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PAPER

Tree-Shellability of Restricted DNFs

Yasuhiko TAKENAGA•õa), Member and Nao KATOUGI•õ*, Nonmember

SUMMARY A tree-shellable function is a positive Boolean function 

which can be represented by a binary decision tree whose number of paths 

from the root to a leaf labeled 1 equals the number of prime implicants. In 

this paper, we consider the tree-shellability of DNFs with restrictions. We 

show that, for read-k DNFs, the number of terms in a tree-shellable function 

is at most k2. We also show that, for k-DNFs, recognition of ordered tree-

shellable functions is NP-complete for k=4 and tree-shellable functions 

can be recognized in polynomial time for constant k.

key words: Boolean function, shellability, prime implicant, binary decision 

tree

1. Introduction

Prime implicant is a very important concept in the theory 

of Boolean functions. An irredundant disjunctive normal 

form (DNF) Boolean formula is given as a sum of prime 

implicants. In particular, for a positive Boolean function, its 

irredundant DNF representation is unique and given as the 

sum of all prime implicants. A tree-shellable function [10] 

is a positive Boolean function defined by the relation be-

tween its prime implicants and binary decision tree (BDT) 

representations. A Boolean function is called tree-shellable 

if there exists a BDT representation such that the number of 

prime implicants equals the number of paths from the root 

to a leaf labeled 1 in the BDT. An ordered tree-shellable 

function is a special case of a tree-shellable function such 

that the BDT must be an ordered BDT.

A tree-shellable function is a kind of shellable function. 

Shellable Boolean functions play an important role in many 

fields. The notion of shellability was originally used in the 

theory of simplicial complexes and polytopes (for example, 

in [5], [6]). More recently, it is studied for its importance to 

reliability theory (for example, in [1], [2], [9] ). The notion 

of tree-shellability makes it possible to give another charac-

terization of some subclasses of shellable functions [10].

If a Boolean function is shellable and the order of terms 

to make it shellable is given, the following problem on com-

puting the reliability of some kind of systems can be solved 

easily.

[Union of Product Problem] ([2]) 

Input: Pr[xi=1](1•…i•…n), f(x1, ..., xn)

Output: Pr[f(x1, ..., xn)=1] 

Pr[A] represents the probability of event A. Each variable 

represents the state of a subsystem. A subsystem is operative 

if the variable has value 1. If f is shellable, one can easily 

compute the exact value of Pr[f=1] using the orthogonal 

DNF representation off.

In addition, if the BDT representation of a Boolean 

function f is given, it is easy to compute the BDT repre-

sentation of its dual fd. The dual of a Boolean function 

f(x1, ..., xn) is defined by fd=f (x1, ..., xn). From the 

BDT representation of f, the BDT representation of fd can 

be obtained by simply exchanging a 1-edge and a 0-edge for 

every variable node and exchanging label 1 and label 0 for 

every leaf node. In spite of the importance of dualization, 

it is not yet known if the DNF representation of the dual 

fd can be computed from the DNF representation of f in 

time polynomial to the input and output size. Therefore, the 

problem still interests many researches (for example, in [3], 

[7], [8]).

To utilize the good properties of tree-shellable func-

tions, it is important to clarify the class of Boolean functions 

for which tree-shellability can be tested in polynomial time.

In this paper, we consider the properties and the recog-

nition problem of tree-shellable and ordered tree-shellable 

functions when their DNF representations have some re-

strictions. As restricted DNFs, we consider read-k DNFs 

and k-DNFs. A read-k DNF is a DNF in which each vari-

able appears at most k times. A k-DNF is a DNF all of whose 

terms consist of at most k literals.

First, we consider read-k DNFs. In the Union of Prod-

uct problem, the restriction corresponds to the case when 

the influence of each subsystem is limited. We show that, 

in this case, a tree-shellable function has at most k2 prime 

implicants with two or more literals, which is a tight upper 

bound. It follows that tree-shellable functions can be recog-

nized in polynomial time when k is a constant.

Next, we consider k-DNFs. It is shown in [4] that it 

is NP-complete to decide if a function has lexico-exchange 

property (equivalent to ordered tree-shellability) for k•†5. 

