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A Simple Algorithm for Transposition-Invariant Amplified 

(ƒÂ, ƒÁ)-Matching

Inbok LEE•õa), Member

SUMMARY Approximate pattern matching plays an important role in 

various applications. In this paper we focus on (ƒÂ, ƒÁ)-matching, where a 

character can differ at most ƒÂ and the sum of these errors is smaller than ƒÁ

. We show how to find these matches when the pattern is transformed by 

ƒÁ=ƒ¿x+ƒÀ, without knowing ƒ¿ and ƒÀ in advance.
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1. Introduction

Approximate pattern matching plays an important role in 

various applications, such as bioinformatics, computer-

aided music analysis and computer vision where the pattern 

does not appear exactly but within small differences.

Let T and P be strings over a positive integer alphabet 

ƒ°. T [i] denotes the i-th character of T. T[i, j] denotes the 

substring T[i]T[i+1]•cT[j]. We focus on (ƒÂ, ƒÁ)-matching 

which is defined as follows.

Definition 1: Given a text T=T[1,n], a pattern P=

P[1,m], and two integer parameters ƒÂ and ƒÁ, (ƒÂ, ƒÁ)-matching 

refers to the problem of finding all the substrings T[i,i+m-

1] satisfying two conditions.

 •b T[i+j-1]-P[j]•b•…ƒÂ(ƒÂ-matching).

1•b T[i+j-1]-P[j]•b•…ƒÁ(ƒÁ-matching).

Usually the size of alphabet •bƒ°•b (the number of elements in 

ƒ°) is large and the value of ƒÂ is small.

In addition, we consider transposition-invariant ampli-

fied matching where each character of P is multiplied by an 

arbitrary integer ƒ¿ (amplified) and added by another integer 

ƒÀ (transposition-invariant).

Definition 2: Transposition-invariant amplified (ƒÂ, ƒÁ) 

matching refers to the problem of finding all the substrings 

T[i,i+m-1] satisfying two conditions with two integers ƒ¿ 

and ƒÀ which are not known in advance.

•E•Í1•…j•…m, •bT[i+j-1]-(ƒ¿P[j]+ƒÀ)•b•…ƒÂ(ƒÂ-matching).

•Eƒ°mj=1•b(T[i+j-1]-(ƒ¿P[j]+ƒÀ)•b•…ƒÁ(ƒÁ-matching).

Figure 1 shows an example with ƒÂ=1 and ƒÁ=2. 

The original pattern P is (1, 3, 2, 1, 2) in (a). In (b), T=

(2, 5, 4, 3, 4). We can find an occurrence of (1, 2)-matching

Fig. 1 (a) The original pattern, (b) amplified, (c) transposition-invariant, 
and (d) transposition-invariant amplified occurrence of the pattern.

if P is transformed into (2, 6, 4, 2, 4) by y=2x. Similarly, in 

(c), T=(3, 4, 3, 2, 4) and by y=x+1, we get an occurrence 

of (1, 2)-matching of (2, 4, 3, 2, 3). Finally, T=(3, 7, 6, 3, 5) 

and we can find (1, 2)-matching of (3, 7, 5, 3, 5) by y=2x+1 

in (d). Note that we know just P, T, ƒÂ, and ƒÁ. We need to 

determine ƒ¿ andƒÀ if such (ƒÂ, ƒÁ)-matching by some transform 

y=ƒ¿x+ƒÀ exists.

This problem arises from computer-aided music analy-

sis. A simple motif (short melody) in music can evolve into 

different variations by changing the frequency or duration 

of each note in the motif. In these variations, each character 

x (either frequency or duration) is transformed by a linear 

equation y=ƒ¿x+ƒÀ.

(ƒÂ, ƒÁ)-matching can be solved using the Fast Fourier 

Transform (FFT, [1]) in O(ƒÂnlogm+occ•Em) time where 

occ is the number of ƒÂ-matches of P in T. First, we find ƒÂ-

matching of P. The key to our solution is that all the inner-

products between P[1,m] and T [i, i+m-1](1•…i•…n-m+1)

P[1, m]•ET[i, i+m-1]=mƒ°j=1P[j]T[i+j-1]

can be calculated in O(nlogm) time [2, Chap 32]. If there is 

an exact match between P[1, m] and T [i, i+m-1], 

mƒ°j=1(P[j]-T[i+j-1])2
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should be zero. The total time complexity is O(n logm) be-

cause the first and last terms can be computed in O(n+m) 

time.

