
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008 

1003

PAPER

The Container Problem in Bubble-Sort Graphs

Yasuto SUZUKI•õ, Nonmember and Keiichi KANEKO•õa), Member

SUMMARY Bubble-sort graphs are variants of Cayley graphs. A 
bubble-sort graph is suitable as a topology for massively parallel systems 
because of its simple and regular structure. Therefore, in this study, we 
focus on n-bubble-sort graphs and propose an algorithm to obtain n -1 dis-
joint paths between two arbitrary nodes in time bounded by a polynomial 
in n, the degree of the graph plus one. We estimate the time complexity of 
the algorithm and the sum of the path lengths after proving the correctness 
of the algorithm. In addition, we report the results of computer experiments 
evaluating the average performance of the algorithm.
key words: bubble-sort graphs, internally disjoint paths, polynomial algo-
rithm, fault tolerance

1. Introduction

Recently, studies on parallel computation are becoming in-
creasingly important, and many topologies have been pro-

posed to interconnect computers. A bubble-sort graph [1] is 
one such topology and it is a variant of a notion found in 
Cayley graphs. The bubble-sort graph is studied because of 
its simple and regular structure [2], [20].

The container problem is to find k paths between two 
arbitrary nodes a and b in a k-connected graph such that 
those paths are internally disjoint, that is, they do not have 
common nodes except for nodes a and b. This is an impor-
tant issue in parallel computation as well as the node-to-set 
disjoint paths problem [7], [9], [10], [16]. In this study, we 
select the bubble-sort graph as the target and present a so-
lution to the container problem. In certain Cayley graphs, 
in particular for a hypercube [17], a rotator graph [4], a 

pancake graph [1], and a star graph [1], polynomial time 
algorithms have been proposed to obtain internally dis-

joint paths [5], [8], [15], [18]. Suzuki and Kaneko [19] have 
solved the node-to-set disjoint paths problem in bubble-srt 

graphs in O(n5). Additionally, Latifi and Srimani [14] have 
solved the container problem in the extended graph, which 
is obtained by adding redundant links to a bubble-sort graph 
to augment the fault tolerance.

The rest of this paper is structured as follows. In 
Sect. 2, the definitions of bubble-sort graphs and the 
shortest-path routing algorithm for them are introduced. We 
explain our algorithm in detail in Sect. 3. Section 4 describes 
a proof of correctness and provides an estimate of the com-

plexity of our algorithm. In Sect. 5, experiments for perfor-

mance evaluation and associated results are presented . Fi-

nally, conclusions are given in Sect. 6.

2. Preliminaries

Definition 1: (Exchange Operation) For a permutation 

a=(a1,a2,•c,an) of 1,2,•c, n, we define the exchange 

operation by 

a(i)=(a1,a2,•c, ai-1, ai+1, ai, ai+2,•c, an) 

(1•…i•…n-1).

Definition 2: (n-bubble-sort graph Bn) Bn is an undirected 

simple graph that has n! nodes. Each node has a unique label 

that consists of a permutation (a1, a2,•c,an) of 1,2,•c, n. 

Two nodes a and b are adjacent if and only if a(i)=b for 

some i.

Figure 1 shows the 4-bubble-sort graph B4 as an exam-

ple.

The number of nodes, the degree, and the diameter of 

an n-bubble-sort graph are n!, n-1, and n(n-1)/2, respec-

tively [1], [13]. In the following, if we can construct n-1 

internally disjoint paths between any two nodes in polyno-

mial time, we will find the solution to the container problem.

Table 1 shows comparisons between Bn and other 

graphs. In the table, Tn,k, Qn, Pn, Sn, Rn, dBn,k and Kn,k stand 

for a k-ary n-dimensional torus, an n-cube, an n-pancake 

graph, an n-star graph, an n-rotator digraph, an (n,k)-de 

Bruijn graph [3], and an (n,k)-Kautz graph [3], respectively. 

A bubble-sort graph is undirected, symmetric, and recursive.

Fig. 1 An example bubble-sort graph B4.

Manuscript received May 30, 2007.
Manuscript revised October 12, 2007.
The authors are with the Graduate School of Engineering, To-

kyo University of Agriculture and Technology, Koganei-shi, 184-
8588 Japan.

a) E-mail:klkaneko@cc.tuat.ac.jp
DOI:10.1093/ietisy/e91-d.4.1003

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



1004 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

Table 1 Comparison between bubble-sort graphs and others.

