
1492

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

PAPER

A Specification Translation from Behavioral Specifications to

Rewrite Specifications*

Masaki NAKAMURA•õa), Member, Weiqiang KONG•õ, Nonmember, Kazuhiro OGATA•õ, Member,

and Kokichi FUTATSUGI•õ, Nonmember

SUMMARY There are two ways to describe a state machine as an al-
gebraic specification: a behavioral specification and a rewrite specificaon.
In this study, we propose a translation system from behavioral specifa-
tions to rewrite specifications to obtain a verification system which has the
strong points of verification techniques for both specifications. Since our
translation system is complete with respect to invariant properties, it helps
us to obtain a counter-example for an invariant property through automatc
exhaustive searching for a rewrite specification.
key words: specification translation, verification, algebraic specificon,
behavioral specification, rewirte specification, CafeOBJ. Maude

1. Introduction

There are many kinds of formal specification languages to
support formal methods. Algebraic specification languages,
e.g. OBJ3, CafeOBJ, Maude, are formal specification lan-

guages whose specifications denote algebras. Unlike spec-
ification languages based on first-order predicate logic, for
example, Z notation, algebraic specification languages have
been developed with initial algebras as a mathematical the-
ory of abstract data types together with term rewriting as a
computational theory of abstract data types. In this paper
we focus on two kinds of algebraic specifications: behav-
ioral specifications and rewrite specifications.

A behavioral specification specifies behaviors of a sys-
tem, and it denotes a set of all algebras satisfying the de-
scribed behavior, that is, it specifies all implementations sat-
isfying the behavior. A rewrite specification specifies local
concurrent transitions of a system, and it denotes the term
algebra (or an initial algebra) with the rewrite relation, that
is, it specifies essentially just one implementation. Roughly
speaking, we can specify a system in a higher abstract level
by a behavioral specification than a rewrite specification.
When we verify a property for a behavioral specification,
all its implementations are guaranteed to satisfy the prop-
erty. A fully-automatic verification system, for example, the
search command and a model checker, can be applied to
rewrite specifications and cannot be applied to behavioral
specifications directly. It gives us a way not only to prove
a property but also to disprove it with a counter-example.

For example, we describe a semaphore system in this paper.

In a behavioral specification the set of processes can be an

abstract set, and any kind of processes sets can be a model

of the specification. On the other hand, to describe a rewrite

specification, we need to decide a concrete set of processes.

In addition we need to restrict the number of processes to

finite to apply a fully-automatic verification system.

We propose a translation system from behavioral spec-

ifications to rewrite specifications, and show the translation

is complete w.r.t. invariant properties. The invariant prop-

erty is a foundational property for state transition systems.

If a state property is invariant, the property holds for ev-

ery reachable state. The invariant property is often used to

express safety properties, for example, the property that no

intruder can decrypt any encrypted data in a security pro-

tocol. Our translation system takes a behavioral specifica-

tion written in CafeOBJ language** [4] and returns a rewrite

specification written in Maude language***. The CafeOBJ

system has a semi-automatic equational reasoning, which

helps to verify a property interactively. The Maude sys-

tem supports fully-automatic exhaustive search command

and a model checker. By our translation system, we may

find a counter-example of a CafeOBJ behavioral specifica-

tion through translating it into a Maude specification and

applying the Maude search command.

2. Preliminaries

A finite sequence of a1, a2,•can is denoted by •¨a, whose

length is observed by ln(•¨a)=n. We may use set notations

for a sequence if there is no confusion, e.g., a•¸•¨b stands for

∃i.a=bi, {ai|0<i<4} stands for a1 a2 a3, etc. For a set S,

an S-sorted set A is a family {As|s•¸S} whose element is a

set associated to each s•¸S. In this section we introduce the

notion of basic algebraic specifications which is a common

part of both CafeOBJ and Maude specifications, and is used

for data types of a target system.

An algebraic specification consists of modules. The

following is an example of CafeOBJ modules which specify

natural numbers and the addition operation on them.

mod! BASIC-NAT{

[Zero NzNat<Nat]

op 0:->Zero

Manuscript received January 22, 2007.

Manuscript revised August 6, 2007.
† The authors are with School of Information Science, Japan

Advanced Institute of Science and Technology, Nomi-shi, 923-
1211 Japan.

* A preliminary version of this article appeared in [9].

a) E-mail:masaki-n@jaist.ac.jp
DOI:10.1093/ietisy/e91-d.5.1492

** http://www.ldl.jaist.ac.jp/cafeobj/
*** http://maude.cs.uiuc.edu/

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1493

ops_:Nat->NzNat

}
mod! NAT+{

pr(BASIC-NAT)
op_+_: Nat Nat->Nat
vars MN:Nat
eq N+0=N.
eq N+sM=s(N+M).

}

A module consists of an import part, a signature part, an

axiom part. In the import part, submodules Mi imported

by the main module are listed with their import modes, e.g.

pr (M1) ex (M2)•c. In tn the signature part, sorts and op-

erations are declared. A sort s is a kind of types, which

interpreted into a carrier set Ms in its denotational model

(algebra) M. An inclusion relation can be given on sorts.

An operation symbol f with an arity •¨s of a sequence of sorts

and a coarity s of a sort denotes an operation or a function

Mf:Ms1•~•c•~Msn•¨Ms. For example, the algebra N of

natural numbers is a model of BASIC-NAT, whose interpre-

tation is the following: NZero={0}, NNZNat=N+=N-{0},

NNat=N={0, 1, 2,•c}, N0=0 and Ns(n)=n+1. A term

is a well-sorted tree whose nodes are operation symbols and

leaves are variables. For a given S-sorted set V of variables,

an assignment a: V•¨M is an S-sorted map where as is a

map from Vs to Ms. For a term t of a sort s and an assign-

ment a: V•¨M whose V is the set of all variables in t, t

is interpreted into an element of Ms, denoted by a(t), as fol-

lows: a(t)=a(x) if t=x•¸V and a(t)=Mf(a(t1),•c,a(tn))

if t=f(•¨t). An equation is a pair of terms of a same sort. A

conditional equation is a pair of an equation and a condi-

tional term of Boolean sort. They are declared after eq and

ceq respectively. We may call both of them just equations.

In the axiom part equations are declared. An algebra is a

model of a specification if and only if the left-hand side and

the right-hand side of each equation are interpreted into a

same element for any assignment. The algebra N can also

be a model of NAT+if+is interpreted into N+(m,n)=m+n.

CafeOBJ has two kinds of denotations: loose and tight.

A specification with the loose denotation, written by mod*,

denotes the set of all models. A tight specification, mod!,

denotes the set of all initial models. An initial model is a

model M satisfying that each element e•¸Ms has a corre-

sponding term t, i.e. Mt=e, and that t=t' can be deduced

from the axiom whenever Mt=Mt'. The algebra N is an

initial model of NAT+. For example, Boolean algebra (with

B0=false, B+=V, etc) or the algebra of integers can be

a model of NAT+ but is not an initial model. CafeOBJ sup-

ports imports of modules. A CafeOBJ specification can im-

port several modules, which already have been described or

are built-in modules of CafeOBJ system. There are several

kinds of imports. Specifications with import declarations

also have loose or tight denotation declarations. Formal se-

mantics of specifications with imports can be found in [4].

