
990

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

PAPER

Recursion Theoretic Operators for Function Complexity Classes*

Kenya UENO•õa), Student Member

SUMMARY We characterize the gap between time and space com-

plexity of functions by operators and completeness. First, we introduce

a new notion of operators for function complexity classes based on recur-

sive function theory and construct an operator which generates FPS PACE

from FP. Then, we introduce new function classes composed of functions

whose output lengths are bounded by the input length plus some constant.

We characterize FP and FPS PACE by using these classes and operators.

Finally, we define a new notion of completeness for FPS PACE and show

a FPS PACE-complete function.

key words: recursive function theory, function complexity classes, opera-

tors for complexity classes

1. Introduction

Recursive function theory expresses the computable func-

tion class as the smallest class containing some initial func-

tions and closed under operators that generate new func-

tions. Similarly, it is known that many function complexity

classes are characterized by recursion theoretic scheme [3],

[12]. Grzegorczyk [5] introduced the hierarchical classes
ƒÃn by composition and an operator called bounded recur-

sion. Later, Ritchie [11] showed that ƒÃ2 is equal to the lin-

ear space computable function class. Cobham [4] charac-

terized FP by composition and bounded recursion on nota-

tion. Thompson [15] characterized FPS PACE by composi-

tion and bounded recursion.

Whereas these studies expanded various fields [2] and

have many interesting applications, there have been no at-

tempts to study the relation among function complexity

classes from a recursion theoretic viewpoint. The current

studies are only concerned with how to characterize function

complexity classes simpler way or fewer initial functions.

However, this direction is useless when we set our goal sep-

aration of complexity classes. It is the relation among them

that is the most important thing for separation. From this

perspective, we extend the notion of operators to operators

that act on general function complexity classes.

Operators for complexity classes are useful to clarify

the relation among them [10], [17], [18]. Toda's theorem

PH•ºPPP [16] makes use of some properties of operators.

There are many operators studied like 3 and •Í, which are the

operators that generates NP and coNP from P respectively.

Many other operators that express the gaps between P and

complexity classes like RP, BPP, PP and (+)P have been also

studied. Then, what about the case of P and PS PACE? Is

there any appropriate one that simply expresses the gap be-

tween P and PS PACE? In fact, it is hard to construct it

because operators like •Î and •Í are defined according to the

number of accepting configurations. However, in the case of

function complexity classes, we can say that there exists an

appropriate one.

Function complexity classes related with NP are stud-

ied widely [13]. However, there are few studies about

FPSPACE. In this paper, we clarify the structure of

FPS PACE. The importance of this study is that we show

•g functions can do what languages cannot do•h. This is one

of the few examples which clearly indicate merits of stud-

ies on function complexity classes compared with language

complexity classes.

We construct an operator which exactly expresses the

gap between FP and FPSPACE. We introduce new opera-

tors Comp* and BRec and show

FPSPACE=Comp*(BRec(FP)).

This result can be generalized. For example, this operator

generates the linear space computable function class from

the linear time computable function class as

FS PACE(n)=Comp*(BRec(FTIME(n))).

Moreover, we introduce an operator RecN and new

function complexity classes AGTIME and AGSPACE. We

show the structures of FP and FPSPACE by showing

FP=Comp*(RecN(AGTIME))

and

FPSPACE=Comp*(RecN(AGSPACE)).

The case of FP is proven by simulating a polynomial time

bounded deterministic Turing machine by using a function

called •gstep•h, which receives a configuration and returns the

next configuration. To prove the case of FPSPACE, we in-

troduce a new function called •gnext•h and substitute it for the

function step. It simulates partial works of a deterministic

Turing machine by manipulating configurations within lim-

ited space.

Manuscript received August 27, 2007.

Manuscript revised November 30, 2007.

•õ The author is with the Department of Computer Science,

Graduate School of Information Science and Technology, The Uni-

versity of Tokyo, Tokyo, 113-8656 Japan.
*This paper was presented at The 16th Annual International

Symposium on Algorithms and Computation (ISAAC 2005),

Sanya, Hainan, China, December, 2005.

a) E-mail: kenya@is.s.u-tokyo.ac.jp

DOI: 10.1093/ietisy/e91-d.4.990

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

UENO: RECURSION THEORETIC OPERATORS FOR FUNCTION COMPLEXITY CLASSES

991

The function next contains a further implication. We

introduce completeness for FPSPACE, which is a new no-

tion while there is a study about completeness for polyno-

mial space counting classes [9], and show that this function

is FPSPACE-complete under FP Turing reductions. It is

also FSPACE(n)-complete under FTIME(n) Turing reduc-

tions. Thus, we can say that next exactly expresses the gap

between time and space.