On the other hand, for quadratic functions, that is when 

k=2, ordered tree-shellable and tree-shellable functions 

are equivalent and their recognition can be executed in poly-

nomial time [1], [10]. A quadratic function is tree-shellable 

if its graph representation is a cotriangulated graph. In this 

paper, we improve the proof of [4] and prove that it is NP-

complete for k=4. We also show that tree-shellable func-
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tions can be recognized in polynomial time when k is a con-

stant.
This paper is organized as follows. In Sect. 2, we give 

basic definitions on a Boolean function and a binary de-

cision tree. In Sect. 3, we define a tree-shellable function 

and show its basic properties. In Sect. 4, we consider tree-

shellability of read-k DNFs. In Sect. 5, we consider tree-
shellability of k-DNFs. Conclusions and future works are 

noted in Sect. 6.

2. Preliminaries

2.1 Boolean Function

Letf(x1,...,xn) be a Boolean function. We denote f≧g 

if f(x)=1 for any assignment x∈{0, 1}n which makes 

g(x)=1. Animplicant of f is a product term∧i∈Ixi∧i∈Ixj 

which satisfies∧i∈Ixi∧j∈Ixj≦f, where I, J⊆{1, 2,...,n}.

An implicant which satisfies∧i∈I-{S}xi∧j∈Ixj≦f for any S∈

I and∧i∈Ixi∧j-{t}∈xj≦f for any t∈J is called a prime 

implicant of f.

An expression of the form f=∨k=1(∧i∈Ikxi∧j∈Jkxj)is 

called a disjunctive normal form Boolean formula (DNF), 

where Ik, Jk⊆{1,2,...,n} andIk∩Jk=0 for k=1, ..., m. 

A positive DNF(PDNF) is a DNF such that Jk=0 for 

all k. If f can be represented as a PDNF, it is called a 

positive Boolean function. For simplicity, we call that Ik 

is an implicant or a term of a positive function. A PDNF 

is called irredundant if Ik⊆Il is not satisfied for any 

k, l (1≦k, l≦m, k≠l). For an irredundant PDNE let 

PI(f) be the set of all Ik. PI(f) represents the prime impli-

cants of f. In the following of this paper, we consider only 

positive functions and we assume that a function is given as

an irredundant PDNF f=∨k=1∧i∈Ikxi. 

In the following of this paper, we also use sum (+) and 

product (・) instead of ∨ and∧.

2.2 Binary Decision Tree

A Binary Decision Tree (BDT) is a labeled tree that repre-
sents a Boolean function. A leaf node of a BDT is labeled 
by 0 or 1. Any other node is labeled by a variable and called 
a variable node. Let label(v) be the label of node v. Each 
variable node has two outgoing edges, which are called a fl-
edge and a 1-edge. Let edge0(v), edge1(v) denote the nodes 

pointed to by the 0-edge and the 1-edge of node v respec-
tively. The value of the function is obtained by traversing 
from the root node to a leaf node. At a variable node, one of 
the outgoing edges is chosen according to the value of the 
variable. The value of the function is 0 if the label of the

leaf is 0, and 1 if the label is 1. Let the right (left resp.) sub-

tree of node v be the BDT whose root is edge1(v) (edge0(v) 

resp.).

A path from the root node to a leaf node labeled 1 is 

called a 1-path. On every 1-path, each variable appears at 

most once. A 1-path P of a BDT is represented by a se-

quence of literals. For simplicity, we denote xi•¸P when xi 

is included in the sequence representing P, where xi is either 

xi or xi. Let the street of a BDT T be the sequence of nodes 

that can be reached from the root of T by using only 0-edges 

(including the root itself). 

When the 0-edge and the 1-edge of node v point to the 

nodes representing the same function, v is called to be a 

redundant node. A BDT which has no redundant node is 

called a reduced BDT. In the following of this paper, a BDT 

means a reduced BDT.

