
996
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

PAPER

Tree-Shellability of Restricted DNFs

Yasuhiko TAKENAGA•õa), Member and Nao KATOUGI•õ*, Nonmember

SUMMARY A tree-shellable function is a positive Boolean function

which can be represented by a binary decision tree whose number of paths

from the root to a leaf labeled 1 equals the number of prime implicants. In

this paper, we consider the tree-shellability of DNFs with restrictions. We

show that, for read-k DNFs, the number of terms in a tree-shellable function

is at most k2. We also show that, for k-DNFs, recognition of ordered tree-

shellable functions is NP-complete for k=4 and tree-shellable functions

can be recognized in polynomial time for constant k.

key words: Boolean function, shellability, prime implicant, binary decision

tree

1. Introduction

Prime implicant is a very important concept in the theory

of Boolean functions. An irredundant disjunctive normal

form (DNF) Boolean formula is given as a sum of prime

implicants. In particular, for a positive Boolean function, its

irredundant DNF representation is unique and given as the

sum of all prime implicants. A tree-shellable function [10]

is a positive Boolean function defined by the relation be-

tween its prime implicants and binary decision tree (BDT)

representations. A Boolean function is called tree-shellable

if there exists a BDT representation such that the number of

prime implicants equals the number of paths from the root

to a leaf labeled 1 in the BDT. An ordered tree-shellable

function is a special case of a tree-shellable function such

that the BDT must be an ordered BDT.

A tree-shellable function is a kind of shellable function.

Shellable Boolean functions play an important role in many

fields. The notion of shellability was originally used in the

theory of simplicial complexes and polytopes (for example,

in [5], [6]). More recently, it is studied for its importance to

reliability theory (for example, in [1], [2], [9]). The notion

of tree-shellability makes it possible to give another charac-

terization of some subclasses of shellable functions [10].

If a Boolean function is shellable and the order of terms

to make it shellable is given, the following problem on com-

puting the reliability of some kind of systems can be solved

easily.

[Union of Product Problem] ([2])

Input: Pr[xi=1](1•…i•…n), f(x1, ..., xn)

Output: Pr[f(x1, ..., xn)=1]

Pr[A] represents the probability of event A. Each variable

represents the state of a subsystem. A subsystem is operative

if the variable has value 1. If f is shellable, one can easily

compute the exact value of Pr[f=1] using the orthogonal

DNF representation off.

In addition, if the BDT representation of a Boolean

function f is given, it is easy to compute the BDT repre-

sentation of its dual fd. The dual of a Boolean function

f(x1, ..., xn) is defined by fd=f (x1, ..., xn). From the

BDT representation of f, the BDT representation of fd can

be obtained by simply exchanging a 1-edge and a 0-edge for

every variable node and exchanging label 1 and label 0 for

every leaf node. In spite of the importance of dualization,

it is not yet known if the DNF representation of the dual

fd can be computed from the DNF representation of f in

time polynomial to the input and output size. Therefore, the

problem still interests many researches (for example, in [3],

[7], [8]).

To utilize the good properties of tree-shellable func-

tions, it is important to clarify the class of Boolean functions

for which tree-shellability can be tested in polynomial time.

In this paper, we consider the properties and the recog-

nition problem of tree-shellable and ordered tree-shellable

functions when their DNF representations have some re-

strictions. As restricted DNFs, we consider read-k DNFs

and k-DNFs. A read-k DNF is a DNF in which each vari-

able appears at most k times. A k-DNF is a DNF all of whose

terms consist of at most k literals.

First, we consider read-k DNFs. In the Union of Prod-

uct problem, the restriction corresponds to the case when

the influence of each subsystem is limited. We show that,

in this case, a tree-shellable function has at most k2 prime

implicants with two or more literals, which is a tight upper

bound. It follows that tree-shellable functions can be recog-

nized in polynomial time when k is a constant.

Next, we consider k-DNFs. It is shown in [4] that it

is NP-complete to decide if a function has lexico-exchange

property (equivalent to ordered tree-shellability) for k•†5.

On the other hand, for quadratic functions, that is when

k=2, ordered tree-shellable and tree-shellable functions

are equivalent and their recognition can be executed in poly-

nomial time [1], [10]. A quadratic function is tree-shellable

if its graph representation is a cotriangulated graph. In this

paper, we improve the proof of [4] and prove that it is NP-

complete for k=4. We also show that tree-shellable func-

Manuscript received May 31, 2007.

