
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

1481

LETTER Speciil Section on Information and Communication System Security

Efficient Flexible Batch Signing Techniques for Imbalanced

Communication Applications*

Taek-Young YOUNa), Young-Ho PARKb), Taekyoung KWONc), Soonhak KWONd), Nonmembers,
and Jongin LIMe), Member

SUMMARY Previously proposed batch signature schemes do not allo
a signer to generate a signature immediately for sequentially asked sign
ing queries. In this letter, we propose flexible batch signatures which do
not need any waiting period and have very light computational overhea
Therefore our schemes are well suited for low power devices.
key words: signature, batch signing, imbalanced communicatio

1. Introduction

Batch signature is a cryptographic tool for signing multi-

ple messages at a time with a cost of single signing. Un-
til now three batch signing techniques have been proposed
in [1], [6] and [2]. Among them, two schemes, in [1] and

[6], are generic techniques whose basic idea is to compress
given messages using cryptographic hash function and to
sign it using well-known signature schemes such as DSA [5]
and Schnorr's signature [7]. A difference between two tech-
niques is the way to compress messages. One method con-
catenates hash of given messages and hashing it once more.
Another method constructs a hash tree for given messages
based on the Merkle tree. A verifier computes the com-

pressed message when he verifies a batch signature. Differ
from the generic constructions, in [2], a specific batch signa-
ture is proposed based on RSA, which computes a signature
for many messages and separates the signature into distinct
signatures for each message. In this case, a signer uses sev-
eral public keys, and the number of public keys corresponds

to the size of batch.
Above-mentioned techniques do not allow a signer to

generate a batch signature for sequentially asked signing
queries. To fully enjoy the merit of batch signature, a re-
quester should wait until sufficient requests are accumu-
lated, but it makes the communication inefficient. We de-
fine a batch signature as flexible if a signer can generate a
batch signature for sequential requests without a waiting pe-
riod. The existing batch signing techniques are not flexible,
and so they can not fully enjoy the merit of batch signing
for sequentially given requests. In [4], a fast DLP-based
signing strategy is proposed which generate many signature
efficiently by computing many exponentiations simultane-
ously. Though the technique can generate several signatures
simultaneously, it is not a batch signature but a batch ex-

ponentiation technique which efficiently computes multiple
exponentiations by computing them simultaneously.

In this letter, we propose a flexible batch signature
which requires one exponentiation for six sequential signing
requests, and one multiplication for each request. Since our
signature is flexible, on average, a signer can respond to se-
quentially asked requests within 41 multiplications. More-
over, our scheme use a fixed base, and so we can respond
to a signing query within 23 multiplications by adopting the
comb-method [3]. We also propose a variant of our scheme
using well-known Merkle tree. Though the cost of verifica-
tion increases, our batch signatures can be useful for an im-
balanced communication since they are flexible. One exam-

ple is the applications for low power devices such as mobile
phone and PDA which have limited electric power. In this
case, it is important to reduce the use of electric power. If a
low power device generates a signature using flexible batch
signature to prove its identity, they can reduce the amount of

power used for generating an authentication data. Another
example is the server application where the server should

generate huge amount of signatures for its clients. If the
server uses a flexible batch signature, it can respond to the
requests asked by its clients more promptly.

2. New Batch Signatures

We provide a flexible batch signature scheme and a variant
of it. Recall that, by a flexible batch signature, we mean that
it provides batch signing for n sequential requests as n-batch
signature without a waiting period.

Manuscript received August 3, 2007.
Manuscript revised December 6, 2007.
The author is with Graduate School of Information Manage-

ment and Security, Korea University, Seoul, Korea.
The author is with Information Security Systems, Sejong Cy-

ber University, Seoul, Korea.
The author is with School of Computer Engineering, Sejong

University, Seoul, Korea.
The author is with the Dept. of Mathematics, Sungkyunkwan

University, Suwon, Korea.
The author is with Graduate School of Information Manage-

ment and Security, Korea University, Seoul, Korea, Corresponding
author.