A BDT is called an ordered BDT (OBDT) if variables 

appear in the order consistent with a total order of variables 

on any path from the root to a leaf. The total order of vari-

ables for an OBDT is called the variable ordering. A vari-

able ordering of variables x1, X2,..., xn is represented by a 

permutation ƒÎ on {1, 2, ..., n}.

3. Tree-Shellable Boolean Functions

Definition 1: A positive Boolean function f is tree-

Shellable when it can be represented by a BDT.With exactly

|PI(f)|1-paths.

If a BDT T represents f=∨k=1∧i∈Ikxi and has exactly m

 1-paths, we say that T witnesses that f is tree-shellable.

Definition 2: A positive Boolean function f is ordered 

tree-Shellable with respect to πif it can be represented by an

OBDT with variable ordering π which has exactly |PI(f)|1-

paths. f is ordered tree-shellable if there exists π such that 

f is ordered tree-shellable with respect to π.

Proposition 1: [10] Let f=∨k=1∧i∈Ikxi be tree-shellable.

Then a BDT that witnesses that f is tree-shellable satisfies 

the-following.

・Each 1-path Pk corresponds to a term Ik by the rule that 

i∈Ik iff xi∈Pk.

Figure 1 is an example of a tree-shellable function. 
Note that the leaf nodes labeled 0 and the edges that point 
to them are omitted in the figures of this paper, f of Fig. 1 is 
also ordered tree-shellable with respect to variable ordering 
x1x2x3x4.

The following corollaries show the relation between a 
tree-shellable function f and the BDT which witnesses that 
f is tree-shellable.

Corollary 1: [10] Let a BDT T witness that f is tree-

shellable and 1-path Pk correspond to term Ik for any k(1≦

k≦|PI(f)|). Then, for any 1-path Pk of T and any xs∈Pk, 

there exists l which satisfies Il⊆Ik∪{S}(l≠k).
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f=X1X2+X1X3+X2X4

Fig. 1 An example of a tree-shellable function.

Corollary2: [10] Let T be a BDT such that T has m= 

| PI(f)|1-paths P1, P2, ..., Pm and i∈Ik iff xi∈Pk for any 

k(1≦k≦m).Then T witnesses that f is tree-shellable if 

for any 1-path Pk of T and any xs∈Pk, there exists l such 

that Pk and Pl diverge at a node labeled xs and Il∈Ik∪{s}.

When Corollary 1 holds, we say that Pl(Il resp.) com-

pensates Pk (Ik resp.) for xs.

4. Tree-Shellability of Read-k DNFs

In this section, we consider the tree-shellability of Boolean 

functions represented by read-k DNFs. From the next 

lemma, we assume in this section that the given DNF con-

sists of terms with at least two literals.

Lemma 1: Let f be represented by a DNF which has terms 

with only one literal. Let g be the function obtained from f 

by removing terms with only one literal. Then, f is (or-

dered) tree-shellable iff g is (ordered) tree-shellable.

This lemma is obvious because the variable used in a 

term with one literal does not appear in the other terms.

Theorem 1: A Boolean function represented by a read-k 

DNF with more than k2 terms is not tree-shellable.

Proof Let f be a tree-shellable Boolean function and a 

BDT whose root is labeled by xr witness that f is tree-

shellable. Consider a term It including xr. Obviously, the 

literals in It•_{r} can appear at most (k-1)-times in the terms 

not including xr. It means that each term including xr can 

compensate at most k-1 terms not including xr. As there 

exist at most k terms including xr, at most k(k-1)=k2-k 

terms not including xr can be compensated by them. There-

fore, f has at most k+(k2-k)=k2 terms. • 

Corollary 3: Let f be a tree-shellable function represented 

by a read-k DNF with m terms. Then the root of the tree 

which witnesses that f is tree-shellable is labeled by a vari-

able that appears at least m/k times in the DNF.

Proof Assume that xs appears q (< m/k) times in the DNF. 

If the root of a BDT is labeled by xs, as in the proof of 

Theorem 1, the number of terms of f must be at most q +

q(k-1)=qk. As q<m/k, qk<m. It is a contradiction. • 

Though the maximum number of terms in a tree-

shellable function is k2, the number of nodes in the street 

of a BDT which witnesses the tree-shellability is much 

smaller. In the following, we consider the maximum number 

of nodes in the street.