Manuscript revised October 24, 2007.

•õ The authors are with the Department of Computer Science,

the University of Electro-Communications, Chofu-shi, 182-8585

Japan.
*Presently

, the author is with NEC Corporation.

a) E-mail: takenaga@cs.uec.ac.jp

DOI: 10.1093/ietisy/e91-d.4.996

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

TAKENAGA and KATOUGI: TREE-SHELLABILITY OF RESTRICTED DNFS

 997

tions can be recognized in polynomial time when k is a con-

stant.
This paper is organized as follows. In Sect. 2, we give

basic definitions on a Boolean function and a binary de-

cision tree. In Sect. 3, we define a tree-shellable function

and show its basic properties. In Sect. 4, we consider tree-

shellability of read-k DNFs. In Sect. 5, we consider tree-
shellability of k-DNFs. Conclusions and future works are

noted in Sect. 6.

2. Preliminaries

2.1 Boolean Function

Letf(x1,...,xn) be a Boolean function. We denote f≧g

if f(x)=1 for any assignment x∈{0, 1}n which makes

g(x)=1. Animplicant of f is a product term∧i∈Ixi∧i∈Ixj

which satisfies∧i∈Ixi∧j∈Ixj≦f, where I, J⊆{1, 2,...,n}.

An implicant which satisfies∧i∈I-{S}xi∧j∈Ixj≦f for any S∈

I and∧i∈Ixi∧j-{t}∈xj≦f for any t∈J is called a prime

implicant of f.

An expression of the form f=∨k=1(∧i∈Ikxi∧j∈Jkxj)is

called a disjunctive normal form Boolean formula (DNF),

where Ik, Jk⊆{1,2,...,n} andIk∩Jk=0 for k=1, ..., m.

A positive DNF(PDNF) is a DNF such that Jk=0 for

all k. If f can be represented as a PDNF, it is called a

positive Boolean function. For simplicity, we call that Ik

is an implicant or a term of a positive function. A PDNF

is called irredundant if Ik⊆Il is not satisfied for any

k, l (1≦k, l≦m, k≠l). For an irredundant PDNE let

PI(f) be the set of all Ik. PI(f) represents the prime impli-

cants of f. In the following of this paper, we consider only

positive functions and we assume that a function is given as

an irredundant PDNF f=∨k=1∧i∈Ikxi.

In the following of this paper, we also use sum (+) and

product (・) instead of ∨ and∧.

2.2 Binary Decision Tree

A Binary Decision Tree (BDT) is a labeled tree that repre-
sents a Boolean function. A leaf node of a BDT is labeled
by 0 or 1. Any other node is labeled by a variable and called
a variable node. Let label(v) be the label of node v. Each
variable node has two outgoing edges, which are called a fl-
edge and a 1-edge. Let edge0(v), edge1(v) denote the nodes

pointed to by the 0-edge and the 1-edge of node v respec-
tively. The value of the function is obtained by traversing
from the root node to a leaf node. At a variable node, one of
the outgoing edges is chosen according to the value of the
variable. The value of the function is 0 if the label of the

leaf is 0, and 1 if the label is 1. Let the right (left resp.) sub-

tree of node v be the BDT whose root is edge1(v) (edge0(v)

resp.).

A path from the root node to a leaf node labeled 1 is

called a 1-path. On every 1-path, each variable appears at

most once. A 1-path P of a BDT is represented by a se-

quence of literals. For simplicity, we denote xi•¸P when xi

is included in the sequence representing P, where xi is either

xi or xi. Let the street of a BDT T be the sequence of nodes

that can be reached from the root of T by using only 0-edges

(including the root itself).

When the 0-edge and the 1-edge of node v point to the

nodes representing the same function, v is called to be a

redundant node. A BDT which has no redundant node is

called a reduced BDT. In the following of this paper, a BDT

means a reduced BDT.

A BDT is called an ordered BDT (OBDT) if variables

appear in the order consistent with a total order of variables

on any path from the root to a leaf. The total order of vari-

ables for an OBDT is called the variable ordering. A vari-

able ordering of variables x1, X2,..., xn is represented by a

permutation ƒÎ on {1, 2, ..., n}.

3. Tree-Shellable Boolean Functions

Definition 1: A positive Boolean function f is tree-

Shellable when it can be represented by a BDT.With exactly

|PI(f)|1-paths.

