in Fig.1(b). At SCPi ,•uN/2•v, 

since MTi ,•uN/2•v-1 •¿ MTi,•uN/2•v={1, 3, 4}, the pages 1, 3, and 

4 would be saved. Since the first index which appears in FQ 

is •g4•h, the memory page 4 should be saved at first. At the 

SCPi ,•uN/2•v+1 the pages 1 and 5 would be saved. Although the 

page 1 has not been saved by the termination of SCPi,•uN/2•v, 

we should save the page 5 at first with the reference to FQ. 

In this case, the memory page 1 would be saved only once, 

while the proposed method 1 would save the page 1 twice 

in the same case. This shows the proposed method 2 can re-

duce the number of saved pages compared to the proposed 

method 1.

It is noted that Fig.1(b) is an example case where the 

proposed method 2 has advantage. On the other hand, some 

pages are stored at the former half part of checkpoint inter-

val in the proposed method 1, while no pages are stored in 

the proposed method 2. This leads that the number of pages 

stored at SCPi ,•uN/2•v in the proposed method 2 is larger than 

that in the proposed method 1. This is advantage of the pro-

posed method 1. From the above, the proposed methods 1 

and 2 have advantages and disadvantages.

Performance degradation in checkpoinitnig for the pro-

posed methods are almost equal to that for incremental 

checkpointing because the pages are saved by background 

processes. It is apparent that error recovery methods for the 

proposed methods 1 and 2 are same as the ones for con-

ventional checkpointing. That is, in the case of error, the 

processes roll back to the last valid checkpoint.



860
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.3 MARCH 2008

4. Evaluations

The proposed methods are evaluated by computer simula-

tion. The simulation program is multiplication of 128 by 

128 double-float matrices. This program is executed on 2 

computers which form master-client communication model. 

The following lists the specifications of the both computers:

•E CPU: Pentium III 700MHz

•E Memory: 500MBytes

•E OS: Solaris 2.8.

The calculation time excluding checkpointing time is 43 

minutes and 28 seconds. The checkpoint interval is 4min-

utes.

In the master-client model, the master processor starts 

checkpointing by broadcasting a CHECKPOINT-BEGIN 

message to all other processors. In receiving this message, 

each processor halts computation and checks whether all 

messages that it has sent have been received. When a pro-

cessor recognizes that it has no outstanding messages in the 

network, it sends a CHECKPOINT-READY message back 

to the master. In receiving CHECKPOINT-READY mes-

sages from all client processors, the master broadcasts a 

COMMIT-CHECKPOINT message, which instructs all pro-

cessors to commit their checkpoints to disk. When a proces-

sor has committed its checkpoint, it sends a CHECKPOINT-

COMMITTED message back to the master and resumes 

its computation. When the master receives these messages 

from all client processors, the checkpoint is finished, and it 

notifies the client processors that may delete previous check-

points.

Figure 2 shows overhead and latency of the proposed 

methods 1 and 2 with N=10 subcheckpoint intervals 

in a checkpoint interval obtained by the above simulation. 

For comparison, the cases of the existing methods, se-

quential checkpointing, incremental checkpointing, copy-

on-write checkpointing, and combinations of incremental 

checkpointing and copy-on-write checkpointing, are also 

shown. Here, the size of a checkpoint for sequential check-

pointing and copy-on-write checkpointing is 9,429.5 kbytes 

and that for the other methods is 3,313.8 kbytes. This fig-

ure says the latency of the proposed methods is 25% smaller 

than that of the incremental checkpointing, which achieves 

the smallest latency among the existing methods. This also 

says the overhead of the proposed methods is slightly larger 

than that of copy-on-write checkpointing, which achieves 

the smallest overhead.

Figure 3 shows the relation between the number of the 

subcheckpoint intervals in a checkpoint interval and over-

head/latency. This says that the overhead decreases as the 

number of the subcheckpoint intervals increases and that the 

latency decreases as the number of subcheckpoint interval 

decreases. That is, there exists a trade-off relation between 

the overhead and the latency.

Simulation results for other types of programs will be 

lead to the similar conclusion because of locality of refer-

Fig.2 Checkpoint overhead and latency.

Fig.3 Relation between the number of subcheckpoints and the check-

point overhead/latency.

ence.

5. Conclusion

This paper has proposed checkpointing method with small 

checkpoint latency. The proposed method saves the page 

which are not expected to be modified in the rest of check-

point interval before the corresponding checkpoint. Com-

puter simulation says that the proposed method can re-

duce checkpoint latency by 25% comparing to the existing 

method

Future study remains in executing computer simula-

tions by using other types of program, such as the one which 

requires large amount of disk I/O.

References

[1] E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D.B. Johnson, •gA survey 

of rollback-recovery protocols in message-passing systems,•h ACM 

Comput. Surv., vol.34, no.3, pp. 375-408, Sept. 2002.

[2] J.S. Plank, •gAn overview of checkpointing in uniprocessor and dis-

tributed systems, focusing on implementation and performance,•h 

Technical Report of University of Tennessee, July 1997.

[3] K. Hwang and Z. Xu, Scalable Parallel Computing, WCB/McGraw-

Hill,1998.



LETTER

 861

[4] N.H. Vaidya, •gStaggered consistent checkpointing,•h IEEE Trans. 

Parallel Distrib. Syst., vol.10, no.7, pp. 694-702, July 1999.

[5] H. Nam, J. Kim, S.J. Hong, and S. Lee, •gProbabilistic checkpoint-

ing,•h IEICE Trans. Inf. & Syst., vol. E85-D, no.7, pp. 1093-1104, 

July 2002.

[6] F. Karabieh, R.A. Bazzi, and M. Hicks, •gCompiler-assisted het-

erogeneous checkpointing,•h Proc. 20th IEEE Symp. Reliable Dis-

tributed Systems, pp. 56-65, New Orleans, USA, Oct. 2001.

[7] N.H. Vaidaya, •gAnother two-level failure recovery scheme: Per-

formance impact of checkpoint placement and checkpoint latency,•h 

Technical Report of Texas A&M University, 1994.

[8] J.S. Plank, M. Beck, and G. Kingsley, •gLibcpt: Transparent check-

pointing under unix,•h 1995 USENIX Technical Conference, pp. 213-

223,1995.

[9] S. Plank, M. Beck, and G. Kingsley, •gCompiler-assisted memory ex-

clusion for fast checkpointing,•h IEEE Technical Committee on Oper-

ating Systems and Application Environments, vol.7, no.4, pp. 10-14, 

Winter 1995.

[10] N.H. Vaidya, •gImpact of checkpoint latency on overhead ratio of a 

checkpointing scheme,•h IEEE Trans. Comput., vol.46, no.8, pp. 942-

947, Aug. 1997.


