
1292
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

PAPER Special Section on Information and Communication System Security

Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for

Unpredictable Network Traffic

Yoshihide MATSUMOTO•õa), Hiroaki HAZEYAMA•õb), Nonmembers, and Youki KADOBAYASHI•õc, Member

SUMMARY The Bloom Filter (BF), a space-and-time-efficient hash-
coding method, is used as one of the fundamental modules in several net-
work processing algorithms and applications such as route lookups, cache
hits, packet classification, per-flow state management or network monitor-
ing. BF is a simple space-efficient randomized data structure used to rep-
resent a data set in order to support membership queries. However, BF
generates false positives, and cannot count the number of distinct elements.
A counting Bloom Filter (CBF) can count the number of distinct elements,
but CBF needs more space than BF. We propose an alternative data struc-
ture of CBF, and we called this structure an Adaptive Bloom Filter (ABF).
Although ABF uses the same-sized bit-vector used in BF, the number of
hash functions employed by ABF is dynamically changed to record the
number of appearances of a each key element. Considering the hash colli-
sions, the multiplicity of a each key element on ABF can be estimated from
the number of hash functions used to decode the membership of the each
key element. Although ABF can realize the same functionality as CBF,
ABF requires the same memory size as BF. We describe the construction
of ABF and IABF (Improved ABF), and provide a mathematical analysis
and simulation using Zipf's distribution. Finally, we show that ABF can
be used for an unpredictable data set such as real network traffic.
key words: Bloom Filter, counting, burst traffic

1. Introduction

The Bloom Filter (BF), a space-and-time-efficient data
structure and hash coding method, is used as a high-speed
membership-testing module in several network processing
algorithms and applications, such as route lookup [9], cache
sharing [5], key word search [6], per-flow traffic measure-
ment [7], path tracking of a single spoofed packet [8], and
deep packet inspection [4].

In BF, the bit-vector is overwritten with each hash key,
so that the BF allows false positives and cannot count the
number of distinct hash keys. Several extensions of BF [2],

[3], [5] have been proposed to count distinct keys, and these
extensions need to estimate the memory space to count tar-

gets in advance. When those BF extensions are employed
for real-time packet classification or traffic analysis in a high
speed network, reallocating memory dynamically is difficult
due to limited memory space on the hardware or limited
time of calculation in the wire rate. If numerous same pack-
ets, such as DoS/DDoS attacks, arrive over and over again,

the counter bit overflows easily. Allocating a huge amount

of memory for flush clouds or DDoS packets is expensive.

In this paper, we present an Adaptive Bloom Filter

(ABF) which is a space-efficient hash coding with a count-

ing function. The key idea of ABF is to change the number

of hash functions k along with the number of appearances

of each key of an element in a certain time period. For each

distinct key element, ABF sets bits indicated by each k hash

function to 1 in the same way as BF. When all k bit positions

have already been 1, a registered key element arrives again,

ABF calculates the bit position by another hash function. In

a query of membership tests, the additional number of hash

functions N indicates the number of appearances of each

entry. ABF does not need to prepare extra memory space to

count the multiplicity of a each element. ABF is useful for

counting a packet in a network where the maximum rate of

packet per second is unpredictable.

The rest of the paper is organized as follows. Section 2

presents related work. Section 3 explains ABF in detail. In

Sect. 4 an improved ABF is explained. In Sect. 5, we show

the results of the simulations. Section 6 discusses applying

ABF to IP Traceback, and the present study is summarized

in Sect. 7.

2. Related Work

2.1 Bloom Filters

The Bloom Filter (BF) [1] is used as one of the fundamental

modules in several network processing algorithms. BF is a

simple space-and-time-efficient data structure used to repre-

sent a set in order to support membership queries. Scoping

on only testing membership, BF reduces the required mem-

ory space to record membership, although false-positives

occurs. Because of its scope, BF does not have a counting

or deleting function.

In Fig. 1, four hash values generated by element an set

bit-vector B of length m. A set H=H1,H2,•c, Hk of k in-

dependent hash functions, each with range 1,•c,m and the

bits at positions Hk(an) in B are set to 1. To query for an

element, the element must be fed to each of the k hash func-

tions to get k array positions. However, if any of the bits at

these positions are 0, the element is not in the set.