If a BDT T represents f=∨k=1∧i∈Ikxi and has exactly m

 1-paths, we say that T witnesses that f is tree-shellable.

Definition 2: A positive Boolean function f is ordered

tree-Shellable with respect to πif it can be represented by an

OBDT with variable ordering π which has exactly |PI(f)|1-

paths. f is ordered tree-shellable if there exists π such that

f is ordered tree-shellable with respect to π.

Proposition 1: [10] Let f=∨k=1∧i∈Ikxi be tree-shellable.

Then a BDT that witnesses that f is tree-shellable satisfies

the-following.

・Each 1-path Pk corresponds to a term Ik by the rule that

i∈Ik iff xi∈Pk.

Figure 1 is an example of a tree-shellable function.
Note that the leaf nodes labeled 0 and the edges that point
to them are omitted in the figures of this paper, f of Fig. 1 is
also ordered tree-shellable with respect to variable ordering
x1x2x3x4.

The following corollaries show the relation between a
tree-shellable function f and the BDT which witnesses that
f is tree-shellable.

Corollary 1: [10] Let a BDT T witness that f is tree-

shellable and 1-path Pk correspond to term Ik for any k(1≦

k≦|PI(f)|). Then, for any 1-path Pk of T and any xs∈Pk,

there exists l which satisfies Il⊆Ik∪{S}(l≠k).

998
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

f=X1X2+X1X3+X2X4

Fig. 1 An example of a tree-shellable function.

Corollary2: [10] Let T be a BDT such that T has m=

| PI(f)|1-paths P1, P2, ..., Pm and i∈Ik iff xi∈Pk for any

k(1≦k≦m).Then T witnesses that f is tree-shellable if

for any 1-path Pk of T and any xs∈Pk, there exists l such

that Pk and Pl diverge at a node labeled xs and Il∈Ik∪{s}.

When Corollary 1 holds, we say that Pl(Il resp.) com-

pensates Pk (Ik resp.) for xs.

4. Tree-Shellability of Read-k DNFs

In this section, we consider the tree-shellability of Boolean

functions represented by read-k DNFs. From the next

lemma, we assume in this section that the given DNF con-

sists of terms with at least two literals.

Lemma 1: Let f be represented by a DNF which has terms

with only one literal. Let g be the function obtained from f

by removing terms with only one literal. Then, f is (or-

dered) tree-shellable iff g is (ordered) tree-shellable.

This lemma is obvious because the variable used in a

term with one literal does not appear in the other terms.

Theorem 1: A Boolean function represented by a read-k

DNF with more than k2 terms is not tree-shellable.

Proof Let f be a tree-shellable Boolean function and a

BDT whose root is labeled by xr witness that f is tree-

shellable. Consider a term It including xr. Obviously, the

literals in It•_{r} can appear at most (k-1)-times in the terms

not including xr. It means that each term including xr can

compensate at most k-1 terms not including xr. As there

exist at most k terms including xr, at most k(k-1)=k2-k

terms not including xr can be compensated by them. There-

fore, f has at most k+(k2-k)=k2 terms. •

Corollary 3: Let f be a tree-shellable function represented

by a read-k DNF with m terms. Then the root of the tree

which witnesses that f is tree-shellable is labeled by a vari-

able that appears at least m/k times in the DNF.

Proof Assume that xs appears q (< m/k) times in the DNF.

If the root of a BDT is labeled by xs, as in the proof of

Theorem 1, the number of terms of f must be at most q +

q(k-1)=qk. As q<m/k, qk<m. It is a contradiction. •

Though the maximum number of terms in a tree-

shellable function is k2, the number of nodes in the street

of a BDT which witnesses the tree-shellability is much

smaller. In the following, we consider the maximum number

of nodes in the street.

Theorem 2: Let f be a tree-shellable function represented

by a read-k DNF. Then the tree which witnesses that f is

tree-shellable has at most 2k-1 nodes in its street.

Proof We classify the nodes in the street by whether the

following condition is satisfied or not.

Condition: There exists a 1-path in its right subtree which is

compensated by a 1-path in the right subtree of the root that

includes the positive literal of the variable of the node in the

street.

For simplicity, we call the nodes in the street that satisfy the

condition to be the nodes of type A, and the nodes that do

not satisfy the condition to be the nodes of type B. Also, we

call the right subtrees of the nodes of type A (type B resp.)

to be the subtrees of type A (type B resp.). Note that the root

is classified as a node of type B.