In this study, we mainly treat a loose specification with pro-

tected imports, denoted by pr (SP). Roughly speaking, the

denotation of a loose specification SP which imports SP'

with the protect mode is a set of all algebras M which sat-

isfy (1) all equations in SP as well as SP', and (2) that M is

an expansion of M' for some M' in the denotation of SP',

where an expansion means that Me=M'e for all sorts and

operation symbols e of SP'•õ.

A Maude data type specification, called a functional

specification, denotes the term algebra, which is one of the

initial algebras. In the term of CafeOBJ denotations, any

Maude specification has the tight denotation. Maude does

not support a loose denotation. Another limitation of Maude

functional specifications is that they should be complete in

the meaning of the term rewriting system (See [1] for the

definition of the completeness). Roughly speaking, if a

specification is complete, (i) it is decidable whether t=t'

can be deduced from the equations in the specification or

not, (ii) each term has its unique normal form, which can

be seen as a representative term of an interpreted element

or an equivalence class of terms [t]={t'|t=t'}. For ex-

ample, NAT+ is complete, and s s 0 is a (unique) normal

form of terms s 0+s 0, s s 0+0 and 0+s s 0, all

of which are interpreted into 2. Thanks to the limitation of

the tightness and the completeness, Maude supports useful

automatic verification tools. For a complete specification

SP, one of the denotation of SP is an algebra whose carrier

set of sort s is the set of all ground (i.e. variable-free) normal

forms of sort s (denoted by NFs), called the term algebra.

The term algebra is an initial model of SP.

3. Algebraic Description of State Machines

In this section, we introduce how to describe a state machine

in CafeOBJ and Maude.

3.1 State Machines

A state machine consists of a set S of states, a set I of initial

states and a set T of transitions, where ƒÑ•¸T is a binary

relation on S. We write ƒÑ(s)=s' if (s,s')•¸ƒÑ for ƒÑ•¸T.

For a state machine S=(S,I,T), the set ReS of reachable

states is defined as the smallest set satisfying the following:

I•ºReS and s'•¸ReS if ƒÑ(s)=s' for some s'•¸ReS and

τ ∈T. A state property P is apredicate on S. We say P is

invariant, denoted by S|=InvP, if and only if P(s) for any

s•¸ReS.

3.2 OTS/CafeOBJ Specifications

Observation Transition System (OTS) is a useful no-

tion to describe a state machine in CafeOBJ [10]. An

OTS/CafeOBJ specification has a special sort, called a hid-

den sort, and special operation symbols, called observation

† It is possible that there is no algebra which satisfies the condi-

tions (1) and (2). For that case, the specification denotes the empty
set, and we call the specification inconsistent. We assume that an
input specification is not inconsistent in this paper.

1494

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

symbols and transition symbols whose arities include ex-

actly one hidden sort. We call a non-hidden sort a visible

sort. The co-arity of an observation symbol (or a transi-

tion symbol) is a visible sort (or a hidden sort). In a de-

notational model M of an OTS/CafeOBJ specification, the

carrier set MH of the hidden sort H is called a state space,

and an element s•¸MH is called a state. States s and t

are observationally equivalent, denoted by s•`t, if and

only if Mo(s,•¨u)=Mo(t,•¨u) for each observation symbol o

and each elements •¨u corresponding to the visible arguments

of o. Without loss of generality, each observation sym-

bol (and transition symbol) is assumed to have the hidden

sort at the first argument. A transition symbol ƒÑ must pre-

serve the observational equivalence, i.e. MƒÑ(s,u)•`MƒÑ(t,u)

whenever s•`t. In this section, we give a syntactical def-

inition of inputs of our translation system, and show that

each input specification is an OTS/CafeOBJ specification.

We can say the syntactical definition is another definition

(in the narrow sense) of OTS/CafeOBJ specifications since

the OTS/CafeOBJ specifications satisfy the definition or can

be easily modified into those satisfying it in most practical

applications of OTS [11]-[14]. Hereafter, we use the word
“an OTS/CafeOBJ specification” for a specification satisfy-

ing the following definition.

Definition 3.1: An OTS/CafeOBJ specification has the fol-
lowing syntax:

OTS::=SubModule MainModule

SubModulei::=mod(!|*)SMi{•c}

MainModule::=mod*M{

pr(SM1)•cpr(SMl)

[H]

Signature

Axiom

}

Signature::=Init Obs Trans

Init::=op init:->H.

Obsi::=bop oi:H Voi->Voi

Transi::=BTiCTi

BTi::=bop ƒÑi:H VƒÑi->H

CTi::=bop c-ƒÑi:H VƒÑi->Bool

Axiom::=Vars Ainit AƒÑ1•cAƒÑm

Vars::=VH VO1•cVOm VT1•cVTn

VH::=var S:H

VOij::=var Xij:Voij

VTij::=var Yij:VƒÑij

Ainit::Ao1init•cAominit

Aoiinit::=eq oi(init,Xi)=riniti.

Aτi::=Ao1τi…Aomτi A⊥τi ACτi

Aojτi::=ceq oj(τi(s,Yi),Xj)=rojτi

if c-τi(S,Yi).

A⊥τi::=bceq τi(S,Yi)=S

if not(c-τi(S,Yi)).

ACτi::=eq c-τi(S,Yi)=crτi.

Xi::=Xi1,Xi2…Ximi

Yj::=Yj1,Yj2…Yjnj

where each SubModulei is a module specifying data type,

explained in the previous section. SMi is a name of the

module SubModulei. H is a hidden sort. oi is an obser-

vation symbol and ƒÑi is a transition symbol. Any identifier

can be used for H, oi and ƒÑi. Voi, VƒÑi are visible sorts which

are declared in the submodules. riniti are terms constructed

by operation symbols declared in submodules and variables

occurred in the left-hand sides, which means that no obser-

vation symbols and transition symbols occur. rojƒÑi and crƒÑi

are terms constructed by the observation symbols, operation

symbols declared in submodules, and variables occurred in

the left-hand sides, which means that no transition symbols

occur. All terms should not have nested observation sym-

bols, which means that in any path from the root to a leaf at

most one observation symbol exists, e.g. oj(S,ok(S)) is not

allowed. ln(SubModule)=l, ln(Obs)=m, ln(Trans)=n,

ln(Voi)=mi, ln(Vτi)=ni. Note that beq and bceq are used

for equations on hidden terms, called behavioral equations.

In OTS, the behavioral equation is identified with the obser-

vational equation ～. □

Hereafter, all definitions and proofs are built on the notation

of Definition 3.1, for example, when we take an observation

symbol oi, its sort is H Voi->Voi.

Theorem 3.2: Each OTS/CafeOBJ specification satisfies

the OTS condition, i.e. transitions preserve the observational

equivalence.

