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Recursion Theoretic Operators for Function Complexity Classes*

Kenya UENO•õa), Student Member

SUMMARY We characterize the gap between time and space com-

plexity of functions by operators and completeness. First, we introduce 

a new notion of operators for function complexity classes based on recur-

sive function theory and construct an operator which generates FPS PACE 

from FP. Then, we introduce new function classes composed of functions 

whose output lengths are bounded by the input length plus some constant. 

We characterize FP and FPS PACE by using these classes and operators. 

Finally, we define a new notion of completeness for FPS PACE and show 

a FPS PACE-complete function.

key words: recursive function theory, function complexity classes, opera-

tors for complexity classes

1. Introduction

Recursive function theory expresses the computable func-

tion class as the smallest class containing some initial func-

tions and closed under operators that generate new func-

tions. Similarly, it is known that many function complexity 

classes are characterized by recursion theoretic scheme [3], 

[12]. Grzegorczyk [5] introduced the hierarchical classes 
ƒÃn by composition and an operator called bounded recur-

sion. Later, Ritchie [11] showed that ƒÃ2 is equal to the lin-

ear space computable function class. Cobham [4] charac-

terized FP by composition and bounded recursion on nota-

tion. Thompson [15] characterized FPS PACE by composi-

tion and bounded recursion.

Whereas these studies expanded various fields [2] and 

have many interesting applications, there have been no at-

tempts to study the relation among function complexity 

classes from a recursion theoretic viewpoint. The current 

studies are only concerned with how to characterize function 

complexity classes simpler way or fewer initial functions. 

However, this direction is useless when we set our goal sep-

aration of complexity classes. It is the relation among them 

that is the most important thing for separation. From this 

perspective, we extend the notion of operators to operators 

that act on general function complexity classes.

Operators for complexity classes are useful to clarify 

the relation among them [10], [17], [18]. Toda's theorem

PH•ºPPP [16] makes use of some properties of operators. 

There are many operators studied like 3 and •Í, which are the 

operators that generates NP and coNP from P respectively. 

Many other operators that express the gaps between P and 

complexity classes like RP, BPP, PP and (+)P have been also 

studied. Then, what about the case of P and PS PACE? Is 

there any appropriate one that simply expresses the gap be-

tween P and PS PACE? In fact, it is hard to construct it 

because operators like •Î and •Í are defined according to the 

number of accepting configurations. However, in the case of 

function complexity classes, we can say that there exists an 

appropriate one.

Function complexity classes related with NP are stud-

ied widely [13]. However, there are few studies about 

FPSPACE. In this paper, we clarify the structure of 

FPS PACE. The importance of this study is that we show 

•g functions can do what languages cannot do•h. This is one 

of the few examples which clearly indicate merits of stud-

ies on function complexity classes compared with language 

complexity classes.

We construct an operator which exactly expresses the 

gap between FP and FPSPACE. We introduce new opera-

tors Comp* and BRec and show

FPSPACE=Comp*(BRec(FP)).

This result can be generalized. For example, this operator 

generates the linear space computable function class from 

the linear time computable function class as

FS PACE(n)=Comp*(BRec(FTIME(n))).

Moreover, we introduce an operator RecN and new 

function complexity classes AGTIME and AGSPACE. We 

show the structures of FP and FPSPACE by showing

FP=Comp*(RecN(AGTIME))

and

FPSPACE=Comp*(RecN(AGSPACE)).

The case of FP is proven by simulating a polynomial time 

bounded deterministic Turing machine by using a function 

called •gstep•h, which receives a configuration and returns the 

next configuration. To prove the case of FPSPACE, we in-

troduce a new function called •gnext•h and substitute it for the 

function step. It simulates partial works of a deterministic 

Turing machine by manipulating configurations within lim-

ited space.
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The function next contains a further implication. We 

introduce completeness for FPSPACE, which is a new no-

tion while there is a study about completeness for polyno-

mial space counting classes [9], and show that this function 

is FPSPACE-complete under FP Turing reductions. It is 

also FSPACE(n)-complete under FTIME(n) Turing reduc-

tions. Thus, we can say that next exactly expresses the gap 

between time and space.

2. Function Complexity Classes

We assume that the readers are familiar with the basic no-

tion of the Turing machine, resource bounded computations 

and the definitions of complexity classes such as P and 

PSPACE. A configuration is a representation of the whole 

state of a Turing machine at a certain time.

Functions discussed in this paper are partial and single-

valued functions from natural numbers to a natural num-

ber. If we say that a Turing machine computes a function, it 

means that natural numbers are represented by strings of the 

binary notation and it converts strings into a string.

First, we define the following function complexity 

classes.