First, we show that there exist at most k nodes of type

A. Assume that there exist p nodes of type A and their labels

are xs1, xS2, ..., xs
p in order of appearance in the street. Let

the right subtrees of the nodes be S1, S2, ..., Sp. For each

i(1•…i•…p), there exists a 1-path Pi in the right subtree

of the root that includes xsi and compensates a 1-path in Si

for the variable of the root. In addition, for any q(2•…q•…

p), Pq is different from Pj for all j(1•…j•…q-1). It is

because if xsj•¸Pq, any 1-path compensated by Pq also has

to include xsj. That is, the 1-paths are in Sj, not in Sq. Thus,

Pi(1•…i•…p) are all different. Therefore, there exist at least

p 1-paths in the right subtree of the root. It means that there

exist at least p terms that include the label of the root. As

each variable can appear in at most k terms, p•…k holds.

Next, we show that there exist at most k nodes of type

B. Assume that there exist k+1 nodes of type B and their la-

bels are xt1, xt2, ..., xtk+1 in order of appearance in the street.

Let the right subtrees of the nodes be T1, T2, ..., Tk+1. Note

that xt1 is the label of the root. Let Ik+1 be a term that corre-

sponds to a 1-path in T→k+1. There exists a 1-path Ik in Tk that

compensates Ik+1 for xtk. Similarly, we can inductively d-

fineIj (1≦j≦k) as the 1-path in Tj that compensatesIj+1

for xtj. That is, Ij⊆Ij+1∪{tj} holds for each j(1≦j≦k).

Therefore, I1⊆Ik+1 ∪{t1, ..., tk} holds.

However, actually, I1 ⊆{t1, ...tk} holds. To prove this,

assume that p∈I1 for some p∈Ik+1. Then p∈12 because

I1⊆I2∪{t1} and p≠t1. Similarly, if p∈Ij, p∈Ij+1

holds for all j. Thus, xp is included in Ij for all j(1≦j≦

k+1). That is, there must be k+1 terms that include xp. It

contradicts the fact that f is represented by a read-k DNF.

Therefore,I1⊆{t1, ... tk}.

Let r be the smallest integer satisfying tr∈I1＼{t1}.

Then,I1⊆{t1, tr, ..., tk+1}. As I1⊆Ir∪{t1, ..., tr-1} from

the definition and.t2, ..., tr-1⊆I1, I1⊆Ir∪{t1} holds. It

means that Ir, is compensated by I1. As tr∈I1, it contradicts

TAKENAGA and KATOUGI: TREE-SHELLABILITY OF RESTRICTED DNFS

 999

Fig. 2 The BDT representing fk for k=3.

the assumption that the node labeled xt r is type B. There-
fore, there can be at most k nodes of type B.

From the above discussions, there can be at most 2k

nodes in the street. In addition, we can show that if there

exist k nodes of type B, there exist at most k-1 nodes of

type A. If there exist k nodes of type B, as seen from the

above proof, there exists a variable which appears in all the

subtrees of type B. As the variable appears in k terms cor-

responding to the 1-paths in the subtrees, it cannot appear

in any subtree of type A. Therefore, the 1-path in the right

subtree of the root that includes the variable cannot compen-

sate any 1-path in the subtrees of type A. As there exist at

most k-1 1-paths in the right subtree of the root that can

compensate a 1-path in subtrees of type A, there can be at

most k-1 nodes of type A. Thus, the total number of nodes

in the street is at most 2k-1. •

The next theorem gives more detailed structure of the

tree that witnesses the tree-shellability of a function f whose

DNF representation has k2 terms.

Theorem 3: Let f be a tree-shellable function represented

by a read-k DNF with k2 terms. Let T be the BDT that

witnesses that f is tree-shellable. Then, in any right subtree

of the node in the street of T, no pair of 1-paths include the

same positive literal.

Proof We consider the right subtree of the root. The sim-

ilar discussion holds for the other right subtrees. As f has

k2 terms, there exist k 1-paths in the right subtree Tr of the

root. Assume that there exist m (>1) terms in Tr which

include both the label of the root and xa. By each 1-path

in Tr not including xa, at most k-1 1-paths can be com-

pensated. By 1-paths in Tr including xa, at most k-m

1-paths can be compensated due to the restriction on the

number of appearances of xa. In total, T can have at most

k+(k-1)(k-m)+(k-m)=k2+(1-m)k 1-paths. As f

has k2 terms, m must be 1. •

Theorem 3 means that only one term whose 1-path

ends in Tr can have more than two variables. It is because

if there exist two terms with more than two variables, they

must include two same variables.