Fig. 2 Shortest-path routing algorithm for bubble-sort graphs.

These properties are very important for topologies of inter-
connection networks used for parallel and distributed com-

putation. The graphs Tn,k, Rn, dBn,k, and Kn,k lack at least one 
of these properties. There is a polynomial time shortest-path 
routing algorithm for Bn, but it is unknown for Pn. More-
over, B2n has (2n)!/2n copies of Qn as subgraphs, while Sn 
does not.

The n-bubble-sort graph Bn contains n disjoint (n-1)-
bubble-sort graphs, each of which can be induced by the 
nodes that are specified by fixing the final integer in their 
labels. Let us denote each subgraph Bn-1 by Bn-1h by spec-
ifying the common integer h.

We show a shortest-path routing algorithm between 
two nodes in an n-bubble-sort graph in Fig. 2, where the 
operator ++ performs the concatenation of two lists. This 
routing algorithm, called shortest, is based on the bubble 
sort. Here we assume that the label of a node is expressed 
by a linear array of length n. We also assume that the la-
bels of nodes on a path are all memorized in generating the 

path. Based on these assumptions, the time complexity of 
shortest is O(n3) and the path length obtained is at most 
n(n-1)/2. Refer to Chapter 8 in [11] or Exercise 36 of Sec-
tion 5.3.4 in [12] for the correctness and the complexities 
with respect to shortest.

3. Algorithm

In this section, we give an explanation of our algorithm, 
which solves the container problem in an n-bubble-sort 

graph in the polynomial order of n.
From the symmetric property of Bn, we fix the source

Fig. 3 Case I, Step 6 (dn-1•‚n-1).

node s to (1,2,•c, n) without loss of generality. Let the 

destination node be d=(d1,d2,•c, dn). If n=3, that is, 

in B3, the internally disjoint paths are trivial. Hence, we 

assume that n>3 in the rest of this paper. The algorithm is 

divided into the following five cases.

Case I dn=n.

Case II dn•‚n-1, dn-1=n.

Case III dn, dn-1•‚n.

Case IV s(n-1)=d.

Casey V dn=n-1, dn-1=n, s(n-1)•‚d.

3.1 Case I

In this case, we assume dn=n.

Step 1 Apply the algorithm recursively in Bn-1n to obtain 

n-2 internally disjoint paths from s to d.

Step 2 Select edge (s, s(n-1)). If dn-1=n-1, apply 

shortest in Bn-1(n-1) to obtain the path from s(n-1) 

to d(n-1), and go to Step 6.

Step 3 Apply shortest in Bn-1(n-1) to obtain the path 

from s(n-1)to a=(1,2,•c, dn-1-1, dn-1+1,•c, n-

2, n, dn-1, n-1).

Step 4 Select edge (a , a(n-1)=(1, 2,•c, dn-1-1, dn-1+

1,•c,n-2,n,n-1,dn-1)).

Step 5 Apply shortest in Bn-1dn-1 to obtain the path from 

a(n-1) to d(d1, d2,•c, dn-2, dn, do-1).

Step 6 Select edge (d(n-1), d). 

Figure 3 shows the internally disjoint paths between s and 

d after Step 6 in Case I, where dn-1•‚n-1.

3.2 Case II

We assume dn•‚n-1 and dn-1=n in this case.

Step 1 For each i (1•…i•…n-2), construct the path from 

s to ci=(1,2,•c,i-1,i+1,•c,n-1,i,n). Let 

Cn-1=S. For c dn, obtain the shortest path to d(n-1) 

and redefine cdn=d(n-1).

Step 2 For each i (1•…i•…n-1), select edge (ci, c(n-1)i 

Note that c(n-1)dn=d.

Step 3 For each i (1•…i•…n-1, i•‚dn), let bi=

(d1, d2,•c, dli-1, dli+1,•c, dn-1, i, dn) where dli=i, and 

apply shortest in Bn-1i, to obtain the path from c(n-1)i 

to b(n-1)i.

Step 4 For each i(1•…i•…n-1, i•‚dn), select (b(n-1)i,bi).