2. Function Complexity Classes

We assume that the readers are familiar with the basic no-

tion of the Turing machine, resource bounded computations

and the definitions of complexity classes such as P and

PSPACE. A configuration is a representation of the whole

state of a Turing machine at a certain time.

Functions discussed in this paper are partial and single-

valued functions from natural numbers to a natural num-

ber. If we say that a Turing machine computes a function, it

means that natural numbers are represented by strings of the

binary notation and it converts strings into a string.

First, we define the following function complexity

classes.

Definition 2.1.

•E FTIME(t(n)) is defined as the class of functions com-

putable in c•Et(n) time for some constant c by an offline

multitape deterministic Turing machine.

• FSPACE(s(n)) is defined as the class of functions

computable in c•Es(n) space for some constant c by an

offline multitape deterministic Turing machine.

Output lengths of functions in FSPACE(s(n)) are bounded

by c•Es(n) for some constant c.

Then, FP and FPSPACE are defined as follows.

Definition 2.2.

・

・

Output lengths of functions in FPSPACE are also bounded
by polynomial in the input length.

These function complexity classes are closely related

with language complexity classes.

Theorem 2.3 ([1], [14]).

This theorem is proven by the prefix searching method,
which appears in [1] and [14]. This theorem implies that
there is little difference whether we study languages or func-
tions for separating complexity classes. So, we may choose
an appropriate one according to the case.

Furthermore, we introduce new function classes, which
are composed of functions whose output lengths are
bounded by the input length plus some constant. We call
them additive growth functions.

Definition 2.4.

•E AGTIME is defined as the class of functions com-

putable in n+c time by an offline multitape determin-

istic Turing machine for some constant c where n is the

input length.

•E AGSPACE is defined as the class of functions com-

putable in n+c space by an offline multitape determin-

istic Turing machine for some constant c where n is the

input length.

The output lengths of functions contained in AGSPACE are

bounded by n+c for some constant c.

3. Recursion Theoretic Operators

Now, we define the operators based on recursive function

theory. Let C be an arbitrary function complexity class and

we define operators by applying them to C. We write mul-

tiple argument function as f(x)=f(x1,...,xn) for ease.

Then, the operator Comp is defined as follows.

Definition 3.1.

In addition, we define Comp*(C) as the smallest class that
contains C and is closed under Comp.

Bounded recursion is recursion which restricts output
values of functions by a certain function. The operator BRec
is defined as follows. BRec* is defined similarly as the case
of Comp*.

Definition 3.2.

More precisely, f(x,•¨y) is constructed from g, h, k•¸C as

g(•¨y) when x=0 and h(x,•¨y,f(x-1,•¨y)) otherwise and it is

bounded by k(x,•¨y).

Recursion on notation is recursion that decreases

length instead of value whenever it carries out recursion.

The operator RecN is defined as follows.

Definition 3.3.

More precisely, f(x,→y) is constructed from g, h∈C as g(→y)

when x=0 and h(x,→y,f(「x/2」,→y)) otherwise.

992
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

4. Closure Properties

Before proceeding the main result, we describe some basic

properties related with operators defined above. First, we

see the closure properties related with Comp.

Proposition 4.1. FTIME(n), FSPACE(n), FP and

FPSPACE are closed under Comp.

Next, we show the closure properties related with

BRec.

Lemma 4.2. If s(n)•†n,

Proof. We consider a function f∈BRec(FSPACE(s(n))),

which is obtained by applying BRec to g,h,k∈

FSPACE(s(n)). The program computing f is described as

follows:

input x,→y

z=g(→y);

for (i=1 to x){

z=h(i,→y,z);

}

output z.

We can reuse space many times and the length of z is

bounded by s(|x|+|y|) in the repetition because f is bounded

by k. Moreover, space required for i is |x|. Thus, we have

because s(n)•†n. Here, s'(n) is the space complexity of this

program. •

By this lemma, the following proposition holds.

Proposition 4.3. FSPACE(n) and FPSPACE are closed

under BRec, respectively.

5. Time, Space and Bounded Recursion

In this section, we show that BRec characterizes the rela-

tion between time and space. First, we prove the following

lemma.

Lemma 5.1. If s(n)≧n,

FSPACE(s(n))⊆Comp*(BRec(FTIME(s(n)))).

Proof. Let f be an arbitrary function computable in k・s(n)

space for some constant k. We define the following func-

tions for the Turing machine computing f.