We have shown the upper bound on the number of

terms and the length of the street. Next, we show that the

upper bounds are tight.

Theorem 4: There exist tree-shellable functions s.t.

1) the function is represented by a read-k DNF,

2) the number of terms is k2, and

3) a tree which witnesses the tree-shellability has 2k-1

nodes in the street.

Proof We show that fk(x1, ..., x2k-2, x2k-1, ..., xn)=(x1+

X2+...+xk-1+A)(xk+xk+1+...+x2k-2 +B) satisfies

the conditions of the theorem. Here, A and B are products

of positive literals not including x1, x2,..., x2k-2 s.t. there

exists no common variable in A and B, and x2k-1 is included

in either A or B. Obviously, fk has k2 terms. Construct a tree

representing f by using x1, x2, ..., x2k-1 in the street in this

order. Then we can obtain the tree with 2k-1 nodes in the

street which witnesses that fk is tree-shellable. The tree for

k=3 is shown in Fig. 2. •

For read-k DNFs, tree-shellable functions with 2k-1

nodes in the street have very restricted forms, though above

fk is not the only one example. However, there seems to be

more variations if the number of nodes in the street can be

smaller.

The above results are also important when we consider

the complexity of recognizing tree-shellable functions. As

we have seen, the tree that witnesses the tree-shellability has

at most 2k-1 nodes in the street and each right subtree of the

nodes has at most k terms. That is, any 1-path of the tree has

at most 3k-2 nodes at which two 1-paths diverge. There-

fore, when k is a constant, exhaustive search of all such trees

can be executed in polynomial time.

Corollary 4: For Boolean functions represented by read-k

DNFS for a constant k, recognition of tree-shellability can

be executed in polynomial time.

5. Tree-Shellability of k-DNFs

In this section, we consider the tree-shellability of Boolean

functions represented by k-DNFs and clarify the complex-

ity of recognizing tree-shellable and ordered tree-shellable

functions from the DNF representation.

5.1 NP-Completeness of Recognizing Ordered Tree-

Shellable Functions

NP-completeness of testing lexico-exchange property,

which is equivalent to ordered tree-shellability, is proved in

[4]. Though the length of terms is not considered in [4], the

proof shows the NP-completeness for k=5. In this paper,

by improving the proof, we show that the NP-completeness

result holds for k=4.

1000
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

Theorem 5: Given a k-DNF representing f, it is NP-

complete to check if f is ordered tree-shellable for k•†4.

In the remaining of Sect. 5.1, we give the proof of this

theorem. The problem is in NP because when we guess a

variable ordering, it is easy to check if the given function is

ordered tree-shellable with respect to the variable ordering.

To prove NP-hardness, we give the reduction from 3

HITTING SET problem.

3 HITTING SET

Input: Subsets S1, S2, ..., Sm of X={1, 2, ..., n} which

satisfy |Si|=3 for all i (1•…i•… m).

Question: Does there exist A•¼X which satisfies |A•¿Si|=1

for all i(1•…i•…m)?

Using our terms, Lemma 5.3 of [4] can be described as

follows.

Lemma 2: If f is ordered tree-shellable with respect to ƒÎ,

then f|xi=0 is also ordered tree-shellable with respect to ƒÎ.

Lemma 3: Let f(a, b, c, y)=abc+ ya+yb+yc. Then

f is not ordered tree-shellable with respect to any variable

ordering ƒÎ=ƒÎ1ƒÎ2ƒÎ3ƒÎ4 satisfying ƒÎ3=y or ƒÎ4=y. On the

other hand, f is ordered tree-shellable with respect to any

variable ordering satisfying ƒÎ2 =y.

Proof As a, b and c are symmetric in f, we have only

to consider the cases of ƒÎ= abyc, abcy and aybc. We can

easily see that the lemma holds by constructing the trees

representing f with the variable orderings. •

Lemma 4: Let g(a, b, c, y)= ya+ab+ac+bc. Then g is not

ordered tree-shellable with respect to any variable ordering ƒÎ

=ƒÎ1ƒÎ2ƒÎ3ƒÎ4 satisfying ƒÎ1= y. On the other hand, g is

ordered tree-shellable with respect to any variable ordering

satisfying ƒÎ2=y.

Proof As b and c are symmetric in g, we have only to con-

sider the cases of ƒÎ=yabc, ybac, ybca, aybc, byac and byca.

