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SUMMARY The single-hidden-layer feedforward neural networks 
(SLFNs) are frequently used in machine learning due to their ability which 
can form boundaries with arbitrary shapes if the activation function of hid-
den units is chosen properly. Most learning algorithms for the neural net-
works based on gradient descent are still slow because of the many learn-
ing steps. Recently, a learning algorithm called extreme learning machine 
(ELM) has been proposed for training SLFNs to overcome this problem. It 
randomly chooses the input weights and hidden-layer biases, and analyti-
cally determines the output weights by the matrix inverse operation. This 
algorithm can achieve good generalization performance with high learn-
ing speed in many applications. However, this algorithm often requires 
a large number of hidden units and takes long time for classification of 
new observations. In this paper, a new approach for training SLFNs called 
least-squares extreme learning machine (LS-ELM) is proposed. Unlike the 
gradient descent-based algorithms and the ELM, our approach analytically 
determines the input weights, hidden-layer biases and output weights based 
on linear models. For training with a large number of input patterns, an on-
line training scheme with sub-blocks of the training set is also introduced. 
Experimental results for real applications show that our proposed algorithm 
offers high classification accuracy with a smaller number of hidden units 
and extremely high speed in both learning and testing.
key words: neural networks, single hidden-layer feedforward neural net-
works, extreme learning machine, least-squares scheme, linear model

1. Introduction

An approach massively used in machine learning is the neu-
ral network. It can provide proper models for the various 
types of problems which are difficult to be solved by clas-
sical parametric techniques and approximate complex non-
linear mappings directly from the input patterns. Tradition-
ally, training networks has based on gradient descent meth-
ods. However, they are generally very slow due to improper 
learning rates or local minima. There are many improve-
ments proposed by researchers to obtain better learning per-
formance [1]-[5]. A choice of the initial values for weights 
to improve the learning speed of networks was proposed by 
D. Nguyen and B. Widrow [1]. Jim Y.F. Yam and Tommy 
W.S. Chow [2] proposed a method based on multidimen-
sional geometry to determine optimal biases and the mag-
nitude of initial weight vectors. A recursive Levenberg-
Marquardt algorithm uses the second-order information to 
overcome slow training convergence instead of using the 
first-order information of the cost function [6], [7]. In addi-

tion, there are many methods proposed by many researchers 
to overcome overfitting in training [8], [9]. However, most 
training algorithms based on the gradient descent are still 
slow due to the many learning steps which may be required 
to achieve the goal. In addition, several studies have re-

ported that support vector machines (SVMs) are able to ob-
tain higher classification accuracy than the other existing 
data classification algorithms [10]-[13]. However, they may 
take long time to select proper models for some applica-
tions. Therefore, the model selection has become a critical 
issue for the SVM which has been addressed by a number 
of recent works [14]-[16].

Nevertheless, Huang et al. [17] showed that a single 
hidden-layer feedforward neural network (SLFN) with any 
continuous bounded non-constant activation function or any 
bounded activation function which has unequal limits at in-
finities can form decision regions with arbitrary shapes. A 
learning algorithm called extreme learning machine (ELM) 
was proposed for training SLFNs [18], [19]. It randomly 
chooses the input weights and hidden-layer biases, and then 
the output weights of the SLFN can be calculated through 
the inverse operation of the output matrix of hidden layer. 
This algorithm provides better generalization performance 
with high learning speed in many applications, even when 
compared to the SVM approaches [18]. However, the ELM 
often requires a large number of hidden units and takes long 
time for classification of input patterns.