False-positives occur because all the elements fill the

bit of a shared bit-vector. For given m and n, the value of

k (the number of hash functions) leads to minimized false-

positive probability (Fig. 2). However, false-negatives never

Manuscript received July 31, 2007.
Manuscript revised December 13, 2007.
The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630-
0192 Japan.

a) E-mail: yoshi-ma@is.naist.jp
b) E-mail: hiroa-ha@is.naist.jp
c) E-mail: youki-k@is.naist.jp

DOI: 10.1093/ietisy/e91-d.5.1292

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

MATSUMOTO et al.: ADAPTIVE BLOOM FILTER

1293

Fig. 1 Bloom Filter with four hash functions.

Fig. 2 False positive probability.

occur unless a delete operation is given.
The probability that a certain bit is not set to 1 by a

hash function in m bits memory during the insertion of an
element is then

1-1/m. (1)

The probability that a certain bit is still 0 when we in-
sert n element using k hash function is then

(1-1/m)kne-kn/m (2)

and the probability that a certain bit is 1 is

p=1-e-kn/m (3)

The probability of all positions of k function being 1 is

fpBF(1-e-kn/m)k (4)

p=1/2 is the most space-efficient value. Thus the
minimum false positive probability for given values of m
and n is

fpBF(0.61 (5

2.2 Counting Bloom Filters

A counting Bloom Filter (CBF), which is one of the exten-
sions of BF, provides a increment and decrement operation.
The bits of the array which are replaced are extended from
a single bit, to become a c-bit counter. Each counter rep-
resents the number of times that hashed values by k hash
functions located each bit position on the filter. CBF can
also delete the element by decreasing the counters.

Instead of counting and deleting functions, CBF has
several problems. First, an overflow of c-bit counters easily
occurs when skewed data arrives. Second, CBF requires a
large memory space for c counter bits. The required mem-
ory space of CBF is c times the required memory of BF.
If the input element is highly skewed, CBF wastes memory
space because almost all bits and their counters are not used
to record elements.

3. Adaptive Bloom Filters

The Adaptive Bloom Filter (ABF) uses only a single bit-
vector as with a Bloom Filter. ABF can estimate the dupli-
cation of each key in the same way as CBF.

ABF changes the number of hash functions dynami-
cally. The basic idea of counting hash collisions on ABF is
as follows. Basically, ABF works as BF, that is, ABF sets
each bit position indicated by k hash functions to 1. When
all k bit positions have already been set to 1 to record one
element, ABF calculates a hash value by using an additional
k+1'th hash function. Furthermore, if the bit located by the
k+1th function has already been 1, ABF iteratively cal-
culates by another hash function until the bit indicated by
k+N+1'th hash function is 0. In the query of a mem-
bership test, the number of additional hash functions N rep-
resents the number of appearances of each key element if
the rate of hash collisions among distinct hash functions ap-

proximates zero. Algorithm 1 shows the insertion algorithm
of ABF. The querying of membership on ABF is described
in Algorithm 2. Figure 3 illustrates the differences of the
insertion sequence among BF, CBF and ABF. Instead of the
overhead on the querying, ABF saves the memory space for
the c-bit counter of CBF.

3.1 Algorithm for Insertion

In this section, we describe the insert algorithm on ABF (Al-

gorithm 1). All of these algorithms are simple to implement.
BF usually uses fixed k hash functions, but ABF uses

k+N+1 independent hash functions. In algorithm 1, check
whether the bit located Hk+N is set to 1 while being incre-
ment N. The bit located H(k+N+1) is set to 1.

3.2 Algorithm for a Query

In algorithm 2, we first check whether all of Hk is set to 1
or not. This operation is the same as BF. Next, we check

1294
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

Algorithm 1 ABF: Algorithm for Insertion

Require: B, the bit-vector and v, input element
Ensure: N, number of additional hash function1

: if all B[H1..k(v)]=1 then
2: N1
3: while B[Hk+N(v)]=1 do
4: NN+1
5: end while
6: B[Hk+N(v)]=1
7: else
8: all B[H1..k(v)]=1
9: end if

Algorithm 2 ABF: Algorithm for a Query
Require: B, the bit-vector and v, input element

Ensure: N, number of additional hash function
1: if all B[H1..k(v)]=1 then

2: N1

3: while B[Hk+N(v)]=1 do
4: NN+1

5: end while
6: return N

7: end if

whether all of Hk+N is set to 1 or not. We get parameter
N, which means that the number of additional hash func-
tion within the bit-vector is set in the same way as the insert
Algorithm (Algorithm 1). In other words, N represent the

quantity of elements whose accuracy depends on occupancy
rate p.