SUZUKI and KANEKO: THE CONTAINER PROBLEM IN BUBBLE-SORT GRAPHS

 1005

Fig. 4 Case II, Step 5.

Step 5 For each i(1•…i•…n-1, i•‚dn-1), select the shortest 

path from bi to d in Bn-1dn.

Figure 4 shows the internally disjoint paths between s and 

d after Step 5 in Case II.

3.3 Case III

We assume dn, dn-1•‚n in this case.

Step 1 For each i(1•…i•…n-2), construct the path from s 

to ci=(1,2,•c,i-1,i+1,,n-1,i,n). Let cn-1=s.

Step 2 For each i(1•…i•…n-1), select edge (ci, ci

Step 3 For each i(1•…i•…n-1, i•‚dn), let bi= 

(d1, d2,•c, dli-1, dli+1,•c, dn-1 i, dn) where dli=i, and 

 apply shortest in Bn-1 i to obtain the path from c(n-1)i 

 to bin-1).

Step 4 For each i(1•…i•…n-1, i•‚dn), select edge 

(b(n-1)i, bi). Note that b dn-1=d.

Step 5 In Bn-1dn, select the shortest path from c(n-1)dn to 

bdn=(d1,d2,•c, dln-1, dln+1,•c, dn-1, n, dn) where 

dln=n.

Step 6 For each i(1•…i•…n-1, i•‚dn-1), select the shortest 

path from b to d in Bn-1dn.

Figure 5 shows the internally disjoint paths between s and 

d after Step 6 in Case III.

3.4 Case IV

In this case, we assume s(n-1)=d.

Step 1 Select edge (s, d).

Step 2 For each i(1•…i•…n-2), select the shortest path 

from s to ci=(1,2,•c,i-1,i+1,•c,n-1,i,n).

Step 3 For each i(1•…i•…n-2), select edge (ci, c(n-1)i).

Step 4 For each i(1•…i•…n-2), let bi=

(d1, d2,•c, dli-1, dli+1,•c, dn-1, i, dn) where dli=i, and 

apply shortest in Bn-1i to obtain the path from c(n-1)i 

to b(n-1)i.

Fig. 5 Case III, Step 6.

Fig. 6 Case IV, Step 6.

Step 5 For each i(1•…i•…n-2), select edge (b(n-1)i,bi).

Step 6 For each i(1•…i•…n-2), select the shortest path 

from bi to d.

Figure 6 shows the internally disjoint paths between s and 

d after Step 6 in Case IV.

3.5 Case V

We assume dn=n-1, dn-1=n, and s(n-1)•‚d in this case. 

Step 1 Find h such that dh•‚h and di=i (h<i•…n-2). In

the following, we assume k=dh and dj=h.

Step 2 Apply shortest in Bn-1n to obtain the path from 

s to d(n-1)=(d1, d2,•c, dn-2, dn, dn-i). Select edge 

(d(n-1),d).

Step 3 Apply shortest in Bn-1(n-1) to obtain the path 

from d to s(n-1)=(1,2,•c,n-2,n,n-1). Select 

edge (s(n-1), s).



1006 
IEICE TRANS. INF. & SYST., VOL .E91-D, NO.4 APRIL 2008

Fig. 7 Case V, Step 8.

Step 4 For each i (1•…i•…n-2, i•‚k), select the shortest 

pathfroms to ci=(1,2,•c,i-1,i+1,•c,n-1,i,n) 

and edge (ci, c(n-1)i).

Step 5 For each i(1•…i•…n-2, i•‚

h), select the shortest path from d to bi=

(d1,d2,•c,dli-1,dli+1,•c,dn-1,i,dn) where dli=i, and 

select edge (bi, b(n-1)i).

Step 6 For each i (1•…i•…n-2, i•‚h,k), apply shortest 

in Bn-1i to obtain the path from c(n-1)i to b(n-1)i.

Step 7 If h=k, apply shortest in Bn-1h to obtain the path 

from c(n-1)h to b(n-1)k and terminate the process.

Step 8 Aply shortest in Bn-1h to obtain the path from 

c(n-1)h to ch=(-,-,•c,-,k,h), where-represents 

an arbitrary symbol other than k and h. Similarly, apply 
shortest in Bn-1k to obtain the path from b(n-1)k to 

bk=c(n-1)h Select edge (ch, bk).