*This work was supported by grant No.R01-2005-000-11261-
0 from Korea Science and Engineering Foundation in Ministry of
Science & Technology.

a) E-mail: taekyoung@cist.korea.ac.kr
b) E-mail: youngho@cybersejong.ac.kr
c) E-mail: tkwon@sejong.ac.kr
d) E-mail: shkwon@skku.edu
e) E-mail: jilim@korea.ac.kr

DOI:10.1093/ietisy/e91-d.5.1481

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

1482
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

2.1 Flexible Batch Signature 1(FBS 1)

We propose a signature which provides flexible batch sign-
ing for multiple messages. We describe the signature for the
case where two messages are sequentially requested, i.e., we
describe a 2-batch signature.

Setup(k): Let p be a prime number such that q1|p-1 and

q2|p-1 for two primes q1 and q2 where q1=q2|=k for
some security parameter k. Let g1 and g2 be two generators
of order q1 and q2, respectively. Let g=gk11gk22 (mod p),
where k1=q-12 (mod q1) and k2=q-11 (mod q2).

Note that, by definition, gq11=1 (mod p) and gq22=1

(mod p). Then, g1=gq2 (mod p), since the following

relation holds: gq2=(gk11gk22)q2=gq2k11gq2k22=gq2k11=g1

(mod p). Similarly, g2=gq1 (mod p). Let h1: {0,1}*•¨

Zq1 and h2: {0,1}*•¨Zq2 be two cryptographic hash func-

tions that map an arbitrary string to an element of Zq1 and

Zq2, respectively. For given k, params={p,q1,q2,g,h1,h2}

is the system parameter.

KeyGen(params): An user chooses two secret values x1•¸

Zq1 and x2•¸Zq2, and computes y1=gq2x1 (mod p) and

y2=gq1x2 (mod p). Then the public key for the user is

computed as y=, and the corresponding secret key is

sk={x1,x2}. Note that, y1=gx11 (mod p), and so the fol-

lowing relation holds: yq (mod p).

Similarly, yq22=1 (mod p). So, yq2=y1 (mod p) and

yq1=y2 (mod p).

BatchSign(params, sk, m1, m2): Note that two messages are

not required to be requested simultaneously. When two mes-

sages, m1 and m2, are given to sign, a signer chooses a ran-

dom r•¸{0,1}k, and computes ƒÀ=gr (mod p). He com-

putes ƒ¿1=x1h1(m1•aƒÀ)+r (mod q1) and ƒ¿2=x2h2(m2•aƒÀ)+

r (mod q2). Then, ƒÐ1=(ƒ¿1,ƒÀ) and ƒÐ2=(ƒ¿2,ƒÀ) are sig-

natures for m1 and m2, respectively.

Verify(params, pk,ƒÐi, mi): When a signature ƒÐi=(ƒ¿i,ƒÀ) for

a message mi is given to verify, a verifier checks whether the

following equality holds: (yhi(mii)q3-i?=1 (mod p).

The same condition can be verified using the following

equality: (gq3-i)ai?=(yhi(mi•aƒÀ)ƒÀ)q3-i (mod p). If the condi-

tion holds, the verifier accepts ƒÐi as a valid signature. We

can check the correctness of the verification equation as fol-

lowing: (yhi(mi•aƒÀ)ƒÀ)q3-i=yhii(mi•aƒÀ)(gr)q3-i=(gxii)hi(mi•aƒÀ)gri=

gi xihi(mi•aƒÀ)+r
=(gq3-i)ƒ¿i (mod p).

FBS1 supports up to 6-batch signing in a natural way.