We can easily see that the lemma holds by constructing the

trees representing g with the variable orderings, •

Lemma 5: [4] Let f1, f2, ..., fr be ordered tree-shellable

with respect to the same variable ordering ƒÎ=

x1...xn, Then F(t1, ..., tr, x1, ..., xn)=•É1•…i<j•…r titj•É

•Éri =1 tifi(x1, ..., xn) is ordered tree-shellable with respect to

variable ordering t1 t2...tr x1 ...xn.

Now we give the reduction from 3 HITTING SET by

using above lemmas. Let S={S1, S2, ..., Sm} be the

given instance of 3 HITTING SET. n+1+2m variables

xi(i=1, 2, ..., n), y and tj(j= 1, 2, ..., 2m) are used in the

reduction. Define 2m DNFs ƒÕ k1, ƒÕk2 as follows: for all Si=

{i1, i2, i3)(i1<i2<i3), ƒÕi1(i1, i2, i3, y)=f(xi1, xi2, xi3, y) and

ƒÕi2(i1, i2, i3, y)=g(xi1, xi2, xi3, y). f and g are as defined in

Lemma 3 and Lemma 4. Let F(t1, ..., t2m, x1,..., xn, y)=

•É1•…i<j•…2m titj •É •É1•…i•…m (t2i-1ƒÕi1•Ét2iƒÕi2). Each term of F

includes at most 4 literals.

It remains to show that F is ordered tree-shellable if

the instance of 3 HITTING SET problem has a solution A.

First, we show that the 3 HITTING SET problem has a so-

lution if F is ordered tree-shellable. If F is ordered tree-

shellable with respect to ƒÎ, A= {i|xi appears before y in ƒÎ}

is the solution of the 3 HITTING SET problem. To prove

this, consider Si={i1, i2, i3}. Let ƒÎi be the variable order-

ing of {xi1, xi2, xi3, y} in ƒÎ. As t2i-1ƒÕi1 or t2iƒÕi2 is obtained by

assigning 0 to all but one variables tj, they are ordered tree-

shellable with respect to ƒÎ from Lemma 2. Thus ƒÕi1 and ƒÕi2

are ordered tree-shellable with respect to ƒÎi. From Lemma 3

and 4, ƒÎi2=y because otherwise either ƒÕi1 or ƒÕi2 is not or-

dered tree-shellable with respect to ƒÎi . It means that, for

all Si={i1, i2, i3}, y appears second among {xi1, xi2, xi3, y}.

Therefore, A defined above satisfies |A•¿Si|=1.

Next, we show that F is ordered tree-shellable if the

3 HITTING SET problem has a solution. W.l.o.g. let A=

{1, 2, ..., l} be the solution and let B={l+1, ..., n}. Let

it=t1, t2, ..., t2m, x1, x2, ..., x1, y, xl+1, ..., xn. Then, for all

Si={i1, i2, i3}, ƒÎi2=y in ƒÎi. It is because ƒÎ is defined so

that the variables corresponding to the elements of A appear

before y and all the other variables appear after y. As A is

the solution of the 3 HITTING SET problem, |A•¿Si|=1.

That is, ƒÎi2=y holds. From Lemma 3 and 4, ƒÕi1 and ƒÕi2

are ordered tree-shellable with respect to ƒÎ. Hence, from

Lemma 5, F is ordered tree-shellable with respect to ƒÎ.

5.2 Complexity of Recognizing Tree-Shellable Functions

In this section, we show an algorithm for recognizing tree-

shellable functions and evaluate its time complexity for k-

DNFs. In the algorithm, when we check the tree-shellability

by searching all the possible trees, it is not necessary to use

backtracking on the variables in the street.

To begin with, we give some definitions used in this

section. For a Boolean function f and a variable xi of

f, let right(f, xi) and left(f, xi) be the functions that sat-

isfy PI(right(f, xi))={I•_{i}|I•¸ PI(f), i•¸I} and

PI(left(f, xi))={I|I•¸PI(f), i•¸I}. Note that left(f, xi)=

f|xi=0 holds.

Lemma 6: If f is tree-shellable, then f|xi=0 is also tree-

shellable for any i.