Proof. Let τi be a transition symbol and oj an obser-

vation symbol. Let M be a denotational model of the

OTS/CafeOBJ specification, (s, s') a pair of observation-

ally equivalent states, i.e. s～s', and u, v sequences of

elements of M such that uk∈Mvτik and vk∈MVojk. It

suffices to show that Moj(Mτi(s,u),v)=Moj(Mτi(s',u),v).

Let a, a' be assignments such that a(S)=s, a'(S)=s',

a(Xjk)=a'(Xjk)=vk and a(Yik)=a'(Yik)=uk. Note

that those variable symbols S, Xjk and Yik are declared in

the OTS/CafeOBJ specification (See Definition 3.1). First

we prove Mc-τi(s,u)=Mc-τi(s',u). Since M is a deno-

tational model, a(l)=a(r) holds for each equation l=r

in OTS. Thus, Mc-τi(s,u)=a(c-τi(S,Xj))=a(crτi)

and Mc-τi(s',u)=a'(crτi) hold. The only difference be-

tween a(crτi) and a'(crτi) is s and s'. Since the term crτi

has no transition symbols, s(and s') should be directly un-

der an observation symbol, i.e. like o(s,•c) and o(s',•c).

Since s•`s', Mo(s,•c)=Mo(s',•c). Thus, Mc-ƒÑi(s,u)=

Mc-ƒÑi(s',u).

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1495

Case 1: Assume Mc-ƒÑi(s,u)=Mc-ƒÑ
i(s',u)=false•õ. Be-

cause of the equation A•ÛƒÑi, MƒÑi(s,u)=s and MƒÑi(s',u)=

s'. Thus, Moj(MƒÑi(s,u),v)=Moj(s,v)=Moj(s',v)=

Moj(MƒÑi(s',u),v). The second equation comes from s•`s'.

Case 2: Assume Mc-ƒÑi(s,u)=Mc-ƒÑi(s',u)=true. From

the equation AojƒÑi, Moj(MƒÑi(s, u),v)=a(oj(ƒÑi(S,Yi),Xj))=

a(rojƒÑi) and Moj(MƒÑi(s',u),v)=a'(rojƒÑi). The equation

a(rojƒÑi)=a'(rojƒÑi) holds from the same reason with the

above equality a(crƒÑi)=a'(crƒÑi). •

Since the observational equivalence is an equivalence

relation in each model M, we can define an equivalence

class of states as s={s'•¸MH|s•`s'}. The set of the equiv-

alent classes is denoted by MH. For a sequence of visible el-

ements v we can define the function Moiv:MH•¨MVoi as

Moiv(x)=Moi(x,v). MƒÑiu is defined similiarly. A transition

MƒÑia on MH can be defined straightforwardly. We define the

state machine SM as (MH, Minit, T) where T={MƒÑiu|ƒÑi•¸

OTS, uj•¸MVƒÑij}. To avoid complex notations, we often use

a notation x instead of Mx for some model M, where x is a

sort, a constant, an operation and so on, and o(v) and ƒÑ(u)

instead of Moa and MƒÑa.

Example 3.3: Semaphore is a mechanism for restricting

access to shared resources to a fixed number of processes

at a time. We call the place where a process can use the

shared resources the critical section. Semaphore has an in-

teger variable x. To enter the critical section, a process p

executes P operation: When x>0, p enters the critical sec-

tion and x is decreased. When x•…0, nothing happens. To

leave the critical section, p executes V operation: It makes

p leave and x increased. We give an OTS/CafeOBJ spec-

ification of Semaphore. The built-in module INT specifies

integers with usual operations, like +, -, >, etc. The follow-

ing module PROCESS specifies process identifiers.

mod* PROCESS {[Pid]}

Since PROCESS is loose and has only one sort, no operation

symbols and no equations, any set can be a denotational

model of PROCESS. A main module SEMAPHORE specifies

Semaphore.

mod* SEMAPHORE{

pr(INT)
pr(PROCESS)

[Sys]

op init: ->Sys
bop using: Sys Pid->Bool
bop semaphore: Sys->Int
bops down up: Sys Pid->Sys
ops c-down c-up: Sys Pid->Bool

var S: Sys
var X11: Pid
var Y11: Pid
var Y21: Pid

eq using(init,X11)=false.

eq semaphore(init)=1.

ceq using(down(S,Y11),X11)=(if X11==Y11

then true else using(S,X11)fi)

if c-down(S,Y11).

ceq semaphore(down(S,Y11))=

semaphore(S)-1

if c-down(S,Y11).

bceq down(S,Y11)=S if not(c-down(S,Y11))

eq c-down(S,Y11)=not using(S,Y11)and

semaphore(S)>0.

ceq using(up(S,Y21),X11)=(if X11==Y21

then false else using(S,X11)fi)

if c-up(S,Y21).

ceq semaphore(up(S,Y21))=semaphore(S)+1

if c-up(S,Y21).

bceq up(S,Y21)=S if not(c-up(S,Y21)).

eq c-up(S,Y21)=using(S,Y21).

}

Submodules INT and PROCESS are imported. A sort Sys

stands for a state space. Observations identify a system

state. An observation using (s, p) checks whether Process

p is using the shared resource or not at the state s. An obser-

vation semaphore (s) is the value of Semaphore variable.

At the initial state init, no process is using the shared re-

source and the semaphore value is 0 (See the first two equa-

tions). P and V operations are denoted by down and up. The

states down (s, p) and up (s, p) stand for the result states

after applying down and up to s respectively. For example,

the state down (down(init,p0),p1) is the state after the

following executions: p0 executes P operation at the ini-

tial state, then p1 executes P operation. We can observe

the state via obsevations, like using (down(down(init,

p0),p1),p1). The CafeOBJ system reduces this term

into false: Bool, which means that the observed value

by using(_,p1) for that state is false, i.e. the try to en-

ter the critical section by p1 has been failed. When the

initial semaphore value is n, n processes can enter. If

semaphore(init)=2, the above p1's try succeeds, and

CafeOBJ returns true: Bool. •

3.3 State Property

A state property is given by a Boolean term. In this paper,

we express a state property as a Boolean term t which satis-

fies that (i) t has exactly one hidden variable, (ii) the sort of

each variable in t should be involved in the arity of an obser-

vation symbol, and (iii) no transition symbol occurs. Thus,

the hidden variable S should occur directly under observa-

tion symbols, like oi(S,•c). For SEMAPHORE, only a variable

† Any CafeOBJ specification implicitly imports the built-in

module BOOL. The denotational model of BOOL is Boolean alge-

bra ({true, false}, {∧, ∨, , …}). BOOL is, imported with the pro-

tect mode. Thus, any denotational model of any CafeOBJ spec-

ification must have Boolean algebra itself. Hence, for example,

a=true ∨ a=false is true for any Boolean constant a.