To solve the ƒÂ-matching problem, we need a function 

g(x, y) where ƒ°mj=1g(P[j], T[i+j-1])=0 if and only if 

there is a ƒÂ-matching between P[1, m] and T [i, i+m-1]. 

We briefly explain how to define such g(x, y) when ƒÂ=1. 

Let g(x, y)=(x-y)2+0.5•~(-1)x+y-0.5. It is easy to show 

that g(x, y) =0 if •bx-y•b•…1 and g(x, y)>0 otherwise. To 

compute the second term, we define two strings ƒÃT and ƒÃp: 

ƒÃT [i]=1 if T[i] is even and ƒÃT[i]=-1 if T[i] is odd. ƒÃp can 

be defined similarly. Then, using P[1, m] . T[i, i+m-1] and 

ƒÃp[1, m]. ET[i, i+m-1], we can calculate ƒ°mj=1g(P[j], T[i+
j -1]) in O(n logm) time for all 1•…i•…n-m+1 . The idea 

can be extended to the general case where ƒÂ>1. In that 

case the time complexity is O(ƒÂn logm). We skip the details 

of the general case here. Interested readers are directed to 

[1, pages 70-74].

For the transposition-invariant matching, several algo-

rithms have been proposed recently in [3]-[5] based on 

sparse dynamic programming, which is not easy to under-

stand and implement.

2. Algorithms

Our aim is to develop a simple and efficient algorithm for 

finding transposition-invariant amplified (ƒÂ, ƒÁ)-matches. To 

do so, we will show how to modify the original FFT match-

ing algorithm in [1].

We first find occurrences of transposition-invariant am-

plified ƒÂ-matches. If T[i, i+m-1] is a ƒÂ-match of P 

by some linear transformation y=ƒ¿x+ƒÀ, we can check 

whether they are also ƒÁ-matches using the technique in [5]. 

What we need to know is just ƒ¿. If there exists such a 

transform y=ƒ¿x+ƒÀ, ƒÀ should minimize the value of 

•b T[i+j-1]-(ƒ¿P[j]+ƒÀ)•b. For 1•…j•…m, we compute 

T[i+j-1]-ƒ¿P[j]. From these m values, we choose the 

median T [i+j'-1]-ƒ¿P[j'](1•…j•…m) in O(m) time. Then 

we get ƒÀ=-T[i+j'-1]+ƒ¿P[j'] which minimizes the sum 

of differences. Using this ƒÀ, we check whether it is also a 

ƒÁ-match of P in O(m) time .

Now our problem is to find ƒÂ-matches of P after the 

transformation y=ƒ¿x+ƒÀ. We first explain how to solve 

amplified ƒÂ-mating (by y=ƒ¿x) and move to transposition-

invariant amplified matching (by y=ƒ¿x+ƒÀ).

2.1 Amplified ƒÂ-Matching

Now we want to find occurrences of ƒÂ-matches of amplified 

P where every character of P is multiplied by an integer ƒ¿. 

If T[i, i+m-1] is such an occurrence, it should satisfy

•E•Í1•…j•…m, •bT[i+j-1]-ƒ¿•EP[j]•b•…ƒÂ, and •Eƒ°

1•…j•…m •bT[i+j-1]-ƒ¿•EP[j]•b•…ƒÁ.

The problem is that we do not know ƒ¿ in advance . Once 

we know the exact value of ƒ¿, the following equation can be 

computed in O(n logm) time and its value should be zero 

when there is an exact match.

To find ƒÂ-matches, we do the same as we did in the original 

ƒÂ-matching problem in O(ƒÂn logm) time . The difference is 

that now we use ƒ¿P[j] instead of P[j].

We do not know the exact value of ƒ¿ in advance. There-

fore, for each substring T[i, i+m-1](1•…i•…n-m+1), we 

create an integer array ƒ¿[1, n-m+1] and store the candidate 

of ƒ¿ between P[1, m] and T[i, i+m-1] at ƒ¿[i]. To compute 

ƒ¿[i], we first select a base element P[k]. For simplicity, as-

sume that P[k] is the greatest in P[1, m]. Then

The base element P[k] should meet one condition. 