Proof As f is tree-shellable, there exists a BDT T that

witnesses that f is tree-shellable. By assigning 0 to xi in

the DNF representation of f, the terms that include xi disap-

pear. The BDT obtained by assigning 0 to xi in T represents

f|xi=0. From Proposition 1, the number of disappeared 1-

paths equals the number of terms that include xi. Therefore,

the obtained BDT witnesses that f |xi=0 is tree-shellable. •

Lemma 7: A Boolean function f is tree-shellable and a

BDT whose root is labeled by xi witnesses that f is tree-

shellable if the following conditions hold.

(1) left(f, xi) is tree-shellable.

(2) right(f, xi) is tree-shellable.

(3) For any I•¸PI(left(f, xi)), there exists I'•¸

PI(right(f, xi)) that satisfies I'•ºI.

Proof (if) Consider BDTs whose root is labeled by xi.

TAKENAGA and KATOUGI: TREE-SHELLABILITY OF RESTRICTED DNFS

1001

From condition 1, there exists a BDT whose left subtree

of the root has |PI(left(f, xi))| 1-paths. When condition 3

holds,

f=left(f, xi)+xi right(f, xi)

=xileft(f, xi)+xileft(f, xi)+xi right(f , xi)

= xileft(f, xi)+xi right(f, xi) = xileft(f, xi)+xiright(f, xi).

It means that right(f, xi)=f| xi=1. Therefore, from con-

dition 2, there exists a BDT whose right subtree of the

root has |PI(right(f, xi))| 1-paths. As |PI(left(f, xi))|+

| PI(right(f, xi))|=|PI(f)|, there exists a BDT which wit-

nesses that f is tree-shellable.

(only if) BDT T that witnesses that f is tree-shellable sat-

isfies the property described in Corollary 1. We show that

the conditions of this lemma are satisfied if the property. of

Corollary 1 is satisfied. Condition 1 holds from Lemma 6.

As Corollary 1 holds when xs=xi, condition 3 holds. As

f=xi left(f, xi)+xi right(f, xi) holds and the right subtree

of the root has |PI(right(f, xi))| 1-paths, condition 2 holds.

• From Lemma 6 and Lemma 7, the next theorem is im-

mediate.

Theorem 6: Let f be tree-shellable. Then there exists a

BDT whose root is labeled by xi that witnesses that f is

tree-shellable if the following conditions are satisfied.

(1) right(f, xi) is tree-shellable.

(2) For any I•¸PI(left(f, xi)), there exists I'•¸

PI(right(f, xi)) that satisfies I'•ºI.

This theorem means that if f is tree-shellable, we can

construct a BDT using recursion only to the right subtrees.

On the other hand, if f is not tree-shellable, there exists no

variable which satisfies the conditions of Theorem 6 or, if

it exists, condition (1) of Lemma 7 is not satisfied. From

Theorem 6, we can test if a Boolean function f (x1, ... xn) is

tree-shellable or not by the following algorithm.

CheckTS(f)

1. K=PI(f),R=0.

2. If |K|=1, return •eYES•f.

3. For i=1 to n, repeat Step4 and 5.

4. If i•¸R, check if the following a) and b) are satisfied.

a) For any I•¸PI(left(f, xi)), there exists I'•¸

PI(right(f, xi)) that satisfies I'•¸I.

b) CheckTS (right(f, xi))=YES.

5. If the conditions are satisfied, R=R•¾{i}, remove the

terms including i from K and go to Step2.

6. If the conditions are not satisfied for any i, return •eNO•f.

When f is not tree-shellable, CheckTS(f) clearly re-

turns •eNO•f . When f is tree-shellable, from Theorem 6, an

arbitrary variable which satisfies the conditions can be cho-

sen as the label of the root. Thus, the tree that witnesses

tree-shellability can be constructed without backtracking on

the street.

We evaluate the complexity of recognizing tree-

shellable functions for k-DNFs. Note that, when f is rep-

resented by a k-DNF, right(f, xi) is represented by a (k-1)-

DNF.

Consider the number of times conditions of Step4 are

tested. In Step4, it takes O(km2) time to check a) for one

variable, where m is the number of terms. For a node in the

street, the conditions are tested for at most n variables, and

there are at most n nodes in the street. Thus, step4 a) takes

O(kn2m2) time in total. In addition, step4 is executed in

each recursive call of CheckTS . As Step4 b) calls CheckTS,

CheckTS (right(f, xi)) is called at most n2 times. For each

call, conditions of Step4 are tested at most n2 times. Thus, in

the first level of recursive calls, step4 a) takes O(kn4m2) time

in total. Similarly, we can see that in the t-th level of recur-

sive call, step4 a) takes O(kn2t+2m2) time in total. As tree-

shellability is checked in O(n2) time for quadratic functions,

(k-2)-nd level of recursive calls takes O(n2k) time. (k-3)-

rd level of recursive calls takes O(kn2k-4m2) time. Either of

them dominates the computation time of CheckTS . There-

fore, when k is a constant, the following corollary holds.