Theorem 2: Let f be a tree-shellable function represented 

by a read-k DNF. Then the tree which witnesses that f is 

tree-shellable has at most 2k-1 nodes in its street.

Proof We classify the nodes in the street by whether the 

following condition is satisfied or not. 

Condition: There exists a 1-path in its right subtree which is 

compensated by a 1-path in the right subtree of the root that 

includes the positive literal of the variable of the node in the 

street.

For simplicity, we call the nodes in the street that satisfy the 

condition to be the nodes of type A, and the nodes that do 

not satisfy the condition to be the nodes of type B. Also, we 

call the right subtrees of the nodes of type A (type B resp.) 

to be the subtrees of type A (type B resp.). Note that the root 

is classified as a node of type B.

First, we show that there exist at most k nodes of type 

A. Assume that there exist p nodes of type A and their labels 

are xs1, xS2, ..., xs
p in order of appearance in the street. Let 

the right subtrees of the nodes be S1, S2, ..., Sp. For each 

i(1•…i•…p), there exists a 1-path Pi in the right subtree 

of the root that includes xsi and compensates a 1-path in Si 

for the variable of the root. In addition, for any q(2•…q•… 

p), Pq is different from Pj for all j(1•…j•…q-1). It is 

because if xsj•¸Pq, any 1-path compensated by Pq also has 

to include xsj. That is, the 1-paths are in Sj, not in Sq. Thus, 

Pi(1•…i•…p) are all different. Therefore, there exist at least 

p 1-paths in the right subtree of the root. It means that there 

exist at least p terms that include the label of the root. As 

each variable can appear in at most k terms, p•…k holds.

Next, we show that there exist at most k nodes of type 

B. Assume that there exist k+1 nodes of type B and their la-

bels are xt1, xt2, ..., xtk+1 in order of appearance in the street.

Let the right subtrees of the nodes be T1, T2, ..., Tk+1. Note 

that xt1 is the label of the root. Let Ik+1 be a term that corre-

sponds to a 1-path in T→k+1. There exists a 1-path Ik in Tk that

compensates Ik+1 for xtk. Similarly, we can inductively d-

fineIj (1≦j≦k) as the 1-path in Tj that compensatesIj+1 

for xtj. That is, Ij⊆Ij+1∪{tj} holds for each j(1≦j≦k).

Therefore, I1⊆Ik+1 ∪{t1, ..., tk} holds.

However, actually, I1 ⊆{t1, ...tk} holds. To prove this, 

assume that p∈I1 for some p∈Ik+1. Then p∈12 because

I1⊆I2∪{t1} and p≠t1. Similarly, if p∈Ij, p∈Ij+1 

holds for all j. Thus, xp is included in Ij for all j(1≦j≦

k+1). That is, there must be k+1 terms that include xp. It 

contradicts the fact that f is represented by a read-k DNF.

Therefore,I1⊆{t1, ... tk}.

Let r be the smallest integer satisfying tr∈I1＼{t1}.

Then,I1⊆{t1, tr, ..., tk+1}. As I1⊆Ir∪{t1, ..., tr-1} from 

the definition and.t2, ..., tr-1⊆I1, I1⊆Ir∪{t1} holds. It 

means that Ir, is compensated by I1. As tr∈I1, it contradicts
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Fig. 2 The BDT representing fk for k=3.

the assumption that the node labeled xt r is type B. There-
fore, there can be at most k nodes of type B.

From the above discussions, there can be at most 2k 

nodes in the street. In addition, we can show that if there 

exist k nodes of type B, there exist at most k-1 nodes of 

type A. If there exist k nodes of type B, as seen from the 

above proof, there exists a variable which appears in all the 

subtrees of type B. As the variable appears in k terms cor-

responding to the 1-paths in the subtrees, it cannot appear 

in any subtree of type A. Therefore, the 1-path in the right 

subtree of the root that includes the variable cannot compen-

sate any 1-path in the subtrees of type A. As there exist at 

most k-1 1-paths in the right subtree of the root that can 

compensate a 1-path in subtrees of type A, there can be at 

most k-1 nodes of type A. Thus, the total number of nodes 

in the street is at most 2k-1. • 

The next theorem gives more detailed structure of the 

tree that witnesses the tree-shellability of a function f whose 

DNF representation has k2 terms.