1496
IEICE TRANS. INF. & SYST., VOL .E91-D, NO.5 MAY 2008

of the hidden sort and variables of Pid can be involved in a
state property, since Pid is in the arity of using . The transi-
tion symbols down and up are not allowed to occur in a state

property. The following is an example of state properties:

using(S,P) and using(S,Q) implies P==Q

which means that if processes P and Q are using the resource
then they should be identical, that is, at most one process
is using the resource. Operation symbols and, implies,
==are involved in the built-in module BOOL . Let SP be an

OTS/CafeOBJ specification, and P a state property whose

non-hidden variables are of sort S. For a denotational model

M of SP, P is interpreted into a predicate MP which takes

elements including a state and returns true or false. We write

SP|=InvP if SM|=InvQ for any denotational model M of

SP and the state property Q on SM defined as Q(s) •Ít•¸

MS1•~•c•~MS x.MP(s,t).

3.4 Maude Rewrite Specification

In Maude, besides equations, rewrite rules can be declared

in a rewrite specification, also called a system specification

in Maude manual. A rewrite rule has the following syntax:

crl [Label] l=>r if C. The condition part can be omitted

if it is true. In that case, the rewrite rule is written with rl.

The following is an example of rewrite specifications:

mod NNAT is

inc NAT+.

sort NNat. subsort Nat<NNat.

op_|_: NNat NNat->NNat [assoc].

vars MN: Nat.

rl[L]: N|M=>N.

rl[R]: N|N=>M.

endm

For a Maude rewrite specification SP, the rewrite rela-

tion•¨SP is defined as follow: s•¨SP t if and only if (1) s

has a subterm s', (2) s'=E lƒÆ for a rewrite rule l=>r if

C•¸S and a ground substitution ƒÆ, (3) CƒÆ=E true, (4) t'

is the result term of replacing s' into rƒÆ, and (5) t=E

where a ground substitution ƒÆ is a map from variables to

ground terms and tƒÆ is the result term with replacing all

variable x with ƒÆ(x). The binary relation=E is the con-

gruent relation on the set E of all equations in SP. Here-

after we sometimes omit the subscript E from=E. E.g.

1+1|2+2|3+3•¨NNAT4|6•¨NNAT2. We can say a Maude

rewrite specification SP with a sort State and a term init

of State specifies a state machine (Tstate, {init}, •¨SP)

where T is the term algebra of SP.

4. Definition of Translation System

We define a translation system from OTS/CafeOBJ specifi-

cations to Maude specifications. We call a Maude specifi-

cation in the range of our translation system an OTS/Maude

specification.

4.1 OTS/Maude Specification

We describe an OTS in Maude in the following way . An

observed value is represented by a term of the sort OValue .

Each OValue term has the syntax: (o[s]:t) , where o is

a name of the observation with parameters, s are terms for

the parameters and t is the observed value. Only t may be

changed by an application of a transition. The following

Maude module STATE specifies states.

mod STATE is

sorts OValue State.

subsorts OValue<State.

op__: State State->State [assoc comm].

op init: ->State.

endm

A snapshot of a state is represented by a term of State,

which is a (multi)set of OValue terms: O1 O2•cOn. A state

init is prepared for an initial state. A state is identified by a

set of observed values. Each rewrite rule has the form: crl

[Label] Oi1•cOik=>O'i1•cO'ik if C, where Oj and O'j

are OValue terms and only their difference is its observed

value, like Oj=(o[s]:t) and O'j=(o[s]:t').

4.2 Refinement of Loose Specification

Since an OTS/CafeOBJ specification may have loose sub-

modules and Maude does not deal with them, we need to

translate loose modules to tight ones. Moreover Maude re-

quires data modules to be complete.

Definition 4.1: Let SP be a loose CafeOBJ module and SP'

a tight CafeOBJ module. SP' is a refinement module of SP

if and only if (1) SP' is tight and complete, (2) SSP•ºSSP',

≦SP⊆ ≦SP' and ΣSP⊆ ΣSP', (3) for each equation l=r(or

l=r if c) in SP and ground substitution θ from variables to

ground terms of SP', lƒÆ=rƒÆ can be deduced from equations

in SP', i.e. lƒÆ=E'rƒÆ (whenever cƒÆ=E' true). •

Since SP' has all operation symbols of SP, each state

property P of SP is also a state property for a refinement

module SP'.

Example 4.2: Consider the following module:

mod* COMM+{

[Nat]

op_+_Nat Nat->Nat

ears MN: Nat

eq M+N=N+M.

}

NAT+ is a refinement module of COMM+ since NAT+ is com-

plete and + is commutative for any ground terms of Nat,

i.e. •Ím,n•¸N. sm(0)+sn(0)=sn(0)+sm(0) can be

deduced from the equations of NAT+. We omit a proof. •

Example 4.3: The following module is a refinement mod-

ule of mod* PROCESS{[Pid]}:

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1497

mod! PROCESS{

pr(INT)

[Pid]

op p: Nat->Pid

}

The imported module INT is a built-in module of CafeOBJ

(and Maude). We assume built-in modules are complete.

The tight PROCESS is complete since it has no equation. •

In our translation system, we use same module name for an

original and a refinement modules.

4.3 Specification Translation

We give a translation from an OTS/CafeOBJ specifi-

cation whose submodules are tight and complete into

an OTS/Maude specification. Precisely we give a

function F which takes an OTS/CafeOBJ specifica-

tion and returns an OTS/Maude specification. We

write X' Instead of F(X). For example, we write

Signature'=Obs' Trans' instead of F(Signature)=

F(Obs1) F(Obs2)•cF(Trans1) F(Trans1)•c, which means

that a signature of the translated OTS/Maude specification

F(OTS)=OTS' consists of symbols which are obtained

by applying F to observation and transition symbols of the

input OTS.

For an OTS/CafeOBJ specification OTS, the translated

OTS/Maude specification OTS' is defined as follows:

OTS'=mod STATE•cendm

SubModule' MainModule'

SubModule'i=fmod S Mi•cendfm

MainModule'=mod M is

inc STATE.

pr S M1•cpr S Ml.

Signature'

Axiom'

endm

Signature'=Obs' Trans'

Obs'i=op(oi[•c]:_)

:Voi Voi->OValue.

Trans'i=op c-ƒÑi: VƒÑi->Bool.

If Voi is empty, the square bracket •g[•c]•h is omitted in Obs'i.

This is a signature part of the translation system. Note that

we do not need transition symbols in OTS/Maude specifica-

tions. A rewrite rule itself denotes a transition. The name of

a transition symbol in OTS appears as the label of a rewrite

rule in OTS'.

Example 4.4: The following is the first half of the trans-

lated SEMAPHORE:

mod SEMAPHORE is

inc STATE. pr INT. pr PROCESS.
op(using[_]: _): Pid Bool->OValue.
op (semaphore:_): Int->OValue.

□

Next, we give an axiom part of our translation sys-

tem. In a model of an OTS/CafeOBJ specification, infinitely

many observations and transitions may exist even if those

symbols are finite since the number of elements for parame-

ters may be infinite. e.g. Mdown(p1), Mdown(p2),•c, Mdown(pn),

… In order to obtain a finite OTS/Maude specification,

we need to choose a suitable finite set for each parame-

ter sort. For the sort Vok (or VƒÑk) of the k-th parameter

of each observation symbol o (or transition symbol ƒÑ), we

give a finite subset FTVok•ºNFVok (or FTVƒÑk•ºNFVƒÑk) of

ground normal forms. We write FTVƒÑ instead of the se-

quence FTVƒÑ1•~FTVƒÑ2•~•c•~FTVƒÑm where m is the number

of parameters of ƒÑ. Observation and transition symbols may

share sorts, like o: H Nat->Bool and ƒÑ: H Nat->H.