From the above equation, ƒ¿[i]-0.5•…T[i+k-1]/P[k]<

•…[i]+0.5. Also, if there is a ƒÂ-match between P[1, m] and 

T[i, i+m-1], •bT[i+k-1]-ƒ¿[i]•EP[k]•b•…ƒÂ. We obtain

and by eliminating T[i+k-1], we obtain

After some calculation using ƒÂ•†0, we get P[k]>2ƒÂ: at 

least one character in P should be greater than 2ƒÂ. In real 

applications this condition can be met easily.

Theorem 1: The amplified (ƒÂ, ƒÁ)-matching can be solved 

in O(ƒÂn logm+occ•Em) time, where occ is the number of 

candidates.

Proof. Computing the array ƒ¿[1, n-m+1] takes O(n) time. 

The FFT runs in O(ƒÂn logm) time. After finding occ ƒÂ-

matches (candidates), each of them requires O(m) time ver-

ification.

2.2 Transposition-Invariant Amplified ƒÂ-Matching 

We show a simple algorithm without using sparse-dynamic 

programming. We create two new strings T'=T'[1, n-1]



1826 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

and P'=P'[1, m-1] such that T'[i]=T[i+1]-T[i] and 

P'[i]=P[i+1]-P[i]. Then the following simple lemma 

holds.

Lemma 1: If there is a (ƒÂ, ƒÁ)-matching between P[1, m] 

and T[i, i+m-1], then there is a (2ƒÂ, 2ƒÁ)-matching between 

P'[1, m-1] and T'[i, i+m-2].

Proof. We first prove 2ƒÂ-matching part. If there is an occur-

rence of ƒÂ-matching at position i of T, for 1•…j•…m-1, it 

is evident that 

-ƒÂ•…T[i+j-1]-P[j]•…ƒÂ and 

-ƒÂ•…T[i+ j]-P[j+1]•…ƒÂ .

It follows that 

-2ƒÂ•…(T[i+j]-T[i+j-1])-(P[j+1]-P[j])

=T'[i+j-1]-P'[j]<2ƒÂ.

Now we prove 2ƒÁ-matching part. If there is ƒÁ-matching 

between P[1, m] and T[i, i+m-1], ƒ°mj=1•bT[i+j-1]-P[j]•b•…ƒÁ

. By using the simple fact •bA•b+•bB•b•†•bA+B•b, we obtain

For simplicity, we used the basic (ƒÂ, ƒÁ)-matching. Once 

we compute ƒ¿ array from T' and P', amplified (ƒÂ, ƒÁ)-

matching can be solved straightforward. Using this fact, we 

find occurrences of (2ƒÂ, 2ƒÁ)-matching of P' from T'. The 

results are candidates for (ƒÂ, ƒÁ)-matching of P from T. Then 

we check whether they are real (ƒÂ, ƒÁ)-matches or not.

Theorem 2: The transposition-invariant (ƒÂ, ƒÁ)-matching 

can be solved in O(ƒÂn logm+occ•Em) time, where occ is 

the number of candidates.

Proof. Computing T' and P' takes O(n) time (n>m). The 

FFT runs in O(ƒÂn logm) time. Again, verifying each of occ 

candidates takes O(m) time.

Now we consider the size of occ. If T and P are drawn 

randomly from ƒ°, it is easy to show that the probability that 

T'[i] and P'[ j] can have a 2ƒÂ-matching is (4ƒÂ+ 1)/•bƒ°•b. Hence, 

the probability is ((4ƒÂ+1)/•bƒ°•b)m-1. The expected number of 

candidates is n((4ƒÂ+1)/•bƒ°•b)m-1, which is small when ƒÂ is 

small and •bƒ°•b is large.

3. Conclusion

We showed a simple O(ƒÂn logm+occ•Em) time algorithm for 

transposition-invariant amplified (ƒÂ,ƒÁ)-matching. Its space 

complexity is O(n) [2]. It is an improvement over [5] which 

requires O(mn) time and space. Furthermore, we also con-

sider the amplified (ƒÂ,ƒÁ)-matching. The results in [3], 

[4] cannot be compared directly because their problem is 

transposition-invariant approximate pattern matching under 

edit distance. The algorithm in [3] requires O(n+d3) time 

and space where d is the maximal edit distance between T 

and P. The one in [4] runs in O((mn + log•bƒ°•b)•bƒ°•b) time and 

space.

The merit of our algorithm lies in its simplicity. Using 

the FFT libraries available, it is also easy to implement. Fur-

ther research includes finding (ƒÂ,ƒÁ)-matches of P after more 

complex transformations.
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