Theorem 3: Let f be a tree-shellable function represented 

by a read-k DNF with k2 terms. Let T be the BDT that 

witnesses that f is tree-shellable. Then, in any right subtree 

of the node in the street of T, no pair of 1-paths include the 

same positive literal.

Proof We consider the right subtree of the root. The sim-

ilar discussion holds for the other right subtrees. As f has 

k2 terms, there exist k 1-paths in the right subtree Tr of the 

root. Assume that there exist m (>1) terms in Tr which 

include both the label of the root and xa. By each 1-path 

in Tr not including xa, at most k-1 1-paths can be com-

pensated. By 1-paths in Tr including xa, at most k-m 

1-paths can be compensated due to the restriction on the 

number of appearances of xa. In total, T can have at most 

k+(k-1)(k-m)+(k-m)=k2+(1-m)k 1-paths. As f 

has k2 terms, m must be 1. • 

Theorem 3 means that only one term whose 1-path 

ends in Tr can have more than two variables. It is because 

if there exist two terms with more than two variables, they 

must include two same variables.

We have shown the upper bound on the number of 

terms and the length of the street. Next, we show that the 

upper bounds are tight.

Theorem 4: There exist tree-shellable functions s.t.

1) the function is represented by a read-k DNF,

2) the number of terms is k2, and

3) a tree which witnesses the tree-shellability has 2k-1 

nodes in the street.

Proof We show that fk(x1, ..., x2k-2, x2k-1, ..., xn)=(x1+ 

X2+...+xk-1+A)(xk+xk+1+...+x2k-2 +B) satisfies 

the conditions of the theorem. Here, A and B are products 

of positive literals not including x1, x2,..., x2k-2 s.t. there 

exists no common variable in A and B, and x2k-1 is included 

in either A or B. Obviously, fk has k2 terms. Construct a tree 

representing f by using x1, x2, ..., x2k-1 in the street in this 

order. Then we can obtain the tree with 2k-1 nodes in the

street which witnesses that fk is tree-shellable. The tree for 

k=3 is shown in Fig. 2. • 

For read-k DNFs, tree-shellable functions with 2k-1 

nodes in the street have very restricted forms, though above 

fk is not the only one example. However, there seems to be 

more variations if the number of nodes in the street can be 

smaller.

The above results are also important when we consider 

the complexity of recognizing tree-shellable functions. As 

we have seen, the tree that witnesses the tree-shellability has 

at most 2k-1 nodes in the street and each right subtree of the 

nodes has at most k terms. That is, any 1-path of the tree has 

at most 3k-2 nodes at which two 1-paths diverge. There-

fore, when k is a constant, exhaustive search of all such trees 

can be executed in polynomial time.

Corollary 4: For Boolean functions represented by read-k 

DNFS for a constant k, recognition of tree-shellability can 

be executed in polynomial time.

5. Tree-Shellability of k-DNFs

In this section, we consider the tree-shellability of Boolean 

functions represented by k-DNFs and clarify the complex-

ity of recognizing tree-shellable and ordered tree-shellable 

functions from the DNF representation.

5.1 NP-Completeness of Recognizing Ordered Tree-

Shellable Functions 

NP-completeness of testing lexico-exchange property, 

which is equivalent to ordered tree-shellability, is proved in 

[4]. Though the length of terms is not considered in [4], the 

proof shows the NP-completeness for k=5. In this paper, 

by improving the proof, we show that the NP-completeness 

result holds for k=4.
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Theorem 5: Given a k-DNF representing f, it is NP-

complete to check if f is ordered tree-shellable for k•†4.

In the remaining of Sect. 5.1, we give the proof of this 

theorem. The problem is in NP because when we guess a 

variable ordering, it is easy to check if the given function is 

ordered tree-shellable with respect to the variable ordering.