Figure 7 shows the internally disjoint paths between s and 
d after Step 8 in Case V.

4. Proof of Correctness and Estimation of Complexity

Let T(n) and L(n) represent the time complexity of the pro-

posed algorithm and the maximum path length obtained by 
it for an n-bubble sort graph, respectively. Then, we can 
prove the following theorem by induction on n.

Theorem 1: n-1 paths generated by the proposed algo-
rithm are internally disjoint. The time complexity of their 

generation T(n) is O(n4), and the maximum path length L(n) 
is n(n+1)/2.

Proof: This is proved from the following Lemmas 1 to 5.

Lemma 1: The n-1 paths generated by the Case I proce-
dure are internally disjoint. The time complexity of the gen-
eration is T(n-1)+O(n3), and the maximum path length is 
max{L(n-1),(n+1)(n-2)/2+3}.

Proof: Step 1 is recursive, therefore from the induction 

hypothesis, these n-2 paths are internally disjoint
, and the 

time complexity and the maximum path length are T(n-1) 

and L(n-1), respectively. On the other hand, the path con-

structed by Steps 2 to 6 is outside the subgraph Bn-1n
, except 

for its two terminal nodes. Therefore the path is internally 

disjoint with the other n-2 paths. Additionally , the path 

consists of subpaths constructed by two applications of the 

shortest path routing algorithm and three edges . The path 

generated in Step 3 has n-2 edges at most, while the path 

generated in Step 5 has (n-1)(n-2)/2 edges. Therefore, 

the time complexity for the path construction is O(n3) and 

the maximum path length is (n+1)(n-2)/2+3.

Lemma 2: The n-1 paths generated by the Case II proce-

dure are internally disjoint. The time complexity of gener-

ation is O(n4), and the maximum path length is (n-1)(n+

2)/2.

Proof: The shortest path obtained in Bn-1n for each i in 

Step 1 is obtained by moving only i. All nodes on the short-

est path from cdn to d(n-1) have the integer dn at the semi 

final positions in their labels that make those nodes distinct 

from those on other shortest paths. Hence, it is clear that 

these paths are disjoint except for the source node s. The 

n-1 edges selected in Step 2 are disjoint because one of 

the terminal nodes of each of the edges are different nodes 

in Bn-1n and the other terminal nodes are in different sub-

graphs. Similar to Steps 1 and 2, the edges and paths ob-

tained in Steps 4 and 5 are disjoint except for the destination 

node d. Consequently, the n-1 paths obtained are internally 

disjoint.

In Step 1, the time complexity to construct the shortest 

subpath from s to c do by shortest is O(n3). To construct 

each of the remaining n-2 subpaths in Step 1, shortest 

finds the element i and performs at most n-2 exchange 

operations in O(n2) time. Hence, the total time complexity 

of Step 1 is O(n3). The time complexity of Step 2 is O(n2) in 

total since it takes O(n) to construct each edge. In Step 3, the 

shortest paths are obtained by shortest in n-1 subgraphs 

Bn-1i(1•…i•…n-1). Therefore, the time complexity is 

O(n4) in total. Similar to Step 2, the time complexity of 

Step 4 is O(n2). In Step 5, similar to the routing in Step 

1, each shortest path from bi to d is obtained by finding 

the element i in the label of bi and at most n-2 exchange 

operations. Therefore, the total time complexity of Step 5 is 

O(n3).

The maximum path length given in Step 1 is attained 

by the subpath from s to cdn, and its length is at most 

(n-1)(n-2)/2. However, cdn is identical to d(n) that is 

a neighbor node of the destination node, and the subpath 

is not included in the total maximum path. The remaining 

n-2 subpaths generated in Step 1 may be included in the 

total maximum path. These subpaths are obtained by mov-

ing only one element i from s. Hence, their maximum path 

length is n-2. The maximum path length given in Step 

2 is 1. Because the n-1 subpaths given in Step 3 are the 

shortest paths between two nodes c(n-1)i and b(n-1)i in Bn-1i



SUZUKI and KANEKO: THE CONTAINER PROBLEM IN BUBBLE-SORT GRAPHS 

1007

(1•…i•…n-1), their maximum path length is (n-1)(n-2)/2. 