1. init(x) is a function that returns the initial configuration

on input x.

2. step(c) is a function that returns a configuration when

the Turing machine goes to the next step from the con-

figuration c,

3. out(c) is a function that returns the output of the con-

figuration c.

These functions are all computable in linear time of each

input. Thus, they are also in FTIME(s(n)) on assumption

of s(n)•†n.

Then, there exists a function T∈FTIME(s(n)) that

satisfies∀x, |T(x)|>k・s(|x|). There also exists a function

S∈FTIME(s(n)) that satisfies ∀t, x,|S(t, x)|>|T(x)|+k'

for any constant k' that depends only on f. This function

is defined in order to represent all configurations in |S(t, x)|

space.

Applying BRec to these functions, we construct the fol-

lowing function F∈BRec(FTIME(s(n))).

Remark that k• s(x) space bounded computations are

simulated by 2k•Es(x) time bounded computations. Thus, the

computation of f is simulated as f(x)=out(F(T(x),x)) be-

cause recursion is carried out 2|T(x)| times, which is larger

than 2k•Es(x). •

Thus, we can obtain an operator that expresses the gap

between FP and FPSPACE.

Theorem 5.2.

FPSPACE=Comp*(BRec(FP))

=Comp*(BRec*(FP)).

Proof. Comp*(BRec*(FP))⊆FPSPACE because

FPSPACE is closed under Comp and BRec. Moreover,

FPSPACE⊆Comp*(BRec(FP)) by Lemma 5.1. □

Corollary 5.3. FP is closed under BRec if and only if P=
PSPACE.

As we can see from the proof, it does not seem to hold
Comp*(BRec(C))=FPSPACE where C is any function
complexity class smaller than FP. To include FPSPACE
by Comp*(BRec(C)), it is necessary for C to be stronger
than FP. So, we can say that it is an operator that exactly
expresses the gap between FP and FPSPACE.

By the same way, this operator expresses the gap be-
tween FTIME(n) and FSPACE(n).

Theorem 5.4.

FSPACE(n)=Comp*(BRec(FTIME(n)))

=Comp*(BRec*(FTIME(n))).

UENO: RECURSION THEORETIC OPERATORS FOR FUNCTION COMPLEXITY CLASSES

993

6. Structure of Polynomially Bounded Functions

In this section, we show that a combination of the operator
RecN and additive growth functions expresses polynomially
bounded functions.

Lemma 6.1. There is a function

p∈Comp*(RecN(AGTIME))

that satisfies ∀x, |p(x)|>c・|x|k for any constants c and k.

Proof. To prove the existence of such a function p, we con-

sider the function cat(x,y)∈AGTIME that returns con-

catenation of the inputs x, y. By the definition, |cat(x,y)|=

|x|+|y| holds. By applying RecN to this function, we con-

struct the following function σ1∈RecN(AGTIME).

This function satisfies the following equation.

Moreover, if we define σ2(x)=cat(σ1(x),σ1(x)), then

we obtain the function σ2 that satisfies |σ2(x)|>|x|・(|x|+1).

Then, we construct the function σ3 that satisfies σ3(x)>|x|k

for any constant k by applying Comp to σ2 enough times

as σ3(x)=σ2(…(σ2(x))). Consequently, we can ob-

tain the function p∈Comp*(RecN(AGTIME)) as p(x)=

cat(σ3(x), cat(…cat(σ3(x), σ3(x)))). □

Now, we show the theorem by using this lemma.

Theorem 6.2.

FP=Comp*(RecN(AGTIME)).

Proof. First, we show Comp*(RecN(AGTIME))⊆FP.

Since FP is closed under Comp, it is sufficient to show

RecN(AGTIME)⊆FP. To show this, we consider a func-

tion f∈(RecN(AGTIME)), which is obtained by applying

RecN to g,h∈AGTIME. The program computing f is de-

scribed as follows:

input x,→y

z=g(→y);

for(i=1 to |x|){

xi=from first bit to (|x|-i)th bit of x

z=h(xi,→y,z);

}

output z.

In this program, the length of z increases at most the

sum of the length of x,→y plus some constant at each rep-

etition because h∈AGTIME. Since both the number of

repetitions and increase at each repetition is polynomially

bounded, the length of z through the execution of the pro-

gram is also bounded by the polynomial in the sum of the

length of x, →y. consequently, this program can compute f in

polynomial time.

Next, we prove FP⊆Comp*(RecN(AGTIME)). To

simulate the computation of f∈FP, we use the three func-

tions init, step and out described in Lemma 5.1 defined for

the Turing machine computing f. Here, we can assume that

the Turing machine consists of one tape without loss of gen-

erality because the assumption f∈FP remains valid. Thus,

it is easy to see that these functions are in AGTIME.