To prove NP-hardness, we give the reduction from 3 

HITTING SET problem. 

3 HITTING SET 

Input: Subsets S1, S2, ..., Sm of X={1, 2, ..., n} which 

satisfy |Si|=3 for all i (1•…i•… m). 

Question: Does there exist A•¼X which satisfies |A•¿Si|=1 

for all i(1•…i•…m)?

Using our terms, Lemma 5.3 of [4] can be described as 

follows.

Lemma 2: If f is ordered tree-shellable with respect to ƒÎ, 

then f|xi=0 is also ordered tree-shellable with respect to ƒÎ.

Lemma 3: Let f(a, b, c, y)=abc+ ya+yb+yc. Then 

f is not ordered tree-shellable with respect to any variable 

ordering ƒÎ=ƒÎ1ƒÎ2ƒÎ3ƒÎ4 satisfying ƒÎ3=y or ƒÎ4=y. On the 

other hand, f is ordered tree-shellable with respect to any 

variable ordering satisfying ƒÎ2 =y.

Proof As a, b and c are symmetric in f, we have only 

to consider the cases of ƒÎ= abyc, abcy and aybc. We can 

easily see that the lemma holds by constructing the trees 

representing f with the variable orderings. • 

Lemma 4: Let g(a, b, c, y)= ya+ab+ac+bc. Then g is not 

ordered tree-shellable with respect to any variable ordering ƒÎ

=ƒÎ1ƒÎ2ƒÎ3ƒÎ4 satisfying ƒÎ1= y. On the other hand, g is 

ordered tree-shellable with respect to any variable ordering 

satisfying ƒÎ2=y.

Proof As b and c are symmetric in g, we have only to con-

sider the cases of ƒÎ=yabc, ybac, ybca, aybc, byac and byca. 

We can easily see that the lemma holds by constructing the 

trees representing g with the variable orderings, • 

Lemma 5: [4] Let f1, f2, ..., fr be ordered tree-shellable 

with respect to the same variable ordering ƒÎ= 

x1...xn, Then F(t1, ..., tr, x1, ..., xn)=•É1•…i<j•…r titj•É 

•Éri =1 tifi(x1, ..., xn) is ordered tree-shellable with respect to 

variable ordering t1 t2...tr x1 ...xn.

Now we give the reduction from 3 HITTING SET by 

using above lemmas. Let S={S1, S2, ..., Sm} be the 

given instance of 3 HITTING SET. n+1+2m variables 

xi(i=1, 2, ..., n), y and tj(j= 1, 2, ..., 2m) are used in the 

reduction. Define 2m DNFs ƒÕ k1, ƒÕk2 as follows: for all Si= 

{i1, i2, i3)(i1<i2<i3), ƒÕi1(i1, i2, i3, y)=f(xi1, xi2, xi3, y) and 

ƒÕi2(i1, i2, i3, y)=g(xi1, xi2, xi3, y). f and g are as defined in 

Lemma 3 and Lemma 4. Let F(t1, ..., t2m, x1,..., xn, y)= 

•É1•…i<j•…2m titj •É •É1•…i•…m (t2i-1ƒÕi1•Ét2iƒÕi2). Each term of F 

includes at most 4 literals.

It remains to show that F is ordered tree-shellable if 

the instance of 3 HITTING SET problem has a solution A.

First, we show that the 3 HITTING SET problem has a so-

lution if F is ordered tree-shellable. If F is ordered tree-

shellable with respect to ƒÎ, A= {i|xi appears before y in ƒÎ} 

is the solution of the 3 HITTING SET problem. To prove 

this, consider Si={i1, i2, i3}. Let ƒÎi be the variable order-

ing of {xi1, xi2, xi3, y} in ƒÎ. As t2i-1ƒÕi1 or t2iƒÕi2 is obtained by 

assigning 0 to all but one variables tj, they are ordered tree-

shellable with respect to ƒÎ from Lemma 2. Thus ƒÕi1 and ƒÕi2 

are ordered tree-shellable with respect to ƒÎi. From Lemma 3 

and 4, ƒÎi2=y because otherwise either ƒÕi1 or ƒÕi2 is not or-

dered tree-shellable with respect to ƒÎi . It means that, for 

all Si={i1, i2, i3}, y appears second among {xi1, xi2, xi3, y}. 