The maximum path length in Step 4 is 1. Similar to Step 1 , 

the maximum path length in Step 5 is n-2. Consequently, 

the total maximum path is obtained by concatenating the 

subpaths whose lengths are n-2, 1, (n-1)(n-2)/2, 1, and 

 n-2. Therefore, the maximum path length is (n-1)(n+2)/2.

Lemma 3: The n-1 paths generated by the Case III pro-

cedure are internally disjoint. The time complexity of gen-

eration is O(n4), and the maximum path length is (n-1)(n+

2)/2.

Proof: Similar to the Lemma 2 proof, it is possible to 

prove that the n-1 paths obtained are internally disjoint.

Each subpath in Step 1 is obtained by finding the ele-

ment i and moving it to the appropriate position by at most 

n-2 exchange operations. Therefore, it takes O(n2) time 

 complexity to construct each path. Hence, Step 1 takes 

O(n3) time complexity in total. In Step 2, since it takes O(n) 

to construct each edge, O(n2) time complexity is required in 

total. In Step 3, the shortest paths are obtained in n-1 sub-

graphs Bn-1i(1•…i•…n-1) by shortest. Therefore, the 

time complexity is O(n4) in total. Similar to Step 2, the time 

complexit,i of Step 4 is O(n2). In Step 5, the shortest path 

from c(n-1)dn to dn is constructed in subgraph Bn-1dn. Hence, 
the time complexity is O(n3). Finally, similar to Step 1, the 

 time complexity of Step 6 is O(n3).
Similar to the proof of Lemma 2, the maximum path 

lengths of Steps 1 to 4 and 6 are n-2,1,(n-1)(n-2)/2, 
1, and n-2, respectively. For all the nodes on the subpath 

generated in Step 5, the final two elements in their label are 
n and dn in this order. Hence, the length of the subpath of 
Step 5 is at most(n-2)(n-3)/2. The candidate paths that 
may become the total maximum path are either the path that 

 consists of the subpaths of Steps 1 to 4, and 6 or the path 
that consists of the subpaths of Steps 1, 2, 5, and 6. The 
lengths of the former and latter paths are at most (n-2)+
1+(n-1)(n-2)/2+1+(n-2)=(n-1)(n+2)/2 and 

(n-2)+1+(n-2)(n-3)/2+(n-2)=n(n-1)/2, respectively. 
Therefore, the former gives the maximum path length.

Lemma 4: The n-1 paths generated by the Case IV pro-
cedure are internally disjoint. The time complexity of gen-
eration is O(n4), and the maximum path length is (n-1)(n+
2)/2.

Proof: Similar to the Lemma 2 proof, it is possible to 

prove that the n-1 paths obtained are internally disjoint. 
The time complexity of Step 1 is O(n), and the path length 
obtained is 1. The time complexities of Steps 2 and 6 are 
both O(n3), and the maximum path lengths are both n-2. 
Additionally, the time complexities of Steps 3 and 5 are both 

O(n2), and only one edge is obtained in each step. Finally, 
the time complexity of Step 4 is O(n4), and the maximum 

path is (n-1)(n-2)/2. The total maximum path is at-
tained by concatenating the subpaths generated in Steps 2 to 
 6 whose total length is (n-1)(n+2)/2.

Lemma 5: The n-1 paths generated by the Case V proce-

dure are internally disjoint. The time complexity of genera-

tion is O(n3), and the maximum path length is n(n+1)/2.

Proof: Step 2 constructs the path using the shortest al-

gorithm, such that it first moves k to the right, then keeps the 

position of k to proceed to d(n-1). However, Step 3 obtains 

the shortest path in Bn-1n for each i(•‚k) by moving only 

i to the right. Therefore, the paths obtained in Step 4 are 

disjoint, except for the source node s and they are disjoint 

with the path obtained in Step 2, except for s. The n-1 

edges obtained in Step 4 each have terminal node in Bn-1n, 

but they are all different nodes. The other nodes for these 

edges are in different subgraphs. Therefore, these edges are 

disjoint. The paths and edges obtained in Steps 3 and 5 are 

disjoint, except for the destination node, similar to the paths 

and edges obtained in Steps 2 and 4. The paths obtained in 

Step 6 are in different subgraphs and are disjoint. Moreover, 

all nodes included in the paths or the edges obtained in Steps 

7 and 8 belong to subgraphs Bn-1h or Bn-1k. Then, they are 

disjoint with the other paths. Consequently, the n-1 paths 

obtained are internally disjoint.