For such cases, we give one FTNat for both parameters, i.e.

if Vxi=Vyj then FTVxi=FTVyi(x,y=o or ƒÑ). Hereafter, O

is the set of all observation symbols of OTS, i.e., oi•¸O if

and only if there exists bop oi:•c in the signature part of

the input OTS. To define Axiom', we define each compo-

nent first, and then we give a definition of Axiom' lastly. For

given FTs, Vars' is defined as follows:

Vars'=Vars'1 Vars'2•cVars'm

Vars'j={var Zoj(s):Voj.|s•¸FTVoj}

For a transition symbol ƒÑi of a given OTS/CafeOBJ specifi-

cation, the rewrite rule A' is defined as follow:

where •¨u•«t stands for the sequence of the normal forms of

terms ui. s[t•©u] or s[t1•©u1,•c, tn•©un] stands for

the result term of replacing all occurrences of t in s into u•õ.

† In general such replacement is not well-defined since a pattern

t may overlap, e.g. s(s(0))[s(t)←0] can be both 0 and s(0). In our

case it is well-defined since observation symbols are not nested.

1498
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

Note that a variable name in a label is not a variable but we

let them be instantiated by this definition. The following is

A'down(p(0)):•õ

crl[down_p_0]:

(using[p(0)]:Zp0)(using[p(1)]:Zp1)

(semaphore:Zs)

=>

(using[p(0)]:

(if p(0)==p(0) then true else Zu0 fi))

(using[p(1)]:

(if p(1)==p(0) then true else Zu1 fi))

(semaphore: (Zs-1))

if

not Zu0 and Zs>0.

Unfortunately, even if we instantiate all parameter variables,

some terms may not be well-formed. For example, if there

exists a subterm o(S,I+1) in the right-hand side of an

equation in the original OTS/CafeOBJ specification, where

I is a variable of Int. For any FTInt, there exists the max-

imal integer m•¸FTInt. Thus, the variable Zo(m+1) for o(S,

m+1) does not included in Vars'. To obtain a feasible Maude

specification, we need remove such rewrite rules. We let

Filter be a function which takes a set of rewrite rules trans-

lated by A'ƒÑ and returns the set of all well-formed and feasi-

ble (no extra variables) rewrite rules.

Next, we give an rewrite rule for the initial state.

A'init=eq init=Ro1init•cRominit

Rojinit={(oj[s]:rinitsj)|oj•¸O, s•¸FTVoj}

rinitsj=rinitj[Xj•©s]

Finally we define Axiom' as follow:

Axiom'=Vars'•¾A'init•¾Filter(A'ƒÑ1•¾•c•¾A'ƒÑ n)

Example 4.5: When FTpid={p(0),p(1)}, The latter half

of Maude SEMAPHORE is obtained as follows:

mod SEMAPHORE is

…

var Zu0:Bool. var Zu1:Bool.

var Zs:Int.

eq init=(using[p(0)]:false)

(using[p(1)]:false)

(semaphore:1).

crl [down_p_0]:

(using[p(0)]: Zp0)(using[p(1)]:Zp1)•c

=>

(using [p(0)]:(if p(0)==p(0) then•c))

(using[p(1)]:(if p(1)==p(0) then•c))

(semaphore:(Zs-1))

if

not Zu0 and Zs>0.

crl[down_p_1]:•c

crl[up_p_0]:…

crl[up_p_1]:…

endm

□

4.4 Property Translation

For an OTS/Maude specification SP', a state property P' is

defined as a Bool term which includes only Zoj(s)S (for j•¸

{1,•c,m} and s•¸FToj) as variables. We write SP'|=InvP'

if and only if P'[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]=true

for any state {(oj[s]:toj(s))|oj•¸O, s•¸FTV oj} reachable

from init by applying rewrite rules.

We define the translated state property P' from a state

property P of an OTS/CafeOBJ specification as follows:

P'={
Q1 and•cand Qk if all Qi are well-formed

true o.w.

Qi=Ri[oj(S,s)•©Zoj(•¨s•«)|oj•¸O, •¨s•«•¸FTVoj]

R={P[W←w]|wi∈FTSi,i=1,2,…}

where {W} are the set of all variables except the hidden vari-

able S in P, and Si is the sort of Wi. Thus, Ri is an instance

of P w.r.t. FTs. R is the set of all instances of P w.r.t. FTs.

Qi is the result of replacing all occurrences of o(S,s) with

the corresponding variables Zo(s). From the same reason of

the specification translation, Qi may not be well-formed, i.e.

there may be o(S,s) in P such that Si•« is not in FTs.

Example 4.6: For FTPid={p(0),p(1)}, using (S,P)

and using (S,Q) implies P==Q is translated into

Zu0 and Zu0 implies p(0)==p(0)

and Zu0 and Zu1 implies p(0)==p(1)

and Zu1 and Zu0 implies p(1)==p(0)

and Zu1 and Zu1 implies p(1)==p(1)

For the translated specification and property we can apply

search command to prove the state property invariant as fol-

lows:

search in SEMAPHORE

init=>*(using[p(0)]:Zu0)(using[p(1)]:Zu1)

(semaphore:Zs)

such that

not((Zu0 and Zu0 implies p(0)==p(0)) and

(Zu0 and Zu1 implies p(0)==p(1)) and

(Zu1 and Zu0 implies p(1)==p(0)) and

(Zu1 and Zu1 implies p(1)==p(1))).

The Maude system returns no solution for this input,

which means the translated state property is invariant

for the translated OTS/Maude specification SEMAPHORE.

† Because of the limitation of Maude syntax
, we cannot use the

bracket symbols in a label and a variable name. Thus, instead of

the bracket symbols we use the underbars in the translated specifi-

cation. Moreover, we use a simple name of a variable, e.g. the full

version of Zu0 is Zu_p_0.

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1499

If we rewrite the initial value of Semaphore into 2 , i.e.

init=(using[p(0)]:false)(using[p(1)]:false)

(semaphore:2). Maude system returns the counter-

example as follows:

Solution 1(state 3)

states:4 rewrites:162•c

Zs-->0

Zu0-->true

Zu1-->true

A path of the counter-example can be obtained as follows:

Maude>show path labels 3.

down_P0

down_P1

□

5. Completeness

In this section we show that the existence of a counter-

example in the translated specification implies the existence

of a counter-example in the original one. That is equivalent

to the completeness of the translation. A translation is com-

plete w.r.t. a invariant property if and only if SP'|=InvP'

whenever SP|=InvP. A translation is sound if and only if

SP|=InvP whenever SP'|=InvP'. If a translation is com-

plete and there is a counter-example in the translated spec-

ification, then the original specification should also have a

counter-example.