In this paper, we investigate a new approach for train-
ing SLFNs called least squares extreme learning machine 

(LS-ELM) which can reduce the number of hidden units 
while producing better performance and faster classification 
than other ELMs. Unlike the ELM algorithms, our approach 
analytically determines the input weights, hidden-layer bi-
ases and output weights based on a two-stage linear model. 
First, the input weights and the hidden-layer biases are de-
termined through the pseudo-inverse operation of the matrix 
of training data, and then the output weights are determined 
through the pseudo-inverse operation of the output matrix 
of hidden layer. For training with a large number of input 

patterns, an online training scheme with sub-blocks of the 
training data set is also introduced. Experimental results 
show that this approach yields good classification perfor-
mance with significant reduction of the number of hidden 
units, and therefore both learning and testing speeds are ex-
tremely high.

The rest of this paper is organized as follows. Section 
2 reviews the single hidden-layer feedforward neural net-
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works (SLFNs) and the extreme learning machine (ELM) . 

In Sect. 3, we propose the new approach for training SLFNs 

called least-squares extreme learning machine (LS-ELM)
, 

which is based on the two-stage linear model for determin-

ing the network weights. Section 4 presents the online train-

ing scheme with the two-stage linear model . Experimental 

results and analysis are shown in Sect . 5. Finally, we make 

a conclusion in Sect. 6.

2. Review of Related Works

2.1 Single Hidden-Layer Feedforward Neural Networks

If hidden units adopt an activation function f(•E) , then the ith 

output of the SLFN with N hidden units and C output units 

can be expressed as

Oji=hj•Eai, (1)

where hj=[f(w1•Exj+b1), f(w2•Exj+b2),•c ,f(wN•Exj+

bN)]T is the output vector of the hidden layer corresponding 

to the jth input pattern xj•¸Rd, ai=[ai1,ai2,•c ,aiN]T is the 

output weight vector connecting from hidden units to the ith 

output unit, bm is the bias of the mth hidden unit, and wm=

[wm1,Wm2,•c,wmd]T is the input weight vector connecting 

from input units to the mth hidden unit. Note that p•Eq=<

p, q>is the inner product of two vectors p and q. This 

notion of SLFNs is depicted in Fig, 1.

For n training patterns (xj,tj), j=1,2,•c,n, where 

xj=[xi1,xj2,•c,xjd]T and tj=[tj1,tj2,•c,tjc]T are the jth 

input pattern vector and its corresponding target vector, re-

spectively, the main goal of training process is to adjust the 

network weights wm, bm and ai in order that they minimize 

the error function defined by 

(2)

In gradient descent algorithms, the minimization procedure 
is performed by iteratively adjusting the set of vectors z con-
sisting of weights (wm,ai) and biases bm as

(3)

Fig. 1 The architecture of the SLFN.

where ƒÅ is a learning rate. A popular training algorithm 

for the feedforward neural networks is the back-propagation 

(BP) algorithm in which gradients can be calculated and the 

vectors z can be updated by error propagation from the out-

put to the input.

This iterative gradient-descent-based algorithm has 

many drawbacks such as slow convergence
, oscillation or 

divergence due to the improper learning rate , over-training 
and local minima. Many approaches have been proposed 

to improve the BP learning algorithm [1]-[5]
, [8]. However, 

most learning algorithms for neural networks based on the 

gradient descent are still slow. Recently, an efficient learn-

ing algorithm for SLFNs called extreme learning machine 

(ELM) was proposed by Huang et al. [18], [19].

2.2 Extreme Learning Machine (ELM)

In the ELM algorithm, the input weights and hidden layer 

biases are randomly assigned, and the output weights of the 

SLFN can be analytically determined by the simple inverse 

operation of the output matrix of hidden layer. Clearly , an 

SLFN with N hidden units can approximate N input patterns 

(n=N) with zero error. This means there exist network 

weights w, a and biases b such that

tji=hj•Eai, j=1,2,•c,n; i=1,2,•c ,C. (4)

This equation can be written as 

HA=T, (5)

where H is called the hidden layer output matrix of the 

SLFN and defined as [18]

T=[ti,t2,•c,tn]T, (7)

and

A=[a1,a2,•c, ac]. (8)

In [18], authors proved that the hidden layer output ma-

trix H is invertible when the number of training patterns 

equals the number of hidden units (n=N) and the acti-

vation function is infinitely differentiable in any interval of 

R. So, we can determine the output weight matrix A with 

zero training error by simply inverting H in which the in-

put weights wm and the biases bm can be randomly chosen. 