The time complexity of Step 1 is O(n). The time com-

plexities of Steps 2 to 5 are all O(n3). The time complexity 

of Step 6 is O(n4), and the time complexities of Steps 7 and 

8 are both O(n3).

The path lengths of Step 2 and 3 are both (n-2)(n-

3)/2+1. The maximum path lengths generated in Steps 4 

and 5 are both n-1. The maximum path length of Step 6 

is (n-1)(n-2)/2. The maximum path lengths of Steps 7 

and 8 are (n-1)(n-2)/2 and (n-1)(n-2)/2+1, respec-

tively. The lengths of the paths between s and d generated 

in Steps 1 and 2 are at most (n-2)(n-3)/2+1. There-

fore, the total maximum path is attained by concatenating 

the subpaths generated by Steps 4, 5, and 8, and its length is 

(n-1)+(n-1)+(n-1)(n-2)/2+1=n(n+1)/2.

5. Experiment for Evaluation

To evaluate the average performance of the algorithm, we 

conducted a computer experiment by randomly sampling 

the destination node as follows: 

1. For each n=3,4,•c,60, repeat the following steps 

100,000 times.

2. Fix the source node to s=(1,2,•c,n).

3. Select the destination node d randomly other than s.

4. For s and d , apply the algorithm and measure the ex-

ecution times and path lengths.

The algorithm was implemented using programming lan-

guage C. The program was compiled using a gcc compiler 

with a -02 option. A target machine with an Intel Pentium 

IV, 2.4 GHz CPU, 256 MB main memory, and a Linux op-

erating system was selected as the execution environment. 

The average execution times and the lengths of paths ob-

tained by this experiment are shown in Figs. 8 and 9, re-

spectively. From Fig. 8, we can see that the average execu-



1008
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

Fig. 8 Average execution time.

Fig. 9 Length of each path.

tion time is O(n3.5). Also, from Fig. 9, we can see that the 
average length of each path is O(n1.95)

6. Conclusion

In this paper, we have presented an algorithm that generates, 
for two arbitrary nodes in an n-bubble-sort graph, n-1 in-
ternally disjoint paths between those nodes. Moreover, we 
have proved the correctness of the algorithm and shown that 
its time complexity is O(n4), and the maximum path length 
is n(n+1)/2. Additionally, we have estimated the average 

performance of the algorithm by randomly sampling desti-
nation nodes. The results show that the average time com-

plexity is O(n3.5), and the average path length is O(n1.95).
Future works include a more precise performance eval-

uations of the algorithm, and performance improvement 
with respect to the time complexity and path lengths. We 
will also apply our approach to a modified bubble-sort 
graph, which is obtained by relaxing the exchange operation 
to permit the first and last symbols.

Acknowledgment

We really appreciate the anonymous reviewers for their con-

structive suggestions and insightful comments.

This study is partly supported by a Fund of the Min-

istry of Education, Culture, Sports, Science and Technol-

ogy Japan for Promoting Research on Symbiotic Informa-

tion Technology. It is also partly supported by a Grant-in-

Aid for Scientific Research (C) of the Japan Society for the 

Promotion of . Science under Grant No. 19500022.

References

[1] S.B. Akers and B. Krishnamurthy, •gA group-theoretic model for 

symmetric interconnection networks,•h IEEE Trans. Comput., vol.38, 

no.4, pp. 555-566, April 1989.

[2] F.S. Annexstein and M. Baumslag, •gA unified approach to off-line 

permutation routing on parallel networks,•h Proc. 2nd Annual ACM 

Symposium on Parallel Algorithms Architectures, pp. 398-406, July 

1990.

[3] J.C. Bermond and C. Peyrat, •gDe Bruijn and Kautz networks-A 

competitor for the hypercube?,•h Proc. 1st European Workshop on 

Hypercubes and Distributed Computers, pp. 279-293, Oct. 1989.

[44] P.F. Corbett, •gRotator graphs: An efficient topology for point-to-

point multiprocessor networks,•h IEEE Trans. Parallel Distrib. Syst., 

vol.3, no.5, pp. 622-626, May 1992.