Corollary 5: For Boolean functions represented by k-

DNFs for constant k, recognition of tree-shellable functions

can be executed in polynomial time.

6. Conclusion

In this paper, we considered the (ordered) tree-shellability

of Boolean functions represented by restricted DNFs.

First, we considered the Boolean functions represented

by read-k DNFs. We showed some properties of tree-

shellable functions with the restriction. In particular, we

showed that a tree-shellable function has at most k2 prime

implicants with two or more literals.

Next, we considered the Boolean functions represented

by k-DNFs. We showed that the recognition of ordered tree-

shellable functions is NP-complete for k=4 and, on the

other hand, tree-shellable functions can be recognized in

polynomial time for constant k. On ordered tree-shellable

functions, it remains open to clarify the complexity of the

recognition problem for k=3. On tree-shellable functions,

the complexity of recognition is not clarified even for gen-

eral positive functions.

It is also our future work to clarify the number of tree-

shellable and ordered tree-shellable functions, especially

under the restrictions we considered in this paper.

Acknowledgements

This research was partially supported by the Scientific

Grant-in-Aid from Ministry of Education, Science, Sports

and Culture of Japan.

References

[1] M.O. Ball and G.L. Nemhauser, •gMatroids and a reliability analysis

problem,•h Math. Oper. Res., vol.4, pp. 132-143, 1979.

[2] M.O. Ball and J.S. Provan, •gDisjoint products and efficient compu-
tation of reliability,•h Oper. Res., vol.36, no.5, pp. 703-715, 1988.

[3] J.C. Bioch and T. Ibaraki, •gComplexity of identification and dual-
ization of positive Boolean functions,•h Inf. Comput., vol.123, no.1,

pp. 50-63, 1995.

1002
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

[4] E. Boros, Y. Crama, O. Ekin, P.L. Hammer, T. Ibaraki, and A.

Kogan, •gBoolean normal forms, shellability and reliability compu-

tations,•h SIAM J. Discrete Math., vol.13, no.2, pp. 212-226, 2000.

[5] H. Brugesser and P. Mani, •gShellable decompositions of cells and

spheres,•h Math. Scand., vol.29, pp. 199-205, 1971.

[6] G. Danaraj and V. Klee, •gShellings of spheres and polytopes,•h Duke

Math. J., vol.41, pp. 443-451, 1974.

[7] C. Domingo, N. Mishra, and L. Pitt, •gEfficient read-restricted mono-

tone CNF/DNF dualization by learning with membership queries,•h

Mach. Learn., vol.37, pp. 89-110, 1999.

[8] M.L. Fredman and L. Khachiyan, •gOn the complexity of dualization

of monotone disjunctive normal forms,•h J. Algorithms, vol.21, no.3,

pp. 618-628, 1996.

[9] J.S. Provan and M.O. Ball, •gEfficient recognition of matroids and

2-monotonic systems,•h in Applications of Discrete Mathematics,

eds. R. Ringeisen and F. Roberts, pp. 122-134, SIAM, Philadelphia,

1988.

[10] Y. Takenaga, K. Nakajima, and S. Yajima, •gTree-shellability of

Boolean functions,•h Theor. Comput. Sci., vol.262, no.2, pp. 633-

647, 2001.

Yasuhiko Takenaga received the B.E., M.E.
and Ph.D degrees in information science from
Kyoto University, Kyoto, Japan, in 1989, 1991
and 1995, respectively. From 1991 to 1997, he
was an instructor at the Department of Informa-
tion Science, Graduate School of Engineering,
Kyoto University. He joined the Department
of Computer Science, the University of Electro-
Communications, Tokyo, Japan in 1997 as an
assistant professor, where he is currently an as-
sociate nrofessor. His research interest includes

graph algorithms and graph representations of Boolean functions.

Nao Katougi received the B.E. and M.E. de-

grees from Department of Information Science,
the University of Electro-Communications, To-

kyo, Japan, in 2004 and 2006, respectively. He

is currently with NEC Corporation 1st Financial

Systems Division.