By applying the operator RecN to init and step, we ob-

tarn the following function F∈RecN(AGTIME).

Whenever it carries out recursion once, the length of t

decreases one. So, the length of t corresponds to the time of

the computation. We can construct the time bounding func-

tion p∈Comp*(RecN(AGTIME)) for f by Lemma 6.1.

Namely, f(x) is computable in |p(x)| time.

Then, the computation of f can be simulated as f(x)=

out(F(p(x),x)), which returns the output of the final config-

uration after applyihg step |p(x)| times to init(x). □

This result can be extended to other function com-

plexity classes related to polynomial like FPSPACE. To

achieve this extension, we define the following function.

Definition 6.3. next(e, c) is a function that returns a config-

uration when the computation begins from the configuration

c and the Turing machine's head comes the next position for

the first time from the position at the time of c, for the Turing

machine represented by e (if there is no such configuration,

then return the final configuration, in the other case unde-

fined).

We describe the work of next below. It may simulate

only one step of a Turing machine's transition. On the other

hand, it may simulate exponentially many steps of a Turing

machine's transition by a zigzag path. In the figure, the area

of oblique lines means the computational space used till the

time which corresponds to the configuration after m-th call

of next. So, s(n) space bounded computations can be simu-

lated by calling next at most s(n) times. Thus, polynomial

space computations are simulated by calling next polyno-

mial times.

The function next partially simulates the work of a de-

terministic Turing machine. This is done within limited

space.

Proposition 6.4. next•¸AGSPACE.

Proof next simulates only the input length plus some con-

stant space bounded computations. Moreover, the length

of the configuration representation increases at most con-

stant during the computation of next. Thus, next is in

994
IEICE TRANS. INF. & SYST., VOL.E91-D , NO.4 APRIL 2008

(m-2)-th call

(m-1)-th call

m-th call

Fig. 1 The work of the function next.

AGSPACE. •

By using this function, we can obtain the following the-

orem. The proof is similar to the case of Theorem 6.2, but

we should substitute next for step.

Theorem 6.5.

FPSPACE=Comp*(RecN(AGSPACE)).

7. FPSPACE-Completeness

In this section, we define FPSPACE-completeness by using
an offline multitape deterministic oracle Turing machine and
show some results on FPSPACE-completeness.

An oracle Turing machine has two special states IN-
PUT and OUTPUT and a special work tape called oracle
tape. We consider the case when the Turing machine given
a function f as oracle transfers into the state INPUT at some
step of computation. Now, let x be the string of the oracle
tape. Then, it transfers into the state OUTPUT and writes
down the output of the function f(x) on the oracle tape at
one step.

We denote FPf as the class of functions computable
in polynomial time by a deterministic Turing machine with
oracle tape computing a function f. Then, we define
FPSPACE-completeness as follows.

Definition 7.1. If we have

FPSPACE⊆FPf∧f∈FPSPACE,

then f is FPSPACE-complete.

Then, we have the following proposition.

Proposition 7.2. For any FPSPACE-complete function f,
we have

f∈FP⇔FP=FPSPACE.

Proof If f¢FP, then FP⊆FPSPACE because f∈

FPSPACE. Conversely, if f∈FP, then it is easy to see

that FPf=FP because the computation of oracle function

f can be substituted for the query of oracle. The number
of query to oracle is polynomial and the simulation of the
oracle computation is done in polynomial time. Thus, all

functions in FPf can be simulated in polynomial time and

this implies FPSPACE⊆FPf⊆FP. □

We can prove that all characteristic functions of
PSPACE-complete languages are FPSPACE-complete by
the prefix searching method.

Moreover, we show the following theorem.

Theorem 7.3. next is FPSPACE-complete .

Proof From the property of next, polynomial space
bounded computations can be simulated by calling the next
oracle polynomial times.

More precisely, we can obtain the following polyno-
mial time algorithm computing a function f by using next
as oracle:

input x

c=the initial configuration on input x;

for(i=0 to p(|x|)){

c=next(e, c)

}
z=the output string of c;
output z.

Here, e is a representation of the Turing machine com-

puting f in polynomial space and p(n) is a polynomial func-

tion corresponding to the space complexity of e computing

f.

Because next•¸FPSPACE, we conclude that next is

FPSPACE-complete. •

Corollary 7.4. next∈FP⇔P=PSPACE.

One interesting point is that next is FPSPACE-

complete and at the same time it is in AGSPACE.