Definition 2.1.

•E FTIME(t(n)) is defined as the class of functions com-

putable in c•Et(n) time for some constant c by an offline 

multitape deterministic Turing machine.

• FSPACE(s(n)) is defined as the class of functions 

computable in c•Es(n) space for some constant c by an 

offline multitape deterministic Turing machine.

Output lengths of functions in FSPACE(s(n)) are bounded 

by c•Es(n) for some constant c.

Then, FP and FPSPACE are defined as follows.

Definition 2.2.

・

・

Output lengths of functions in FPSPACE are also bounded 
by polynomial in the input length.

These function complexity classes are closely related 

with language complexity classes.

Theorem 2.3 ([1], [14]).

This theorem is proven by the prefix searching method, 
which appears in [1] and [14]. This theorem implies that 
there is little difference whether we study languages or func-
tions for separating complexity classes. So, we may choose 
an appropriate one according to the case.

Furthermore, we introduce new function classes, which 
are composed of functions whose output lengths are 
bounded by the input length plus some constant. We call 
them additive growth functions.

Definition 2.4.

•E AGTIME is defined as the class of functions com-

putable in n+c time by an offline multitape determin-

istic Turing machine for some constant c where n is the 

input length.

•E AGSPACE is defined as the class of functions com-

putable in n+c space by an offline multitape determin-

istic Turing machine for some constant c where n is the 

input length.

The output lengths of functions contained in AGSPACE are 

bounded by n+c for some constant c.

3. Recursion Theoretic Operators

Now, we define the operators based on recursive function 

theory. Let C be an arbitrary function complexity class and 

we define operators by applying them to C. We write mul-

tiple argument function as f(x)=f(x1,...,xn) for ease. 

Then, the operator Comp is defined as follows.

Definition 3.1.

In addition, we define Comp*(C) as the smallest class that 
contains C and is closed under Comp.

Bounded recursion is recursion which restricts output 
values of functions by a certain function. The operator BRec 
is defined as follows. BRec* is defined similarly as the case 
of Comp*.

Definition 3.2.

More precisely, f(x,•¨y) is constructed from g, h, k•¸C as 

g(•¨y) when x=0 and h(x,•¨y,f(x-1,•¨y)) otherwise and it is 

bounded by k(x,•¨y).

Recursion on notation is recursion that decreases 

length instead of value whenever it carries out recursion. 

The operator RecN is defined as follows.

Definition 3.3.

More precisely, f(x,→y) is constructed from g, h∈C as g(→y) 

when x=0 and h(x,→y,f(「x/2」,→y)) otherwise.
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4. Closure Properties

Before proceeding the main result, we describe some basic 

properties related with operators defined above. First, we 

see the closure properties related with Comp.

Proposition 4.1. FTIME(n), FSPACE(n), FP and 

FPSPACE are closed under Comp.

Next, we show the closure properties related with 

BRec.

Lemma 4.2. If s(n)•†n,

Proof. We consider a function f∈BRec(FSPACE(s(n))), 

which is obtained by applying BRec to g,h,k∈

FSPACE(s(n)). The program computing f is described as 

follows:

input x,→y

z=g(→y);

for (i=1 to x){

z=h(i,→y,z);

}

output z.

We can reuse space many times and the length of z is 

bounded by s(|x|+|y|) in the repetition because f is bounded 

by k. Moreover, space required for i is |x|. Thus, we have

because s(n)•†n. Here, s'(n) is the space complexity of this 

program. • 

By this lemma, the following proposition holds.

Proposition 4.3. FSPACE(n) and FPSPACE are closed 

under BRec, respectively.

5. Time, Space and Bounded Recursion

In this section, we show that BRec characterizes the rela-

tion between time and space. First, we prove the following 

lemma.

Lemma 5.1. If s(n)≧n,

FSPACE(s(n))⊆Comp*(BRec(FTIME(s(n)))).

Proof. Let f be an arbitrary function computable in k・s(n)

space for some constant k. We define the following func-

tions for the Turing machine computing f.

1. init(x) is a function that returns the initial configuration 

on input x.

2. step(c) is a function that returns a configuration when 

the Turing machine goes to the next step from the con-

figuration c,

3. out(c) is a function that returns the output of the con-

figuration c.

These functions are all computable in linear time of each 

input. Thus, they are also in FTIME(s(n)) on assumption 

of s(n)•†n.

Then, there exists a function T∈FTIME(s(n)) that 

satisfies∀x, |T(x)|>k・s(|x|). There also exists a function 

S∈FTIME(s(n)) that satisfies ∀t, x,|S(t, x)|>|T(x)|+k' 

for any constant k' that depends only on f. This function 

is defined in order to represent all configurations in |S(t, x)|

space.