When the number of hidden units is less than the number 

of training patterns (N<n), the output weight matrix A 

can also be determined by the pseudo-inverse of H, which is 

formulated as
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A=H•õT, (9)

where H•õ is the Moore-Penrose generalized inverse of the 

hidden layer output matrix H [20]. We can summarize the 

extreme learning machine (ELM) algorithm as follows:

Step 1. Randomly assign the input weights Wm and the hid-

den layer biases bm, m=1,2,•c,N.

Step 2. Determine the output matrix H of the hidden layer 

by Eq. (6).

Step 3. Determine the output weight matrix A by Eq. (9).

When the whole training set is not available, a devel-

opment of the ELM called online sequential extreme learn-

ing machine (OS-ELM) was proposed by N. Y. Liang et 

al. [21]. It is an online sequential learning algorithm for 

SLFNs based on the ELM and can learn one-by-one or 

block-by-block of data. In the OS-ELM, the input weights 

and the hidden layer biases are also randomly chosen and the 

output weights can be updated by arriving data. Because of 

random selection, the input weights and hidden layer biases 

in both ELM and OS-ELM algorithms might be non-optimal 

which tends to require more hidden units than conventional 

tuning-based algorithms in many applications.

3. Two-Stage Linear Model

The ELM algorithm often requires a large number of hid-

den units for achieving a proper level of training accuracy. 

Therefore, a larger network size is required which causes a 

larger computation for training and limitation for classifica-

tion applications. This drawback is mainly caused by the 

random selection of the input weights and hidden layer bi-

ases. Thus, we claim that SLFNs can be improved if the 

input weights and the hidden layer biases are properly cho-

sen.

The aim of our study was to develop an efficient learn-

ing algorithm for SLFNs with a smaller number of hidden 

units while producing better generalization capability and 

faster computation. Instead of randomly choosing or itera-

tively adjusting the input weights and biases as in the ELM, 

OS-ELM or BP, our approach estimates them analytically by 

using a least-squares scheme. Determining the weights and 

biases of SLFNs consists of two stages. In the first stage, 

the input weights and the hidden layer biases are estimated 

based on the linear model. Then, the output weights are de-

termined by the second linear model.

From Eq. (5), if we assume that the output weight ma-

trix A is determined then the hidden layer output matrix H 

can be estimated as

H=TA•õ, (10)

where A•õ is the Moore-Penrose generalized inverse of A. 

For an invertible function f(•E), we have 

II =f-1[TA•õ], (11)

where f-1 [TA•õ]jm=f-1([TA•õ)]jm) and

If we define the matrix B•¸RC•~N by

B=T•õf-1[TA•õ], (13)

where T•õ is the pseudo-inverse of T, then Eq. (11) becomes

II=TB. (14)

Define the input matrix as

and let W be the matrix of input weights and biases defined 

by

Then, it follows that

XW=TB. (17)

The minimum norm solution for W among all possible so-

lutions is

W=X•õTB, (18)

where X•õ is the pseudo-inverse of X.

At the beginning of the learning process, the matrix A 

is unknown. Therefore, instead of estimating matrix B by 

Eq. (13), we can randomly assign values for B, and then es-

timate the matrix of input weights and biases W by Eq. (18). 

After estimating the input weights Wm and the hidden layer 

biases bm(m=1,2,•c,N), we can calculate the hidden 

layer output matrix H by Eq. (6) and the output weight ma-

trix A by Eq. (9). In summary, the two-stage linear model 

for training SLFNs can be described as follows: 

Given a training set S={(xj,tj)•bj=1,•c,n}, an activation 

function f(•E) and the number of hidden units N,

1. Randomly assign values for the matrix B.

2. Estimate the input weights Wm and biases bm by 

Eq. (18).