8. Concluding Remarks

We proved

FSPACE(s(n))⊆Comp*(BRec(FTIME(s(n)))

and showed that the operator BRec expresses the gap be-

tween FP and FPSPACE. Although whether PSPACE

strictly includes P is still an open problem, it is known that

DSPACE(s(n)) strictly includes DTIME(s(n))[7]. From

this result, we have FTIME(s(n))≠FSPACE(s(n)) and

thus we can observe FTIME(t(n)) is not closed under Comp

or BRec.

We also showed a complete function for FPSPACE

under FP Turing reductions. This result can be generalized.

That is, the function next is FSPACE(n)-complete under

FTIME(n) Turing reductions. Thus, it is not in FTIME(n)

because FTIME(n)≠FSPACE(n).

Acknowledgements

The author is grateful to Hiroshi Imai for his valuable ad-
vice. The author thanks anonymous referees for their help-
ful comments. This work was partially supported by Re-
search Fellowship for Young Scientists from Japan Society
for the Promotion of Science (JSPS) and Grant-in-Aid for
JSPS Fellows.

UENO: RECURSION THEORETIC OPERATORS FOR FUNCTION COMPLEXITY CLASSES

995

References

[1] J. Balcazar, J. Diaz, and J. Gabarro, Structural Complexity I, 2nd

ed., Springer, 1994.

[2] S. Bellantoni and S. Cook, •gA new recursion-theoretic characteriza-

tion of the polytime functions,•h Computational Complexity, vol.2,

no.2, pp. 97-110, 1992.

[3] P. Clote and E. Kranakis, Boolean Functions and Computation Mod-

els, Springer, 2002.

[4] A. Cobham, •gThe intrinsic computational difficulty of functions,•h

Proc. 1964 Congress for Logic, Methodology, and the Philosophy of

Science, pp. 24-30, North-Holland, 1964.

[5] A. Grzegorczyk, •gSome classes of recursive functions,•h Rozprawy

Mathematyczne, vol.4, pp. xx-xx, 1953.

[6] M. Hofmann, •gType systems for polynomial-time computation,•h

Technical Report, University of Edinburgh, 1998.

[7] J.E. Hopcroft, W. Paul, and L.G. Valiant, •gOn time versus space,•h J.

ACM, vol.24, pp. 332-337, 1977.

[8] S.C. Kleene, •gGeneral recursive functions of natural numbers,•h

Mathematical Annals, vol.112, pp. 727-742, 1936.

[9] R.E. Ladner, •gPolynomial space counting problems,•h SIAM J. Com-

put., vol.18, no.6, pp. 1087-1097, Dec. 1989.

[10] M. Ogiwara and L.A. Hemachandra, •gA complexity theory for feasi-

ble closure properties,•h Structure in Complexity Theory Conference,

pp. 16-29, 1991.

[11] R.W. Ritchie, •gClasses of predictably computable functions,•h Trans-

actions of the American Mathematical Society, vol.106, pp. 139-

173, 1963.

[12] H.E. Rose, Subrecursion: Functions and Hierarchies, Claredon

Press, 1984.

[13] A.L. Selman, •gMuch ado about functions,•h Proc. Eleventh Annual

IEEE Conference on Computational Complexity, pp. 198-212, 1996.

[14] A.L. Selman, M.-R. Xu, and R.V. Book, •gPositive relativizations of

complexity classes,•h SIAM J. Comput., vol.12, no.3, pp. 565-579,

Aug. 1983.

[15] D.B. Thompson, •gSubrecursiveness: Machine-independent notions

of computability in restricted time and storage,•h Mathematical Sys-

tems Theory, vol.6, no.1, pp. 3-15, 1972.

[16] S. Toda, •gPP is as hard as the polynomial-time hierarchy,•h SIAM J.

Comput., vol.20, no.5, pp. 865-877, Oct. 1991.

[17] H. Vollmer and K. Wagner, •gClasses of counting functions and

complexity theoretic operators,•h Technical Report, Universitat

Wurzburg, 1991.

[18] S. Zachos and A. Pagourtzis, •gCombinatory complexity: Operators

on complexity classes,•h Proc. Panhellenic Logic Symposium, 2003.

Kenya Ueno was born on October 20, 1982.

He received the Bachelor of Science and Master

of Information Science and Technology degrees

from The University of Tokyo in 2005 and 2007,

respectively. He is currently a student of Depart-

ment of Computer Science, Graduate School of

Information Science and Technology, The Uni-

versity of Tokyo. His research interests include

algorithms and computation theory.