Therefore, A defined above satisfies |A•¿Si|=1.

Next, we show that F is ordered tree-shellable if the 

3 HITTING SET problem has a solution. W.l.o.g. let A= 

{1, 2, ..., l} be the solution and let B={l+1, ..., n}. Let 

it=t1, t2, ..., t2m, x1, x2, ..., x1, y, xl+1, ..., xn. Then, for all 

Si={i1, i2, i3}, ƒÎi2=y in ƒÎi. It is because ƒÎ is defined so 

that the variables corresponding to the elements of A appear 

before y and all the other variables appear after y. As A is 

the solution of the 3 HITTING SET problem, |A•¿Si|=1. 

That is, ƒÎi2=y holds. From Lemma 3 and 4, ƒÕi1 and ƒÕi2 

are ordered tree-shellable with respect to ƒÎ. Hence, from 

Lemma 5, F is ordered tree-shellable with respect to ƒÎ.

5.2 Complexity of Recognizing Tree-Shellable Functions

In this section, we show an algorithm for recognizing tree-

shellable functions and evaluate its time complexity for k-

DNFs. In the algorithm, when we check the tree-shellability 

by searching all the possible trees, it is not necessary to use 

backtracking on the variables in the street.

To begin with, we give some definitions used in this 

section. For a Boolean function f and a variable xi of 

f, let right(f, xi) and left(f, xi) be the functions that sat-

isfy PI(right(f, xi))={I•_{i}|I•¸ PI(f), i•¸I} and 

PI(left(f, xi))={I|I•¸PI(f), i•¸I}. Note that left(f, xi)= 

f|xi=0 holds.

Lemma 6: If f is tree-shellable, then f|xi=0 is also tree-

shellable for any i.

Proof As f is tree-shellable, there exists a BDT T that 

witnesses that f is tree-shellable. By assigning 0 to xi in 

the DNF representation of f, the terms that include xi disap-

pear. The BDT obtained by assigning 0 to xi in T represents 

f|xi=0. From Proposition 1, the number of disappeared 1-

paths equals the number of terms that include xi. Therefore, 

the obtained BDT witnesses that f |xi=0 is tree-shellable. • 

Lemma 7: A Boolean function f is tree-shellable and a 

BDT whose root is labeled by xi witnesses that f is tree-

shellable if the following conditions hold.

(1) left(f, xi) is tree-shellable.

(2) right(f, xi) is tree-shellable.

(3) For any I•¸PI(left(f, xi)), there exists I'•¸ 

PI(right(f, xi)) that satisfies I'•ºI.

Proof (if) Consider BDTs whose root is labeled by xi.
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From condition 1, there exists a BDT whose left subtree 

of the root has |PI(left(f, xi))| 1-paths. When condition 3 

holds, 

f=left(f, xi)+xi right(f, xi) 

=xileft(f, xi)+xileft(f, xi)+xi right(f , xi) 

= xileft(f, xi)+xi right(f, xi) = xileft(f, xi)+xiright(f, xi). 

It means that right(f, xi)=f| xi=1. Therefore, from con-

dition 2, there exists a BDT whose right subtree of the 

root has |PI(right(f, xi))| 1-paths. As |PI(left(f, xi))|+ 

| PI(right(f, xi))|=|PI(f)|, there exists a BDT which wit-

nesses that f is tree-shellable. 

(only if) BDT T that witnesses that f is tree-shellable sat-

isfies the property described in Corollary 1. We show that 

the conditions of this lemma are satisfied if the property. of 

Corollary 1 is satisfied. Condition 1 holds from Lemma 6. 

As Corollary 1 holds when xs=xi, condition 3 holds. As 

f=xi left(f, xi)+xi right(f, xi) holds and the right subtree 

of the root has |PI(right(f, xi))| 1-paths, condition 2 holds. 