3. Calculate the hidden layer output matrix H by Eq. (6).

4. Determine the output weights by Eq. (9).

Thus, the parameters of networks can be determined by the 

non-iterative procedure, which results in very fast training 

process compared to conventional iterative learning algo-

rithms for SLFNs.

Although we select random values for the matrix B•¸

RC•~N, in comparison with the original ELM or the OS-ELM, 

the number of random values required is significantly re-

duced from (d+1)•~N to C•~N when the number of classes 

denoted by C is much smaller than the number of fea-

tures denoted by d, which is usual in most of the pattern 

classification applications. Furthermore, SLFNs trained by
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our proposed method can have a small number of hidden 

units, which can further reduce the number of random val-

ues. In addition, the solution for the input weights and 

hidden-layer biases by Eq. (18) is the minimum norm so-

lution. As analyzed by Peter L. Bartlett [22], the networks 

tend to have better generalization performance with small 

weights. Therefore, our proposed approach with small norm 

weights can be expected to give better performance than the 

original ELM.

4. Online Training with Two-Stage Linear Model

When the amount of training data is very large or when 

memory costs are very expensive, an online training method 

should be addressed. Updating the output weight matrix 

based on the recursive least-squares solution is given by

(19)

(20)

where the initialization of P and A is given by P0=

(HT0H0)-1 and A(0)=P0HT0T0[21].

Now, we must estimate the input weights and biases for 

SLFNs. From Eq. (18), the matrix B•¸RC•~N is randomly 

chosen which does not depend on arriving data. Therefore, 

it is just randomly chosen once, and then the parameters of 

SLFNs are recursively adjusted. We consider the case when 

rank(X)=d+1, where d is the number of input features. The 

pseudo-inverse of X is given by X•õ=(XTX)-1XT. Hence, 

the estimation of W in Eq. (18) is given by

W=(XTX)-1XTTB. (21)

Thus, the minimum norm solution for the initial train-

ing subset S0={(xj, tj)•bj=1,•c,n0} can be W(0)=

L-10XT0T0B, where X0=
[ X1 X2•cXn0

1 1•c1

] T

,T0=

[ t1 t2•ctn]T and L0=XT0X0.

Suppose now that there are n1 observations of the sec-

ond training subset S1={(xj,tj)•bj=n0+1,•cn0+n1}. 

The input weights and biases can be estimated by

where

By expanding the last three terms on the right side of 
Eq. (22), we have

By substitution into Eq. (22), we obtain 

W(1)=L-11(L0W(0)+XT1T1B)

=L-11((L1-XT1X1)W(0)+XT1T1B)

=W(0)+L-11XT1(T1B-X1W(0))

In generalization, for nk+1 observations of the (k+1)th 

training subset Sk+1={(xj,jt)•bj=ƒ°kj=0nj+1,•c,ƒ°k+1j=0nj}, 

the input weights and biases can be determined by 

W(k+1)=W(k)+L-1k+1XTk+1(Tk+1B-Xk+1W(k)) (23)

Lk+1=Lk+XTk+1Xk+1 (24)

where

and

Tk+1=[tƒ°kj
=0nj+1tƒ°kj=0nj+2

•ctƒ°k+1j=0nj]T. Let Qk+1=L-1k+1, then Qk+1 is expressed by Woodbury iden-

tity as [23]

Qk+1=(Lk+XTk+1Xk+l)-1

=L-1k-L-1kXTk+1(I+Xk+1L-1k XTk
+1)-1Xk+1L-1k

=Qk-QkXTk+1(I+Xk+1QkXTk+1)-1Xk+1Qk.