3.3 Estimating the Number of Appearances of Each Ele-
ment

We get N as iteration using the Algorithm 2 for query. But
the N includes the quantity of elements and errors because
the bit-vector is overridden by another element randomly.
We should estimate the quantity of elements N using N.

Figure 4 presents an occupancy rate p (Eq. (3)) that rep-
resents one bit set to 1 when the n'th element arrives on BF.

p=0.5 is the most efficient equation for saving space in BF.

pmax=1-e-kn/m=1/2 (6)

We assume an is an n'th input element, and we define

D is a set of elements which value is v in a bit-vector.

D={an|an=v} (7)

The more often the occupancy rate p is higher, the

greater the N. If the n'th element adds 1 bit located at Hk+N,

Hk+N+1 bit is already set to 1 with high probability. There-

fore, the N depends on the occupancy rate pn when n'th ele-

ment arrives, and N increases with 1/1-pn bits in the bit-vector.

N=an•¸Dƒ°1/1-pn (8)

Our simple technique estimates the number of keys

Fig. 3 Insert method of BF, CBF and ABF.

Fig. 4 Simple estimation using average: The occupancy p that is the
probability one bit is set to 1 with in the bit-vector.

needed to get an average p. We get pavg using half of in-

put number of elements.

navg=1/2n (9)

pavg=1-e-knavg/m=1-e-0.5kn/m=1-e-1/2ln2

MATSUMOTO et al.: ADAPTIVE BLOOM FILTER

1295

=1-•ã0.50.292 (10)

We define N as the estimated quantity of each elements.

We simply use pavg=1-•ã0.5 for the estimation .

N1/1-pavg•EN=1/•ã0.5•EN

We get N as the estimated counter of each element.

N•ã0.5•EN0.707•EN (11)

However, accuracy of this simple technique depends on

the order of arrival.

4. Improved Adaptive Bloom Filter (IABF)

The weak point of ABF is that the accuracy of N changes de-

pending on the order of arrival pattern. We introduce IABF,

that IABF inserts 1 or 2 bits (zadd•º1,2) stochastically each

time although ABF inserts only 1 bit. The number of addi-

tional hash functions N increases with 1/1-pn bits in ABF. But
in IABF, N increases 2 bits instead of 1/1-pn.

zadd is calculated is as follows;

1/1-pn
zadd=2

zadd=2(1-pn)

As a result, N increases 2 bits all of the time, N is

N=Nƒ°n=11/1-pnzadd=Nƒ°n=12=2N (12)

N=1/2•EN=0.5•EN (13)

4.1 The Method of Inserting a Decimal bit

Add zadd bit is difficult because zadd bits is represented by a

decimal number. We add zadd bits stochastically using ran-

dom number generator. IABF already insert 1 bit such as

ABF. Next we need insert zadd-1 bit stochastically. Algo-

rithm 3 shows the insertion algorithm of IABF. The rand()

generate a decimal number (0•…rand()<1).

Algorithm 3 IABF: Algorithm for Insertion

Require: B, the bit-vector v, the input element and pn, the occupancy rate

Ensure: N, number of additional hash function

1: if all B[H1..k(v)]=1 then

2: N1

3: while B[Hk+N(v)]=1 do

4: NN+1

5: end while

6: B[Hk+N(v)]=1

7: if rand()•…2(1-pn)-1 then

8: B[Hk+N+1](v)]=1

9: end if

10: else

11: all B[H1..k(v)]=1

12: end if

5. Evaluation

5.1 False Positive

When BF uses k hash functions and m sized memory with n
unique entries, then, the false positive of BF fpBF is defined
as

fpBF(1-e-kn/m)k (14)

To define the false positive rate of CBF, ABF or IABF,

we have to consider the collision elements because of the

counting elements.

Here, we define collision rate ƒ¿. ƒ¿ as collision ele-

ments/total elements. For example, if the input elements

are {1,2,2,3,3}, the unique elements are {1,2,3}, and the col-

lision elements are {2,3}. ƒ¿ is {2,3}/{1,2,2,3,3}=2/5=

0.4. The maximum number of counter is collision elements

/unique elements=ƒ¿/1-ƒ¿.