Lemma 5.1: Let SP be an OTS/CafeOBJ specification. Let

SP' be a refinement specification of SP. Let P be a state

property for SP. If SP|=InvP then SP'|=InvP.

Proof. It is trivial since any denotational model of SP' is

also a denotational mode of SP. •

Lemma 5.2: Let SP be an OTS/CafeOBJ specification

whose submodules are tight and complete, and SP' an

OTS/Maude specification obtained by our translation. As-

sume that

(i){(oj[s]:uoj(s))|oj•¸O, s•¸FTVoj} is rewritten into

{(oj[s]:voj(s)|oj•¸O, s•¸FTVoj} by the rewrite

rule labeled by ƒÑi(t) in SP' where u _ and v_ are ground

normal forms of the submodules, and

(ii) each uoj(s) is the normal form of oj(s,s) for a ground

term s of the sort H in SP.

Then, oj(ƒÑi(s,t),s)=voj(s) for each oj•¸O and s•¸FTVoj.

Proof. To prove oj(ƒÑi(s,t),s)=Voj(s), we show that a condi-

tional equation ceq oj(ƒÑi(S,Yi),Xj)=rojƒÑi if c-ƒÑi(S,Yi)

in SP can be applied to obtain the equation, that means that

for a ground substitution ƒÆ=[S,Xj,Yi•©s,s,t], we show

c-ƒÑi(S,Yi)ƒÆ=true and rojƒÑiƒÆ=voj(s).

From the assumption (i), the condition of the rewrite

rule is true, that is, we have crƒÑt'iƒÐ=true for a ground

substitution ƒÐ=[Zoj(s)•©uoj(s)|oj•¸O, s•¸FTVoj] in

SP' (and also in SP since they have common submodules) .

From the definition,

crƒÑt'iƒÐ

=crƒÑti[oj(S ,s)•©Zoj(•¨s•«)|oj•¸O, •¨s•«•¸FTVoj]ƒÐ

=CrƒÑti[oj(S ,s)•©uoj(•¨s•«)|oj•¸O, •¨s•«•¸FTVoj]

…(a)

Note that •¨u•«i•¸FTV
oj. From the assumption (ii), we have

oj(s,s)=uoj(s) in SP. Then, c-ƒÑi(S,Yi)ƒÆ=c-ƒÑi(s ,t)=

crƒÑti[S•©s] and

crƒÑti[S•©s]

=crƒÑti[S•©s]

[oj(s,s)•©uoj(s)|oj•¸O, s•¸FTVoj]

=crƒÑti[oj(S,s)•©oj(s ,s)|oj•¸O, s•¸FTVoj]

[oj(s,s)•©uoj(s)|oj•¸O, s•¸FTVoj]

=crƒÑti[oj(S,s)•©uoj(s)|oj•¸O , s•¸FTVoj]

…(a')

The second equation holds since the state variable S should

occur directly under some observation symbol. Since s=s•«

for any term s, (a) and (a') are connected and c-ƒÑi(S,Yi)ƒÆ=

true holds. In a similar say, rojƒÑiƒÆ=rosjƒÑti[oj(S,s)•©

uoj(•¨s•«)]=rosjƒÑt'iƒÐ=Voj(s) also holds. By applying ceq

oj(ƒÑi(S,Yi), Xj)=rojƒÑi if c-ƒÑi(S,Yi) in SP, we obtain

oj(ƒÑi(s,t),s)=oj(ƒÑi(S,Yi),Xj)ƒÆ=rojƒÑiƒÆ=Voj(s). •

The following theorem is about a kind of completeness

of our translation system. The theorem says that if a state

property is invariant on an OTS/CafeOBJ specification the

translated state property is also invariant on the translated

OTS/Maude specification.

Theorem 5.3: Let SP be an OTS/CafeOBJ specification

and P a state property on SP. Assume SP' and P' are

translated from SP and P. Then, SP'|=InvP' whenever

SP|=InvP.

Proof. Assume SP'|•‚InvP,. We show SP|•‚InvP. As-

sume SPr is an intermediate refinement specification from

SP to SP'. There exists a conter-example state {(oj[s]:

toj(s))|oj•¸O, s•¸FTVoj} reachable from init such

that P'[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]=false.

Assume the rewrite sequence from the initial state to the

counter-example in SP' is created by applying the sequence

of the rewrite rules ƒÑi0(t0), ƒÑi1(t1),•c, ƒÑix(tx). By applying

Lemma 5.2 for each rewrite we obtain a state tx of SPr sat-

isfying that t0=init, tk+1=ƒÑik(tk,tk), s=ƒÑix(tx,tx) and

oj(s,s)=toj(s)•õ. From the definition in Sect. 4.4 (Property

tanslation), we can write P'=Q1 and Q2 and •c and Qy.

Thus, P'[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]=false implies

† In the case of the length of the rewrite sequence in SP' is 0
,

s=init.

1500
IEICE TRANS. INF. & SYST., VOL.E91-D , NO.5 MAY 2008

Ql[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]=false for some l.

Let w be the ground terms which instantiate P's variables in

Rl. Then,

Ql[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]

=Rl[oj(S,s)•©Zoj(•¨s•«)|oj•¸O, •¨s•«•¸FTV
oj]

[Zoj(s)•©toj(s)|oj•¸O, s•¸FTVoj]

=Rl[oj(S,s)•©toj(s)|oj•¸O, s•¸FTVoj]

=Rl[oj(S ,s)•©oj(s,s)|oj•¸O, s•¸FTVoj]

=Rl[S•©s]

=P[S,W•©s ,w]

The first equation comes from the definition of Ql in

Sect. 4.4. The second equation is from the transitivity of re-

placements and si=si•« for each term si. The third equation

comes from oj(s,s)=toj(s). The forth equation holds since

S should occur under some oj. The last equation comes

from the definition of Rl. We obtain P(s,w)=false in SPr.

For any denotational model M of SPr, PM(Ms,Mw)=false,

and SPr|•‚InvP. From Lemma 5.1 SP|•‚InvP holds. •

Example 5.4: From Theorem 5.3 we can say that

the counter-example of the OTS/Maude specification

SEMAPHORE with the initial value 2 in the previous section is

also a counter-example of the original OTS/CafeOBJ speci-

fication SEMAPHORE. •

The soundness of our translation system (the in-

verse of Theorem 5.3) does not hold since a refinement

OTS/CafeOBJ specification denotes a part of the denota-

tional models of the original OTS/CafeOBJ specification,

and a translated OTS/Maude rewrite specification does not

cover all transition relation of the original specification.

6. Improvement by Simplification

One of the most difficult part of our translation is to choose

suitable finite set of ground normal forms. We give a tech-

nique to reduce the task of instantiating parameter variables

of transition operation symbols. We call it Simplification.

First, we give an example in which a parameter variable of

a transition symbol makes translation hard.