For k1-bit prime modulus, we can choose at most [k1/k2]

generators that have distinct k2-bit prime order. Espe-

cially, for 1024-bit prime, we can choose at most six (=

[1024/160]) generators of 160-bit prime order. System pa-

rameter for 6-batch signature is then params={p,Q,g,H}

where p is a 1024-bit prime modulus, qi is a 160-bit prime

such that qi|p-1, gi is a generator of order qi, hi: {0,1}•©

Zqi is a cryptographic hash function, Q={q1,•c,q6},

Fig. 1 Construction of hash tree for six messages.

g=ƒ®6i=1gki (mod p) for ki=((ƒ®6j=1qj)/qi)-1 (mod qi)

and H={h1,•c,h6}. Existence of such parameters will

be shown in Sect. 4.1. For 6-batch signature, a signer

chooses six secrets xi•¸Zqi for i•¸{1,•c,6}, and computes

yi=(g(ƒ®6j=1qj)/qi)xi and the public y=ƒ®6i=1ykii. The corre-

sponding secret key is {x1,•c,x6}. For given six messages,

the signer computes ƒ¿i=xihi(mi•aƒÀ)+r (mod qi) and

ƒÀ =gr (mod p) for i•¸{1,•c ,6}. For given ƒÐi=(ƒ¿i,ƒÀ),

a verifier checks the following: (yhi(m•aƒÀ)ƒÀ/gƒ¿i)(ƒ®6j=1qj)/qi?=1

(mod p).

2.2 Flexible Batch Signature 2 (FBS2)

We propose a variant of FBS1 using Merkle's hash-tree

technique. We define two notions related to hash-tree. Let

root be a value assigned to the highest parent node for a

hash-tree, and covering set for a message be a set of values

being used to generate the root with the given message. In

Fig. 1, h1 ,2,3,4,5,6 is the root, and CS={h1,2,h4,h5,6} is the

covering set for m3. From m3 and CS, the root can be com-

puted as following: h1,2,3,4,5,6=h(h(h1,2,h(h(m3),h4)),h5,6).

Setup(k) and KeyGen(params): same to FBS1

BatchSign(params, sk, M1, M2): We assume that each set of

messages, M1 and M2, are requested simultaneously. Let

M1={m1 ,i1|i1•¸[1,b1]} and M2={m2,i2|i2•¸[1,b2]}

where b1 and b2 are the number of messages in M1 and

M2, respectively. When M1 and M2 are given to sign,

a signer constructs two hash-tree for each message set as

shown in Fig. 1. Let m1 and m2 be the root of hash trees

for M1 and M2, respectively. The signer chooses a random

r•¸{0,1}k, and computes ƒÀ=gr (mod p). He computes

ƒ¿1 =x1h1(m1•aƒÀ)+r (mod q1) and ƒ¿2=x2h2(m2•aƒÀ)+r

(mod q2). The signature for a message mi,j is then ƒÐi,j=

(ƒ¿i,ƒÀ,CSi,j) with i•¸{1,2} and j•¸[1,bi], where CSi,j is the

covering set for mi,j.

Verify(params, pk, ƒÐi,j mi,j): When a signature ƒÐi,j is given,

a verifier recovers mi from mi,j and CSi,j, and he checks the

following equality: (yhi(mi•aƒÀ)ƒÀ/gƒ¿i)q3-i?=1 (mod p). If the

condition holds, he accepts ƒÐi,j as a valid signature.

LETTER

1483

3. Analysis

Let us denote the Schnorr's signature, simple batch sign-

ing technique [1], tree-based batch signing technique [6] and

the batch exponentiation method [4] as SCS, SBS, TBS and

BEXP, respectively.

3.1 Security

One of the main difference between our constructions and

the previous schemes is the use of same random value for

different signatures in our case. For conventional signa-

tures, such as SCS and DSA, the use of the same random

r makes an adversary can compute the secret key. Though

our schemes use the same random for different messages in

a same batch, a similar attack as in SCS cannot be, applied.