Then, the required bit size for counter bits c with no

skew of input elements is

c=[log2•uƒ¿/1-ƒ¿•v] (15)

5.1.1 False-Positive of CBF

If the bit size for the counter of CBF is c and the total mem-
ory size is m, CBF can use only m/c-sized memory space to
register n elements. Therefore, the false positive of CBF is
defined as:

fpCBF(1-e-knc/m) (16)

5.1.2 False-Positive of ABF

Next, we try to define the false positive of ABF. ABF uses

the total memory space m for registering unique elements

such as BE Different from BF, ABF also uses the same

bit-vector to count collision elements. The false-positive of

ABF fpABF is influenced by the collision ratio ƒ¿ and the or-

der of arrival. We define the size of amount bit q=n(1-ƒ¿),

which is filled by unique elements, and the size of amount

bit r=nƒ¿ which is filled by collision elements.

We assume Tn is the probability that the n'th element

is not set to 1 during the insertion, The mTn-1 is not set to 1

in m, which must be decreased when the collision element

arrives. We also assume that T0=1.

Tn= {
ƒ®q(1-1/m)k (unique elements)

ƒ®r(1-1/mT n-1) (collision elements)

fpABF=(1-Tn)k

Figure 5 presents a false positive probability with BF,
CBF and ABF. ABF is more efficient than CBF where the
collision rate is lower. The reason the collision rate is lower
is because ABF consumes n bit when n unique elements in-
sert the bit-vector. On the other hand, CBF uses log2(n) bits
for the counter.

1296
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

Fig. 5 False-positive probability (fp) with collision ratio (ƒ¿).

Table 1 The order of space.

5.1.3 False-Positive of IABF

Although ABF inserts 1 bit per input element, IABF inserts
2(1-pn) bits. The false-positive of IABF is as follows:

Tn=

{

ƒ®q(1-1/m)k (unique elements)
ƒ®r(1-1/

mTn-1)2(1-pn) (collision elements)

fpIABF=(1-Tn)k

5.2 Required Memory Size

Here, we describe the required memory space by the bit

length of the output hash value. Because of a characteristic

of BF, the required memory for the bit-vector is determined

by the bit length of the output hash value.

Table. 1 compares BF, CBF, ABF and IABF regarding

the required memory size and capacity of the counting func-

tion.

First, we try to describe the required memory size by

the bit length of the output hash value by each hash func-

tion l. BF requires 2l-sized memory for storing membership.

CBF has to prepare the extra memory space for counting in

advance. When the size of the each counter bit is c, the size

of required memory for CBF is 2lc. Both ABF and IABF

require 2l-sized memory while ABF uses the memory for

recording membership and counting the collision elements.

Next, we define the number of appearances of each el-

ement AI for a unique input element I, and max (AI) is the

maximum of AI•Emax (AI) of CBF max (AI) CBF depends on

the size of the counter bit, hence,

max(AI)CBF=2c

ABF records one extra bit to count the number of el-
ements. ABF is allowed to count elements until the occu-

pancy of the bit-vector is less than 50%, therefore, if the
minimum set of the hash functions is defined as kmin, then,

max(AI)ABF=[(2l-kmin)/2]

IABF records 1-2. more bits to count the same key
element, hence,

max(AI)IABF=[(2l-kmin)
/4]

5.3 Capacity of the Filter

Here, we compare the capacity of each filter algorithm to
record distinct elements.

The capacity of recording membership n on BF de-

pends on bit-vector size m=2l and the allowed false pos-
itive rate fpBF. By solving equation 1 for the memory effi-
ciency factor (n/m) and differentiating with respect to k, it
is easy to check that optimal memory efficiency is reached
when k=log(1/fpBF). The memory requirement of such
a table can be determined easily by substituting fpBF back

into equation 1 (observe=1/2):

m=-nBFlog(l/fpBF)/l
n(1/2)

Therefore, if the allowed false positive rate fpBF is

given, then BF's capacity nBF is

nBF=-mln(1/2)/l
og(1/fpBF)

Considering CBF's capacity, the total memory space m

is consumed to registering distinct entry and counting each

entries. The memory space used to register distinct elements

is m/c (c is the size of counter bit). Hence, CBF's capacity

is nCBF where the allowed false-positive rate is fpCBF,

nCBF=-mln(1/2)/
c•Elog(1/fpCBF)

ABF's capacity of registering membership is more

complex because ABF changes k dynamically and fpABF is

decided by degree of skewness and the order of arrival. If

all the elements are unique, fpABF is the same as fpBF. How-

ever, almost all the collision elements lead to worst capacity.