Finally, the updating formula for W(k+1) is given by

W(k+1)=W(k)+Qk+1XTk+1(Tk+1B-Xk+1W(k)), (25)

where

Qk+1=Qk-QkXTk+1(I+Xk+1QkXTk+1)-1Xk+1Qk. (26)

In summary, the online training scheme for SLFNs 

with the two-stage linear model can be described as follows: 

Given a training set S={(xj,tj)•bj=1,•c,n}, an activation 

function f(•E) and the number of hidden units N, 

1) Initialization: For the initial training subset S0=

{(xj,tj)•bj=1,•c,n0},

i. Assign random values for the matrix B•¸RC•~N.

ii. Calculate the initial input weights and biases by

W(0)=Q0XT0T0B, where 

Q0=(XT0X0)-1,

and

T0=[t1 t2•ctn0]T.
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iii. Calculate the initial hidden layer output matrix

iv. Determine the initial output weights by

A(0)=P0HT0T0, where P0=(HT0H0)-1.

2) Training process: For the (k+1)th training subset Sk+1=

{(xj,tj)•bj=ƒ°kj=0nj+1,•c,ƒ°Jk+1j=0nj},

i. Estimate the input weights and biases by

ii. Calculate the partial hidden layer output matrix 

Hk+1 by

iii. Determine the output weights by

Pk+1=Pk-PkHTk+1(I+Hk+1PkHTk+1)-1Hk+1 Pk

A(k+1)=A(k)+Pk+1HTk+1(Tk+1-Hk+1A(k)).

iv. Setk=k+1 and repeat.

The training algorithm consists of two processes which are 

the initialization process and the training process. In the ini-

tialization process, the matrix B is assigned randomly, and 

then the initial weights and the hidden-layer biases are deter-

mined based on the initial training subset S0. The number 

of patterns for S0 should be at least max{N,d+1}. In the 

training process, the weights and biases of SLFNs are up-

dated for each arriving training subset Sk+1(k=0,•c,K-1), 

where xn•¸SK, which implies that each input pattern is in-

volved in training only once and the total number of training 

subsets is K+1 including S0.

5. Experimental Results and Analysis

In this section, we report the performance comparison of our 

least squares extreme learning machine (LS-ELM) with the 

ELM algorithm and other popular training algorithms for 

SLFNs such as the back-propagation (BP) and support vec-

tor machines (SVMs). We investigated two real application 

problems of medical diagnosis and image segment classi-

fication. Experiments were run in a low power personal 

computer that has the CPU of Pentium M with 1.3GHz 

and RAM of 256MB. The algorithms BP, ELM and our 

LS-ELM were implemented in MATLAB 7.0 environment . 

The activation function used in our proposed algorithms 

is a simple sigmoidal function f(x)=1/(1+exp(-x)) . 

The SVM was implemented by using the compiled C-coded 

SVM packages: LIBSVM•õ running in the same PC and us-

ing the radial basis function kernel.

5.1 Medical Diagnosis Application: Diabetes

We first evaluate our LS-ELM with the real medical diag-

nosis problem of diabetes using the •gPima Indians Diabetes 

Databases•h. The binary-valued diagnostic was investigated 

whether a patient showed signs of diabetes according to 

World Health Organization criteria. The data set consists of 

768 patterns of female patients. Each pattern consisting of 

8 input features with values in the range from 0.0 to 1.0 be-

longs to either positive or negative class. In our experiments, 

the outputs have been normalized into the range [-1, 1]. As 

usually done in [18], [24]-[27], the training set is 75 percent 

of the pattern data set and the rest 25 percent is used as the 

test set.

The average results of fifty trials are shown in Tables 

1 and 2. The number of hidden units of our approach is 

equal to that of the BP and five times smaller than that of 

the ELM. Thus, with analytically determined weights and 

biases, the training and testing speeds are extremely high, 

even though they are compared to the ELM algorithm. Our 

LS-ELM algorithm spent 0.0032s CPU time for training; it 

runs about 839 times faster than the BP, 46 times faster than 

the SVM, and three times faster than the ELM. The testing 

time of our approach is about 116 times shorter than that 

of the SVM, 12 times shorter than that of the BP and five 

times shorter than that of the ELM. In addition, it can be 

seen from Table 3 that our approach can obtain the testing 

accuracy of 77.60% , which is compatible with the ELM, 

while better than the BP and all results for the same data 

set shown in the literature using various popular algorithms 

such as SAOCIF [25], SVM [18], Cascade-Correlation [25], 

AdaBoost [26], C4.5 [26] and RBF [27].