•  From Lemma 6 and Lemma 7, the next theorem is im-

mediate.

Theorem 6: Let f be tree-shellable. Then there exists a 

BDT whose root is labeled by xi that witnesses that f is 

tree-shellable if the following conditions are satisfied.

(1) right(f, xi) is tree-shellable.

(2) For any I•¸PI(left(f, xi)), there exists I'•¸ 

PI(right(f, xi)) that satisfies I'•ºI.

This theorem means that if f is tree-shellable, we can 

construct a BDT using recursion only to the right subtrees. 

On the other hand, if f is not tree-shellable, there exists no 

variable which satisfies the conditions of Theorem 6 or, if 

it exists, condition (1) of Lemma 7 is not satisfied. From 

Theorem 6, we can test if a Boolean function f (x1, ... xn) is 

tree-shellable or not by the following algorithm.

CheckTS(f)

1. K=PI(f),R=0.

2. If |K|=1, return •eYES•f.

3. For i=1 to n, repeat Step4 and 5.

4. If i•¸R, check if the following a) and b) are satisfied.

a) For any I•¸PI(left(f, xi)), there exists I'•¸ 

PI(right(f, xi)) that satisfies I'•¸I.

b) CheckTS (right(f, xi))=YES.

5. If the conditions are satisfied, R=R•¾{i}, remove the 

terms including i from K and go to Step2.

6. If the conditions are not satisfied for any i, return •eNO•f.

When f is not tree-shellable, CheckTS(f) clearly re-

turns •eNO•f . When f is tree-shellable, from Theorem 6, an 

arbitrary variable which satisfies the conditions can be cho-

sen as the label of the root. Thus, the tree that witnesses 

tree-shellability can be constructed without backtracking on 

the street.

We evaluate the complexity of recognizing tree-

shellable functions for k-DNFs. Note that, when f is rep-

resented by a k-DNF, right(f, xi) is represented by a (k-1)-

DNF.

Consider the number of times conditions of Step4 are 

tested. In Step4, it takes O(km2) time to check a) for one 

variable, where m is the number of terms. For a node in the 

street, the conditions are tested for at most n variables, and 

there are at most n nodes in the street. Thus, step4 a) takes 

O(kn2m2) time in total. In addition, step4 is executed in 

each recursive call of CheckTS . As Step4 b) calls CheckTS, 

CheckTS (right(f, xi)) is called at most n2 times. For each 

call, conditions of Step4 are tested at most n2 times. Thus, in 

the first level of recursive calls, step4 a) takes O(kn4m2) time 

in total. Similarly, we can see that in the t-th level of recur-

sive call, step4 a) takes O(kn2t+2m2) time in total. As tree-

shellability is checked in O(n2) time for quadratic functions, 

(k-2)-nd level of recursive calls takes O(n2k) time. (k-3)-

rd level of recursive calls takes O(kn2k-4m2) time. Either of 

them dominates the computation time of CheckTS . There-

fore, when k is a constant, the following corollary holds.

Corollary 5: For Boolean functions represented by k-

DNFs for constant k, recognition of tree-shellable functions 

can be executed in polynomial time.

6. Conclusion

In this paper, we considered the (ordered) tree-shellability 

of Boolean functions represented by restricted DNFs.

First, we considered the Boolean functions represented 

by read-k DNFs. We showed some properties of tree-

shellable functions with the restriction. In particular, we 

showed that a tree-shellable function has at most k2 prime 

implicants with two or more literals.

Next, we considered the Boolean functions represented 

by k-DNFs. We showed that the recognition of ordered tree-

shellable functions is NP-complete for k=4 and, on the 

other hand, tree-shellable functions can be recognized in 

polynomial time for constant k. On ordered tree-shellable 

functions, it remains open to clarify the complexity of the 

recognition problem for k=3. On tree-shellable functions, 

the complexity of recognition is not clarified even for gen-

eral positive functions.

It is also our future work to clarify the number of tree-

shellable and ordered tree-shellable functions, especially 

under the restrictions we considered in this paper.
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