The capacity of ABF nABF_max is

(17)

MATSUMOTO et al.: ADAPTIVE BLOOM FILTER

1297

Fig. 6 Zipf's distribution for evaluation.

5.4 Calculation Overhead

Here, we compare the calculation overhead among BF, CBF,

ABF and IABF. Table. 2 compares the order of calculation

of each filter. ABF needs iteration of AI in addition to the

calculation of BF.

5.5 Characteristics of the Accuracy of Counting

In this section, we compare the accuracy of the estimation

on the counted number in each algorithm. We compare CBF,

ABF and IABF with Zipf's distribution in order to evalu-

ate the feature of input elements with the varying deviations

(Fig. 6). The parameter skew (ƒÆ) represent the characteristic

of the deviation of Zipf's distribution. For example, if the

skew=0, the number of each collision element is distributed

equally.

At first, we tried to characterize the distribution of

differences between the estimated counter and the actual

counter. We evaluated the case where n is 1000, the total

memory size m of all algorithm is the same, all algorithms

use the same parameter k=3, and Fp=0.125. And another

parameter of CBF or ABF is chosen with most efficiently on

each algorithm. The deviation of ABF is figured in Fig. 7,

and. CBF, in Fig. 8. We assume that the correct value is lo-

cated at 0. The almost all estimated counter was in a -5 to

5 with varying skew ƒÆ.

Next, we evaluated the error rate of the counting func-

tion on each filter algorithm. We implemented CBF, ABF

and IABF, and measured the accuracy of the estimated

counter for each element.

We defined the parameters as follows:

fi is the estimated times of the duplication, fi is the

Fig. 7 Deviation of accuracy of ABF with varying skew (ƒÆ)
, the number

of input elements (n) is 1000.

Fig. 8 Deviation of accuracy of CBF with varying skew (6), the number

of input elements (n) is 1000.

actual counter for the i'th element in a set of unique elements

v.

We measured the mean squared additive error, which is

calculated by

Eadd=•ãƒ°i•¸v(fi-fi)2/n (18)

Figure 9 shows the error rate of the counter of each fil-
ter algorithm along with Zipf's distribution in Fig. 6. CBF
shows a high error rate in the middle skew because of the
counter overflow. At the lower size of the skew, CBF's
counter bit is evenly-distributed, so that utilization of the
space is efficient. In the high size of skew, CBF could allo-
cate almost all memory which is used as the counter.

Next, we evaluate the accuracy of counting function in
the skewed arrival of elements. In Fig. 10, the order of the
data set was sorted. At the higher level of the skew, the error
rate of ABF was much larger than that in Fig. 9, but IABF
still kept a lower error rate.

In sum, the accuracy of IABF is higher and more stable
than CBF or ABF.

1298 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

Fig. 9 Accuracy of CBF, ABF and IABF for zipf's distribution which is

order by at random.

Fig. 10 Accuracy of CBF, ABF and IABF for zipf's distribution which

is order by distinct element.

6. Discussion

6.1 ABF Support for Biasing and Unpredictable Network

Traffic

In real-time network traffic analysis, reallocating the mem-

ory structure of CBF in real time is difficult. Therefore, we

need to estimate the memory space that is C•Em (the counter

bit, the memory size) bits for counting in advance. Further-

more, if the same packet flow arrives over and over again,

such as in DoS/DDoS attacks, the counter bit easily over-

flows.

ABF does not have special space for the counter bit be-

cause in ABF has the bit for the counting into the bit-vector.

Hence, ABF insertion could occur with no overflow and

no preparation of the counting space in advance. In other

words, we do not need to predict the rate of duplication,

hash collisions and/or deviations of measured traffic.

6.2 The Delete Function on ABF

ABF does not support deletion and updating of the counter,

Fig. 11 Coverage of each method.

because if one tries to remove the bit corresponding to the

hash value, the bit leads to a false negative and a degradation

of accuracy regarding the counting.

To keep the accuracy of ABF, several ABFs such as in

[8] must be rotated.