[5] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough, •gThree 

disjoint path paradigms in star networks,•h Proc. IEEE Symposium 

on Parallel and Distributed Processing, pp. 400-406, Dec. 1991.

[6] W.H. Gates and C.H. Papadimitriou, •gBounds for sorting by prefix 

reversal,•h Discrete Mathematics, vol.27, pp. 47-57, 1979.

[7] Q.P. Gu and S. Peng, •gNode-to-set disjoint paths problem in star 

graphs,•h Inf. Process. Lett., vol.62, no.4, pp. 201-207, April 1997.

[8] Y. Hamada, F. Bao, A. Mei, and Y. Igarashi, •gNonadaptive fault-

tolerant file transmission in rotator graphs,•h IEICE Trans. Funda-

mentals, vol.E79-A, no.4, pp. 477-482, April 1996.

[9] K. Kaneko and Y. Suzuki, •gAn algorithm for node-to-set disjoint 

paths problem in rotator graphs,•h IEICE Trans. Inf. & Syst., vol.E84-

D, no.9, pp. 1155-1163, Sept. 2001.

[10] K. Kaneko and Y. Suzuki, •gNode-to-set disjoint paths problem 

in pancake graphs,•h IEICE Trans. Inf. & Syst., vol.E86-D, no.9, 

pp. 1628-1633, Sept. 2003.

[11] D.E. Knuth, Axioms, and Hulls, Lecture Notes in Computer Sci-

ence, vol.606, Springer, 1992.

[12] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting 

and Searching, 2nd Edition, Addison-Wesley, 1998.

[13] S. Lakshmivarahan, J.S. Jwo, and S.K. Dhall, •gSymmetry in inter-

connection networks based on cayley graphs of permutation groups: 

A survey,•h Parallel Comput., vol.19, no.4, pp. 361-407, April 1993.

[14] S. Latifi and P.K. Srimani, •gTransposition networks as a class of 

fault-tolerant robust networks,•h IEEE Trans. Comput., vol.45, no.2, 

pp. 230-238, Feb. 1996.

[15] S. Madhavapeddy and I.H. Sudborough, •gA topological property of 

hypercubes-Node disjoint paths,•h Proc. Second IEEE Symposium 

on Parallel and Distributed Processing, pp. 532-539, Dec. 1990.

[16] M.O. Rabin, •gEfficient dispersal of information for security, load 

balancing, and fault tolerance,•h J. ACM, vol.36, no.2, pp. 335-348, 

1989.

[17] C.L. Seitz, •gThe cosmic cube,•h Commun. ACM, vol.28, no.1, pp. 22-

33, Jan. 1985.

[18] Y. Suzuki and K. Kaneko, •gAn algorithm for node-disjoint paths 

in pancake graphs,•h IEICE Trans. Inf. & Syst., vol.E86-D, no.3, 

pp. 610-615, March 2003.



SUZUKI and KANEKO: THE CONTAINER PROBLEM IN BUBBLE-SORT GRAPHS 

1009

[19] Y. Suzuki and K. Kaneko, •gAn algorithm for disjoint paths in bubble-

sort graphs,•h Systems and Computers in Japan, vol.37, no.12, pp. 27-

32, Nov. 2006.

[20] C.H. Yeh and E.A. Varvarigos, •gMacro-star networks-Efficient 

low-degree alternatives to star graphs,•h IEEE Trans. Parallel Distrib. 

Syst., vol.9, no.10, pp. 987-1003, Oct. 1998.

Yasuto Suzuki is now working with Fu-
jitsu Access Co. Ltd., His research interests 
include graph and network theories and fault-
tolerant systems. He received the B.E., M.E. and 
Ph.D. degrees from Tokyo University of Agri-
culture and Technology in 2001, 2003 and 2006, 
respectively.

Keiichi Kaneko is an Associate Professor 
at Tokyo University of Agriculture and Technol-
ogy. His main research areas are functional pro-

gramming, parallel and distributed computation, 
partial evaluation and fault-tolerant systems. He 
received the B.E., M.E. and Ph.D. degrees from 
the University of Tokyo in 1985, 1987 and 1994, 
respectively. He is also a member of ACM, 
IPSJ, and JSSST.