Applying BRec to these functions, we construct the fol-

lowing function F∈BRec(FTIME(s(n))).

Remark that k• s(x) space bounded computations are 

simulated by 2k•Es(x) time bounded computations. Thus, the 

computation of f is simulated as f(x)=out(F(T(x),x)) be-

cause recursion is carried out 2|T(x)| times, which is larger 

than 2k•Es(x). • 

Thus, we can obtain an operator that expresses the gap 

between FP and FPSPACE.

Theorem 5.2.

FPSPACE=Comp*(BRec(FP))

=Comp*(BRec*(FP)).

Proof. Comp*(BRec*(FP))⊆FPSPACE because 

FPSPACE is closed under Comp and BRec. Moreover, 

FPSPACE⊆Comp*(BRec(FP)) by Lemma 5.1. □

Corollary 5.3. FP is closed under BRec if and only if P=
PSPACE.

As we can see from the proof, it does not seem to hold 
Comp*(BRec(C))=FPSPACE where C is any function 
complexity class smaller than FP. To include FPSPACE 
by Comp*(BRec(C)), it is necessary for C to be stronger 
than FP. So, we can say that it is an operator that exactly 
expresses the gap between FP and FPSPACE.

By the same way, this operator expresses the gap be-
tween FTIME(n) and FSPACE(n).

Theorem 5.4.

FSPACE(n)=Comp*(BRec(FTIME(n)))

=Comp*(BRec*(FTIME(n))).
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6. Structure of Polynomially Bounded Functions

In this section, we show that a combination of the operator 
RecN and additive growth functions expresses polynomially 
bounded functions.

Lemma 6.1. There is a function

p∈Comp*(RecN(AGTIME))

that satisfies ∀x, |p(x)|>c・|x|k for any constants c and k.

Proof. To prove the existence of such a function p, we con-

sider the function cat(x,y)∈AGTIME that returns con-

catenation of the inputs x, y. By the definition, |cat(x,y)|=

|x|+|y| holds. By applying RecN to this function, we con-

struct the following function σ1∈RecN(AGTIME).

This function satisfies the following equation.

Moreover, if we define σ2(x)=cat(σ1(x),σ1(x)), then

we obtain the function σ2 that satisfies |σ2(x)|>|x|・(|x|+1). 

Then, we construct the function σ3 that satisfies σ3(x)>|x|k 

for any constant k by applying Comp to σ2 enough times 

as σ3(x)=σ2(…(σ2(x))). Consequently, we can ob-

tain the function p∈Comp*(RecN(AGTIME)) as p(x)=

cat(σ3(x), cat(…cat(σ3(x), σ3(x)))). □

Now, we show the theorem by using this lemma.

Theorem 6.2.

FP=Comp*(RecN(AGTIME)).

Proof. First, we show Comp*(RecN(AGTIME))⊆FP. 

Since FP is closed under Comp, it is sufficient to show 

RecN(AGTIME)⊆FP. To show this, we consider a func-

tion f∈(RecN(AGTIME)), which is obtained by applying 

RecN to g,h∈AGTIME. The program computing f is de-

scribed as follows:

input x,→y

z=g(→y);

for(i=1 to |x|){

xi=from first bit to (|x|-i)th bit of x

z=h(xi,→y,z);

}

output z.

In this program, the length of z increases at most the 

sum of the length of x,→y plus some constant at each rep-

etition because h∈AGTIME. Since both the number of

repetitions and increase at each repetition is polynomially 

bounded, the length of z through the execution of the pro-

gram is also bounded by the polynomial in the sum of the 

length of x, →y. consequently, this program can compute f in 

polynomial time.

Next, we prove FP⊆Comp*(RecN(AGTIME)). To 

simulate the computation of f∈FP, we use the three func-

tions init, step and out described in Lemma 5.1 defined for 

the Turing machine computing f. Here, we can assume that 

the Turing machine consists of one tape without loss of gen-

erality because the assumption f∈FP remains valid. Thus, 

it is easy to see that these functions are in AGTIME.

By applying the operator RecN to init and step, we ob-

tarn the following function F∈RecN(AGTIME).

Whenever it carries out recursion once, the length of t 

decreases one. So, the length of t corresponds to the time of 

the computation. We can construct the time bounding func-

tion p∈Comp*(RecN(AGTIME)) for f by Lemma 6.1. 

Namely, f(x) is computable in |p(x)| time.

Then, the computation of f can be simulated as f(x)=

out(F(p(x),x)), which returns the output of the final config-

uration after applyihg step |p(x)| times to init(x). □

This result can be extended to other function com-

plexity classes related to polynomial like FPSPACE. To 

achieve this extension, we define the following function.