Table 1 Performance comparison for diabetes: Time(s).

Table 2 Performance comparison for diabetes: Classification Accu-
racy(%).

•õ SVM Source Codes: www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3 Performance comparison with other methods: diabetes .

Table 4 Performance comparison for Image segmentation: time(s).

Table 5 Performance comparison for Image segmentation: classification 

accuracy(%).

5.2 Image Segmentation Application

In this section, we present the evaluation of our LS-ELM 

for the image segmentation data set consisting of seven 

classes [30]. Each pattern in the data set is a 3•~3 region ran-

domly drawn from a database of 7 outdoor images. The aim 

is to classify each region into one of seven classes: brick-

face, sky, foliage, cement, window, path and grass. 19 at-

tributes extracted from the square region were used as the 

input features. In our experiments, 1500 training patterns 

and 810 testing patterns were randomly drawn from the en-

tire data set for each trial and all attributes were normalized 

into the range [-1,1].

The average results of fifty trials are shown in Tables 

4 and 5. As we expected based on the results of medical 

diagnosis application, our approach can obtain the testing 

accuracy of 95.60% using 180 hidden units with learning of 

about 3828 times faster than the BP and slightly faster than 

the ELM. The testing time is shorter than that of the ELM 

and longer than that of the BP because our LS-ELM uses 

more hidden units than the BP for the testing accuracy of 

95.60% . However, for testing accuracy of 95.12% which 

is compatible with the ELM and higher than the BP, our ap-

Table 6 Performance comparison with other methods: Image segmenta-

tion.

Fig. 2 Comparison of our approach with ELM for different numbers of 

hidden units.

Fig. 3 Comparison of our approach with ELM on the training time.

proach uses 95 hidden units which is slightly fewer than the 
BP and twice fewer than the ELM. In this case, our approach 
is much faster than the BP and the ELM for both training 
and testing. In literature, results for the same data set us-
ing other popular algorithms such as OS-ELM [21], GAP-
RBF [29] and MRAN [31] are shown in Table 6. For this 
image segment classification problem, our approach is also 
better than others in various performance criteria.

The performance comparison of our approach with the 
ELM on the testing set for different numbers of hidden units 
ranging from 2 to 200 at the interval of 1 is shown in Fig. 2. 
It can be seen that our approach can obtain better perfor-
mance than the ELM with the same number of hidden units,
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which implies that our approach can obtain good perfor-

mance with a smaller number of hidden units . Hence, its 

training time is shorter than that of the ELM for the same 

performance as shown in Fig. 3.

6. Conclusion

In this paper, a new approach for training single hidden-

layer feedforward neural networks (SLFNs)
, least-squares 

extreme learning machine (LS-ELM), was proposed . The 

main distinction of the proposed algorithm is that the 

weights and biases can be determined by the non-iterative 

two-stage linear model. They do not need to be neither iter-

atively adjusted as the back-propagation (BP) nor randomly 

chosen as the original extreme learning machine (ELM) . 

The recursive online training method with sub-blocks of the 

training data set can be applied when the volume of training 

data set is very large. The important advantage of the pro-

posed algorithm, in comparison with ELMS, is that the net-

work weights including hidden layer biases are determined 

by the smallest norm least-squares solution and the number 

of hidden units can be reduced, which results in time reduc-

tion for both training and testing. It also produces a good 

generalization capability by showing compatible or better 

results than those of the ELM and other popular classifica-

tion algorithms for the single hidden-layer feedforward neu-

ral networks.
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