Example 6.1: We give another OTS/CafeOBJ specifica-

tion of Semaphore.

mod! PSET{

pr(PROCESS)pr(INT)

[Pid<Pset]

op nil:->Pset

op__:Pset Pset->Pset{assoc comm

idr:nil}

op rm:Pid Pset->Pset

op ln:Pset->Nat

vars P P':Pid

var Ps:Pset

eq rm(P,nil)=nil.

eq rm(P,P')=
if P==P' then nil else P' fi.

eq rm(P,P' Ps)=
if P==P' then rm(P,Ps)

else P' rm(P,Ps)fi.
eq ln(nil)=0.
eq ln(P)=1.
eq ln(P Ps)=1+ln(Ps).

}

PSET specifies process sets with operation symbols rm
which removes an element from a set and ln which returns
the cardinality of a set. A set of processes P, Q and R is
represented by the sequence P Q R.

mod* SEMAPHORE{

pr (PSET)
[Sys]

op init:->Sys

bop using:Sys->Pset

bop semaphore:Sys->Int

bop down:Sys Pid->Sys

bop up:Sys Pid Pset->Sys

var S:Sys

vars Y11 Y21:Pid

var Y22:Pset

eq using(init)=nil.

eq semaphore(init)=1.

ceq using(down(S,Y11))=Y11 using(S)

if semaphore(S)>0.

ceq semaphore(down(S,Y11))=

semaphore(S)-1

if semaphore(S)>0.

bceq down(S,Y11)=S

if not(semaphore(S)>0).

ceq using(up(S,Y21,Y22))=

rm(Y21,using(S))

if using(S)==Y21 Y22.

ceq semaphore(up(S,Y21,Y22))=

semaphore(S)+1

if using(S)==Y21 Y22.

bceq up(S,Y21,Y22)=S

if not(using(S)==Y21 Y22).

}

The difference from the previous specifications is that

(i) using is defined for the whole system and returns all

processes which are using the share resource, (ii) up takes

a process p and a processes set ps and changes the state

only if p •¾ ps is the set of all using processes in the cur-

rent state. Since up takes the set of processes, the number

of interpreted functions is exponentially larger than that of

SEMAPHORE in the previous sections. However, because of

the guard condition using (S)==Y21 Y22 for the transition

up (S,Y21,Y22), the transition up do nothing for a set un-

related to the current state. Thus, most cases are ignored.

□

In order to give an improved translation system, we first

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1501

give a translated rewrite rule A'ƒÑi(Yi)in which all parameter

variables of observation symbols are instantiated but those

of the transition symbol ƒÑi are not.

The following is the rewrite rule A'up(P,Ps) of the trans-
lated OTS/Maude SEMAPHORE:

crl[up_P_Ps]:(using:Zu)(semaphore:Zs)
=>(using:rm(P,Zu))(semaphore:Zs+1)

if Zu==P Ps.

To obtain feasible rewrite rules, we have to remove extra

variables P and Ps. However, since Ps is of the sort Pset, it

is hard to find suitable finite set of ground normal forms.

Before instantiating extra variables, we try to remove

them by applying the following simplification function. A

simplification function Simp, which takes a rewrite rule and

returns the simplified rewrite rule, is defined as the result of

applying the following procedure to the input rewrite, rule:

Assume the input rewrite rule has the form: crl l=>r if

C1 and C2 and •c and Cn.

i:=1;

while(i≦n){

if(Ci=“Zo(s)==t”){

remove Ci from the conditional part, and

replace all the other occurrences of Zo(s)

in the rewrite rule with t};

i:=i+1;}

Note that if all Ci are removed, if is also removed and crl
is changed into r1. The following is an example of simpli-
fied rewrite rules:

Simp(A'up(P,Ps))=
r1[up_P_Ps]:(using:P Ps)(semaphore:Zs)
=>(using:rm(P,Z))(semaphore:Zs+1).

Variables P and Ps are not extra variables now. The new

definition of A'ƒÑi. is the set of all instances in which only the

extra variables in Simp(A'ƒÑi(Yi)) are instantiated. The follow-

ing is an example of OTS/Maude specification translated by

our improved translation system:

mod SEMAPHORE is

inc STATE. pr INT. pr PSET.

op(using:_):Pset->OValue.

op(semaphore: _):Int->OValue.

var P:Pid. var Ps:Pset.
var Zu:Pset. var Zs:Int.

eq init=(using:nil)(semaphore:1).

crl[down_p_0]:(using:Zu)(semaphore:Zs)
=>(using:(p(0)Zu))(semaphore:(Zs-1))

if Zs>0.

crl[down_p_1]:(using:Zu)(semaphore:Zs)
=>(using:(p(1)Zu))(semaphore:(Zs-1))

if Zs>0.

rl[up P_Ps]:(using:(P Ps))(semaphore:Zs)
=>(using:rm(P,(P Ps)))

(semaphore:(Zs+1)).
endm

A state property for the new OTS/CafeOBJ specifica-
tion SEMAPHORE is written as P=ln(using(S))<2,
which means that the number of the processes using the
shared source is less than 2. The translated property is P'=
l n(Zu)<2. We can apply the Maude search command as
follows:

search in SEMAPHORE
init=>*(using:Zu)(semaphore:Zs)
such that not(ln(Zu)<2).

Then, no solution is returned. The following is the case
that the initial Semaphore value is 2:

search in SEMAPHORE

(using:nil)(semaphore:2)=>*
(using:Zu)(semaphore:Zs)such that
not(ln(Zu)<2).

Maude returns three solutions. One of them is
Solution 2(state 4)
Zu-->p(0)p(1)
Zs-->0
which means P' is not invariant. The show path command
returns the path of the counter-example, like
down_p_0
down_p_1.

7. Application

While describing a formal specification in an executable
specification language, we may test (candidates of) a spec-
ification to find an error before doing formal verifications.
Here a test stands for one example sequence of transitions,
for example. Although a test may be useful to know what
happen for an example of executions, we can check for only
finite executions. The search command of the Maude sys-
tem (or Maude model checker) may check possibly infinite
cases. Surely our translation system may restrict the num-
ber of transitions to be finite, however, our translation plus

1502
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.5 MAY 2008

Maude may check possibly infinitely many executions . In

our example of Semaphore, only two processes are con-

sidered in the translated specification, but executions made

from them are infinite. Thus, our translation can be said to

be more useful to find errors than tests.

In verification by CafeOBJ, we may need some lemma

to verify an invariant property. A user should try to find

suitable lemma to prove the main property. Our translation

system may also be useful for that task. When a user thinks

some property is a candidate of a lemma, the user translates

it by our translation system, and applies Maude search com-

mand. If a counter-example is returned, the lemma is wrong.

The user avoids waste of time to prove the wrong lemma

and try to find next candidates. The literature [8] mentions a

special lemma, called a necessary lemma, which has a prop-

erty that if the lemma does not hold then the original the-

orem also does not hold. By combining the notion of the

necessary lemma and our translation system, we can obtain

a verification system which is strong in finding a counter-

example.