6.3 Applying ABF to Traffic Monitoring Application

The study of traffic monitoring is a fundamental tech-

nique of Network Security. ABF is useful for the network

anomaly detection and monitoring unpredictable traffic such

as DoS/DDoS attacks because of efficient data structures of

ABF.

In Fig. 5 shows ABF is less false positive than CBF in

ƒ¿ (collision rate)<0.95. ABF improves the false-positive

ratio tenth compared to CBF without in high collision rate.

In Fig. 11, Space Code Bloom Filter (SCBF) [7] is suit-

able for counting high collision keys of network flow be-

cause SCBF uses multiple bit-vector and counts with per-

centages. Therefore, ABF could count network flow more

detail as compared with SCBF in the low collision rate. Es-

pecially, ABF is suitable for monitoring a low collision ratio

and/or a highly skewed traffic. The ABF can be widely ap-

plied on traffic monitoring and analysis.

For example, in the IP traceback [8], the collision ra-

tio of hashed packet is approximately 0.00092% in the wide

area and 0.139% on the LAN in the A 28-byte prefix. Al-

though ABF needs more calculation cost compared with

CBF, ABF improves the false-positive ratio tenth compared

to CBF.

7. Conclusion

In this paper, we presented ABF as a new construction with

the same functionality as the counting Bloom Filter (CBF)

for network traffic analysis.

CBF has a special space for the counter bits, and

overflow easily in real network traffic where collision rate

changes dynamically and is unpredictable. On the contrary,

ABF and IABF could count each element with no overflow

and with no preparation of the counting space in advance.

The accuracy of ABF depends on the arrival pattern of

MATSUMOTO et al.: ADAPTIVE BLOOM FILTER

1299

input elements. IABF can decrease the error rate on estimat-

ing the times of duplication on each input element by adding

more two bits on the Bloom filter.

ABF and IABF are suitable for recording membership

queries on the multiplicities of individual key elements with

a skewed data set such as the unpredictable traffic data.

Acknowledgment

This research has been conducted as part of the National

Institute of Information and Communications Technology

(NICT) research program, •gResearch and Development of

Traceback Technologies on the Internet.•h

References

[1] B.H. Bloom, •gSpace/time trade-offs in hash coding with allowable

errors,•h Commun. ACM, vol.13, no.7, pp. 422-426, 1970.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.

Varghese, •gAn improved construction for counting bloom filters,•h

ESA, pp. 684-695, 2006.

[3] S. Cohen and Y. Matias, •gSpectral bloom filters,•h SIGMOD Confer-

ence, pp. 241-252, 2003.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,

•g Deep packet inspection using parallel bloom filters,•h IEEE Micro,

vol.24, no.1, pp. 52-61, Jan/Feb, 2004.

[5] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, •gSummary cache: A

scalable wide-area Web cache sharing protocol,•h IEEE/ACM Trans.

Netw., vol.8, no.3, pp. 281-293, 2000.

[6] N. Jain, M. Dahlin, and R. Tewari, •gUsing bloom filters to refine Web

search results,•h WebDB, pp. 25-30, 2005.

[7] A. Kumar, J. Xu, J. Wang, O. Spatscheck, and L. Li, •gSpace-code

bloom filter for efficient per-flow traffic measurement,•h Infocom,

2004, 2004.

[8] A.C. Snoeren, •gHash-based ip traceback,•h SIGCOMM '01: Proc.

2001 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pp. 3-14, New York, NY,

USA, ACM Press, 2001.

[9] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, •gFast hash

table lookup using extended bloom filter: An aid to network process-

ing,•h ACM SIGCOMM, Philadelphia, PA, Aug. 2005.

Yoshihide Matsumoto received the M.E de-

gree in computer science from the Nara Institute
of Science and Technology, Japan, in 2003. His

research interests include network security and

network architecture for the Internet.

Hiroaki Hazeyama received his Ph. D de-

gree in Engineering from Nara Institute of Sci-
ence and Technology (NAIST), Japan, in 2006.

He is currently an assistant professor in NAIST.

His research interests include network opera-

tion, network security, and large-scale network

testbed.

Youki Kadobayashi received his Ph. D. de-

gree in computer science from Osaka University
in 1997. He is currently an associate profes-

sor in the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology,

Japan. His research interests include overlay

networks, quality of services in the application-

layer, and middleware security.