We explain it for the case of 6-batch signing since it reveals

much of the information to an adversary compared with the

case of batch signature with fewer requests. When 6-batch

signing is executed, an adversary can obtain the following

values:

x1h1(m1•aƒÀ)+r (mod q1), x2h2(m2•aƒÀ)+r (mod q2),

x3h3(m3•aƒÀ)+r (mod q3), x4h4(m4•aƒÀ)+r (mod q4),

x5h5(m5•aƒÀ)+r (mod q5), x6h6(m6•aƒÀ)+r (mod q6),

where ƒÀ=gr (mod p). In general, an adversary can re-

cover the secret key by solving a system of equations gen-

erated by the same r.•õ For our signatures, an adversary also

can recover secret keys when the above system of equations

are solvable. However, we use different key for each sig-

nature and each equation is defined over different modulus,

and so the given system of linear equations is hard to solve.

The other difference between our constructions and the

previous schemes is the number of secret keys for a public

key y. In general, a public key is assigned to a secret key,

however, in our scheme, single public key is published for

several secret keys. Though single value y is published as a

public key, we can use different public key for each secret

key. Each public key can be uniquely derived from y. In our

schemes, the virtual public key for xi is yi=(g(ƒ®6j=1qj)/qi)xi.

Note that, y=ƒ®6i=1ykii. Then we can easily derive yi from

y as following: yƒÁi=ƒ®6l=1yklƒÁil=ykiƒÁii=yi, where ƒÁi=

(ƒ®6j=1qj)/qi. Note that, yklƒÁil=1 (mod p) for l•‚i, since

ql|ƒÁi and yqll=1 (mod p). Each public key can be uniquely

reconstructed from y by using the above equation. Hence,

the use of single public key for different secret keys is not a

problem in our schemes.

3.2 Efficiency

In Table 1, we compare two proposed signatures with SCS

and existing DLP-based batch signatures, SBS and TBS. We
also compare our schemes with the signing technique based

on BEXP, since its purpose is similar to a batch signature.

From now, we call it as BEXPS. We compare their efficiency

Table 1 Efficiency comparison of the efficiency and property .

Table 2 Efficiency of batch exponentiation (See Table 2 in [4] for de-
tailed explanation).

in terms of the number of modular exponentiation. We ig-

nore the cost of hash evaluation, addition and multiplication,

since their computational costs are negligible compared to

that of exponentiation. Let M be the cost of multiplication,

E be the cost of exponentiation (with 160-bit exponent), n

be the number of signing requests and nb be the number of

batchs. Let nk be the constant which measure the efficiency

of BEXP. Note that, the cost of exponentiation with 160t-bit

exponent is tE. We can choose m at most 6. In Table 1, the

character •g-•h means that the corresponding scheme is not a

batch signature, and so to discuss its flexibility is meaning-

less.

For m=6, FBS1 and FBS2 reduce the average sign-

ing cost by 83% compared with SCS and TBS, respectively.

For an exponentiation with 160-bit exponent, 240 multipli-

cations are required. Hence, on average, a signer can re-

spond to a signing request within 41=(240+6)/6 multi-

plications, since one exponentiation and six multiplications

are required for six signature requests.

The efficiency of BEXP depends on nk. As seen in Ta-

ble 2, average signing cost can be reduced to 46M if 108 ex-

ponentiations are simultaneously computed using 34,084B

of storage. If we use the comb-method [3], FBS1 can gen-

erate a signature with 23M using 405B of storage, and so

FBS1 is more efficient than the signature generation based

on BEXP. Note that, BEXP cannot adopt the comb-method.

4. Implementational Considerations

4.1 Parameter Selection

In this section, we provide an algorithm to generate a prime

p such that qi|p-1 for six distinct primes qi. Let Pk be the

set of primes in [2k,2k+1] a•©b means that b is assigned

to a. a•©RS means that a is randomly chosen in a set S.

•õ To resistance the attack, previous signatures, including SCS

and DSA, use different random values for different signatures.