8. Conclusion

We proposed a translation system from OTS/CafeOBJ to

OTS/Maude, which is complete, and is useful in disprov-

ing a state property to be invariant. A specification transla-

tion between different formal specification languages bene-

fits the research area of integrated formal methods. Choco-

lat/SMV [15] is a tool which translate CafeOBJ specifica-

tion to SMV•õ, which is one of the most famous model

checker. In the literature [2], the use of SMV tool for rea-

soning about temporal properties of CommUnity designs

is studied. CommUnity is a formal specification language

based on Unity [3]. A translation from RAISE formal speci-

fication language [16], [17] to SAL•õ•õ, another famous model

checker, is mentioned in [7]. An advantage of our transla-

tion system is that we can treat flexible user-definable ab-

stract data types. In the above translations, data types which

a system specification uses are restricted like a finite range

of integers. Since CafeOBJ initial modules and Maude func-

tional modules have essentially same syntax, our transla-

tion allows any abstract data type which can be given as a

CafeOBJ initial module, for example, arrays, lists, several

kinds of trees and so on.

A future work is to find a condition under which Maude

search command terminates. A Maude search command

does not always terminate in exchange for the expressive

power of data types. One of the sufficient conditions is the

termination of the rewrite relation. Termination is too re-

stricted to specify practical systems. We are interested in

non-terminating systems. Another future work is to find a

condition under which our translation system is sound and

complete. We are also interested in applying our translation

system for properties other than the invariant property, like

the liveness property and so on.

References

[1] TeReSe, Term Rewriting Systems, Cambridge Tracts in Theoretical

Computer Science (no.55), 2003.

[2] N. Aguirre, G. Regis, and T. Maibaum, •gVerifying temporal prop-

erties of commUnity designs,•h Proc. 6th International Conference

on Integrated Formal Methods (IFM 2007), LNCS 4591, pp. 1-20,

Springer, 2007.

[3] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation,

Addison-Wesley Publishing, 1988.

[4] R. Diaconescu and K. Futatsugi, CafeOBJ report, World Scientific

Publishing, 1998.

[5] K. Futatsugi, J.A. Goguen, J.P. Jouannaud, and J. Meseguer, •gPrin-

ciples of OBJ2,•h Proc. 12th ACM Symposium on Principles of Pro-

gramming Languages, pp. 52-66, 1985.

[6] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P.

Jouannaud, •gIntroducig OBJ,•h in Software Engineering with OBJ:

algebraic specification in action, ed. J.A. Goguen and G. Malcolm,

Kluwer, 2000.

[7] A.E. Haxthausen, C.W. George, and M. Schutz, •gSpecification and

proof of the mondex electronic purse,•h Proc. 1st Asian Working

Conference on Verified Software (AWCVS 2006), UNU-IIST Re-

port no.347, pp.209-224, 2006.

[8] W. Kong, Facilitating Inductive Verication with Counterexample

Discovery Capability, School of Information Science, Japan Ad-

vanced Institute of Science and Technology, PhD Thesis, Sept. 2006.

[9] M. Nakamura, W. Kong, K. Ogata, and K. Futatsugi, •gA complete

specification transformation from OTS/CafeOBJ to OTS/Maude,•h

IEICE Technical Report, SS2006-13, June 2006.

[10] K. Ogata and K. Futatsugi, •gProof scores in the OTS/CafeOBJ

method,•h Proc. 6th IFIP WG6.1 International Conference on For-

mal Methods for Open Object-Based Distributed Systems (6th

FMOODS), LNCS 2884, pp. 170-184, Springer, 2003.

[11] K. Ogata and K. Futatsugi, •gFormal analysis of the iKP electronic

payment protocols,•h Proc. 1st International Symposium on Software

Security (1st ISSS), LNCS 2609 (Hot Topics, Software Security-

Theories and Systems), pp. 441-460, Springer, 2003.

[12] K. Ogata and K. Futatsugi, •gRewriting-based verification of authen-

tication protocols,•h Proc. 4th International Workshop on Rewriting

Logic and its Applications (4th WRLA), ENTCS 71, pp. 189-203,

Elsevier, 2004.

[13] K. Ogata and K. Futatsugi, •gEquational approach to formal verifica-

tion of SET,•h Proc. 4th International Conference on Quality Software

(4th QSIC), pp. 50-59, IEEE Computer Society Press, 2004.

[14] K. Ogata and K. Futatsugi, •gFormal analysis of the NetBill elec-

tronic commerce protocol,•h Proc. 2nd International Symposium on

Software Security (2nd ISSS), LNCS 3233, pp. 45-64, Springer,

2004.

[15] K. Ogata, M. Nakano, M. Nakamura, and K. Futatsugi, •gChoco-

lat/SMV: A translator from CafeOBJ into SMV,•h Proc. 6th Interna-

tional Conference on Parallel and Distributed Computing, Applica-

tions and Technologies (6th PDCAT), pp. 416-420, IEEE Computer

Society Press, 2005.

[16] The RAISE Language Group, The RAISE Specification Language,

BCS Practitioner Series, Prentice Hall, 1992.

[17] The RAISE Method Group, The RAISE Development Method, BCS

Practitioner Series, Prentice Hall, 1995.

† http://www .cs.cmu.edu/~modelcheck/smv.html

†† http://sal .csl.sri.com/

NAKAMURA et al.: A SPECIFICATION TRANSLATION FROM BEHAVIORAL SPECIFICATIONS TO REWRITE SPECIFICATIONS

1503

Masaki Nakamura is an assistant pro-

fessor at Graduate School of Information Sci-

ence, JAIST (Japan Advanced Institute of Sci-
ence and Technology). He received his Ph. D.

in information science from JAIST in 2002.

His research interest includes software engineer-

ing, formal methods, algebraic specification and

term rewriting.

Weiqiang Kong is presently a researcher

of the 21st Century COE Program at Graduate

School of Information Science, JAIST (Japan

Advanced Institute of Science and Technology).

He received his Ph. D. in information science

from JAIST in 2006. His current research inter-

ests include formal methods and their applica-

tion, in particular, combination of theorem prov-

ing and (bounded) model checking for software

design analysis.

Kazuhiro Ogata is a research associate pro-

fessor at Graduate School of Information Sci-

ence, JAIST (Japan Advanced Institute of Sci-

ence and Technology). He received his Ph. D.

in engineering from Graduate School of Science

and Technology, Keio University in 1995. He

was a research associate at JAIST from 1995

to 2001, a researcher at SRA Key Technology

Laboratory, Inc. from 2001 to 2002, and a re-

search expert at NEC Software Hokuriku, Ltd.

from 2002 to 2006. Among his research inter-

ests are software engineering, formal methods and formal verification.

Kokichi Futatsugi is a professor at Grad-

uate School of Information Science, JAIST

(Japan Advanced Institute of Science and Tech-
nology). Before getting a full professorship

at JAIST in 1993, he was working for ETL

(Electrotechnical Lab.) of Japanese Govern-
ment and was assigned to be Chief Senior Re-

searcher of ETL in 1992. His research inter-

ests include formal methods, system verifica-

tions, software requirements/specifications, lan-

guage design, concurrent and cooperative com-

puting. His primary research goal is to design and develop new languages
which can open up new application areas, and/or improve the current soft-

ware technology. His current approach for this goal is CafeOBJ formal

specification language. CafeOBJ is multi-paradigm formal specification

language which is a modern successor of the most noted algebraic specifi-

cation language OBJ.