Definition 6.3. next(e, c) is a function that returns a config-

uration when the computation begins from the configuration 

c and the Turing machine's head comes the next position for 

the first time from the position at the time of c, for the Turing 

machine represented by e (if there is no such configuration, 

then return the final configuration, in the other case unde-

fined).

We describe the work of next below. It may simulate 

only one step of a Turing machine's transition. On the other 

hand, it may simulate exponentially many steps of a Turing 

machine's transition by a zigzag path. In the figure, the area 

of oblique lines means the computational space used till the 

time which corresponds to the configuration after m-th call 

of next. So, s(n) space bounded computations can be simu-

lated by calling next at most s(n) times. Thus, polynomial 

space computations are simulated by calling next polyno-

mial times.

The function next partially simulates the work of a de-

terministic Turing machine. This is done within limited 

space.

Proposition 6.4. next•¸AGSPACE.

Proof next simulates only the input length plus some con-

stant space bounded computations. Moreover, the length 

of the configuration representation increases at most con-

stant during the computation of next. Thus, next is in
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(m-2)-th call

(m-1)-th call

m-th call

Fig. 1 The work of the function next.

AGSPACE. • 

By using this function, we can obtain the following the-

orem. The proof is similar to the case of Theorem 6.2, but 

we should substitute next for step.

Theorem 6.5.

FPSPACE=Comp*(RecN(AGSPACE)).

7. FPSPACE-Completeness

In this section, we define FPSPACE-completeness by using 
an offline multitape deterministic oracle Turing machine and 
show some results on FPSPACE-completeness.

An oracle Turing machine has two special states IN-
PUT and OUTPUT and a special work tape called oracle 
tape. We consider the case when the Turing machine given 
a function f as oracle transfers into the state INPUT at some 
step of computation. Now, let x be the string of the oracle 
tape. Then, it transfers into the state OUTPUT and writes 
down the output of the function f(x) on the oracle tape at 
one step.

We denote FPf as the class of functions computable 
in polynomial time by a deterministic Turing machine with 
oracle tape computing a function f. Then, we define 
FPSPACE-completeness as follows.

Definition 7.1. If we have

FPSPACE⊆FPf∧f∈FPSPACE,

then f is FPSPACE-complete.

Then, we have the following proposition.

Proposition 7.2. For any FPSPACE-complete function f, 
we have

f∈FP⇔FP=FPSPACE.

Proof If f¢FP, then FP⊆FPSPACE because f∈

FPSPACE. Conversely, if f∈FP, then it is easy to see 

that FPf=FP because the computation of oracle function 

f can be substituted for the query of oracle. The number 
of query to oracle is polynomial and the simulation of the 
oracle computation is done in polynomial time. Thus, all 

functions in FPf can be simulated in polynomial time and 

this implies FPSPACE⊆FPf⊆FP. □

We can prove that all characteristic functions of 
PSPACE-complete languages are FPSPACE-complete by 
the prefix searching method.

Moreover, we show the following theorem.

Theorem 7.3. next is FPSPACE-complete .

Proof From the property of next, polynomial space 
bounded computations can be simulated by calling the next 
oracle polynomial times.

More precisely, we can obtain the following polyno-
mial time algorithm computing a function f by using next 
as oracle:

input x

c=the initial configuration on input x;

for(i=0 to p(|x|)){

c=next(e, c)

}
z=the output string of c;
output z.

Here, e is a representation of the Turing machine com-

puting f in polynomial space and p(n) is a polynomial func-

tion corresponding to the space complexity of e computing 

f.

Because next•¸FPSPACE, we conclude that next is 

FPSPACE-complete. • 

Corollary 7.4. next∈FP⇔P=PSPACE.

One interesting point is that next is FPSPACE-

complete and at the same time it is in AGSPACE.

8. Concluding Remarks

We proved

FSPACE(s(n))⊆Comp*(BRec(FTIME(s(n)))

and showed that the operator BRec expresses the gap be-

tween FP and FPSPACE. Although whether PSPACE

strictly includes P is still an open problem, it is known that 

DSPACE(s(n)) strictly includes DTIME(s(n))[7]. From 

this result, we have FTIME(s(n))≠FSPACE(s(n)) and 

thus we can observe FTIME(t(n)) is not closed under Comp

or BRec.

We also showed a complete function for FPSPACE 

under FP Turing reductions. This result can be generalized. 

That is, the function next is FSPACE(n)-complete under 

FTIME(n) Turing reductions. Thus, it is not in FTIME(n) 

because FTIME(n)≠FSPACE(n).
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