1484
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

ALGORITHM 1

GENERATION OF PRIME p FOR 6-BATCH SIGNATURE

Step 1. for(i=1;i<7;i++) qi•©RP160

Step 2. Q•©ƒ®6i=1 qi

Step 2. q•©RZ such that |2qQ+1|=1024

Step 3. p•©2qƒ®6i=1qi+1

Step 4. if(p is prime) returns q1,q2,q3,q4,q5,q6 and q

else go to Step 1

Other parameters can be derived from the choice of p.

Though the given algorithm is specifically designed to gen-

erate 1024-bit prime, it is trivial to extend it to general cases.

We generate the parameters using Windows XP, Pentium 4,

Intel CPU 1.2GHz, 1GB RAM. The following is an exam-

ple.

q1=2160+23B54F501274F91B591 D19A27 A19FA237E4 F59 AB

q2=2160+9A27E414 F91BA19F5012754 FD591A237 F591C387

q3=2160+5012754 F4F91B59127A 19F501274F91 B591A23B7

q4=2160+C23B54 FD19A2F50127E4F5914 F91B591A2377A57

q5=2160+4F5919 A22741C23B54591A237 EFDF91B 7A19F643

q6=2160+41274F91B9A 27A19F5A237E4F595911 C23 B551 AF

q=19A27A19F2741 FA5

4.2 Secure Storage

In our signatures, several private keys are used to support

batch signing. So, more secure storage is required than

other schemes. To cover the shortcoming, we securely store

a secret seed Skey rather than store all secret keys, and de-

rive six keys from the seed using a random number gen-

erating function. Then we can reduce the size of secure

storage to store many private keys using k-bit secure stor-

age to store the seed. For example, we compute 6k bit

K=x1•ax2•ax3•ax4•ax5•ax6 using the random generating func-

tion, and use x1,x2,x3,x4,x5 and x6 as six distinct secret

keys.

We store and reuse a random r, and a private key can be

revealed if the random is exposed to and adversary. Hence, r
should be securely stored, and this may cause the implemen-
tation more complicate. To solve this problem, we derive

(6k+k')-bit random string from the seed and use the least
significant k'-bit of the random string to encrypt r. Note that,
an adversary who obtains the ciphertext can not recover r,
and so a long-term secret does not revealed.

5. Conclusion

In this letter, we proposed a flexible batch signature scheme
and a variant of it, FBS1 and FBS2, respectively. Our
schemes suit for imbalanced communication applications
such as low power device applications and a server appli-
cation where it responds to huge amount of signing requests
asked by clients.

References

[1] W.C. Cheng, C.-F. Chou, and L. Golubchik, •gPerformance of batch-

based digital signatures,•h Proc.10th IEEE International Symposium

on Modeling, Analysis, & Simulation of Computer & Telecommu-

nications Systems (MASCOTS'02), pp. 77-85, 2002.

[2] A. Fiat, •gBatch RSA,•h Advances in Cryptology - Proc. Crypto'89,

Lecture Notes in Computer Science, vol.435, pp. 175-185, 1989.

[3] C. Lim and P. Lee, •gMore flexible exponentiation with precompu-

tation,•h Advances in Cryptology - CRYPTO'94, Lecture Notes in

Computer Science, vol.839, pp. 239-252, Springer-Verlag, 1994.

[4] D. M'Raihi and D. Naccache, •gBatch exponentiation; A fast DLP-

based signature generation strategy,•h Proc. 3rd ACM Conference

on Computer and Communications Security (CCS'96), pp. 58-61,

1996.

[5] NIST, •gDigital signature standard (DSS),•h FIPS Federal Register,

vol.56, no.169, 1991.

[6] C.J. Pavlovski and C. Boyd, •gEfficient batch signature generation us-

ing tree structures,•h Proc. International Workshop on Cryptographic

Techniques and E-Commerce (CrypTEC'99), pp. 70-77, City Uni-

versity of Hong Kong Press, 1999.

[7] C.P. Schnorr, •gEfficient identification and signatures for smart

cards,•h Advances in Cryptology - Proc. EUROCRYPT' 89, Lecture

Notes in Computer Science, vol.435, pp. 239-252, 1989.

