
1824
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

LETTER

A Simple Algorithm for Transposition-Invariant Amplified

(ƒÂ, ƒÁ)-Matching

Inbok LEE•õa), Member

SUMMARY Approximate pattern matching plays an important role in

various applications. In this paper we focus on (ƒÂ, ƒÁ)-matching, where a

character can differ at most ƒÂ and the sum of these errors is smaller than ƒÁ

. We show how to find these matches when the pattern is transformed by

ƒÁ=ƒ¿x+ƒÀ, without knowing ƒ¿ and ƒÀ in advance.

key words: combinatorics, pattern matching, fast Fourier transform

1. Introduction

Approximate pattern matching plays an important role in

various applications, such as bioinformatics, computer-

aided music analysis and computer vision where the pattern

does not appear exactly but within small differences.

Let T and P be strings over a positive integer alphabet

ƒ°. T [i] denotes the i-th character of T. T[i, j] denotes the

substring T[i]T[i+1]•cT[j]. We focus on (ƒÂ, ƒÁ)-matching

which is defined as follows.

Definition 1: Given a text T=T[1,n], a pattern P=

P[1,m], and two integer parameters ƒÂ and ƒÁ, (ƒÂ, ƒÁ)-matching

refers to the problem of finding all the substrings T[i,i+m-

1] satisfying two conditions.

 •b T[i+j-1]-P[j]•b•…ƒÂ(ƒÂ-matching).

1•b T[i+j-1]-P[j]•b•…ƒÁ(ƒÁ-matching).

Usually the size of alphabet •bƒ°•b (the number of elements in

ƒ°) is large and the value of ƒÂ is small.

In addition, we consider transposition-invariant ampli-

fied matching where each character of P is multiplied by an

arbitrary integer ƒ¿ (amplified) and added by another integer

ƒÀ (transposition-invariant).

Definition 2: Transposition-invariant amplified (ƒÂ, ƒÁ)

matching refers to the problem of finding all the substrings

T[i,i+m-1] satisfying two conditions with two integers ƒ¿

and ƒÀ which are not known in advance.

•E•Í1•…j•…m, •bT[i+j-1]-(ƒ¿P[j]+ƒÀ)•b•…ƒÂ(ƒÂ-matching).

•Eƒ°mj=1•b(T[i+j-1]-(ƒ¿P[j]+ƒÀ)•b•…ƒÁ(ƒÁ-matching).

Figure 1 shows an example with ƒÂ=1 and ƒÁ=2.

The original pattern P is (1, 3, 2, 1, 2) in (a). In (b), T=

(2, 5, 4, 3, 4). We can find an occurrence of (1, 2)-matching

Fig. 1 (a) The original pattern, (b) amplified, (c) transposition-invariant,
and (d) transposition-invariant amplified occurrence of the pattern.

if P is transformed into (2, 6, 4, 2, 4) by y=2x. Similarly, in

(c), T=(3, 4, 3, 2, 4) and by y=x+1, we get an occurrence

of (1, 2)-matching of (2, 4, 3, 2, 3). Finally, T=(3, 7, 6, 3, 5)

and we can find (1, 2)-matching of (3, 7, 5, 3, 5) by y=2x+1

in (d). Note that we know just P, T, ƒÂ, and ƒÁ. We need to

determine ƒ¿ andƒÀ if such (ƒÂ, ƒÁ)-matching by some transform

y=ƒ¿x+ƒÀ exists.

This problem arises from computer-aided music analy-

sis. A simple motif (short melody) in music can evolve into

different variations by changing the frequency or duration

of each note in the motif. In these variations, each character

x (either frequency or duration) is transformed by a linear

equation y=ƒ¿x+ƒÀ.

(ƒÂ, ƒÁ)-matching can be solved using the Fast Fourier

Transform (FFT, [1]) in O(ƒÂnlogm+occ•Em) time where

occ is the number of ƒÂ-matches of P in T. First, we find ƒÂ-

matching of P. The key to our solution is that all the inner-

products between P[1,m] and T [i, i+m-1](1•…i•…n-m+1)

P[1, m]•ET[i, i+m-1]=mƒ°j=1P[j]T[i+j-1]

can be calculated in O(nlogm) time [2, Chap 32]. If there is

an exact match between P[1, m] and T [i, i+m-1],

mƒ°j=1(P[j]-T[i+j-1])2

Manuscript received October 22, 2007.

Manuscript revised January 28, 2008.

•õ The author is with School of Electronic, Telecommunication,

and Computer Engineering, Korea Aerospace University, Republic

of Korea.

a) E-mail: inboklee@kau.ac.kr

DOI: 10.1093/ietisy/e91-d. 6. 1824

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

LETTER

1825

should be zero. The total time complexity is O(n logm) be-

cause the first and last terms can be computed in O(n+m)

time.

To solve the ƒÂ-matching problem, we need a function

g(x, y) where ƒ°mj=1g(P[j], T[i+j-1])=0 if and only if

there is a ƒÂ-matching between P[1, m] and T [i, i+m-1].

We briefly explain how to define such g(x, y) when ƒÂ=1.

Let g(x, y)=(x-y)2+0.5•~(-1)x+y-0.5. It is easy to show

that g(x, y) =0 if •bx-y•b•…1 and g(x, y)>0 otherwise. To

compute the second term, we define two strings ƒÃT and ƒÃp:

ƒÃT [i]=1 if T[i] is even and ƒÃT[i]=-1 if T[i] is odd. ƒÃp can

be defined similarly. Then, using P[1, m] . T[i, i+m-1] and

ƒÃp[1, m]. ET[i, i+m-1], we can calculate ƒ°mj=1g(P[j], T[i+
j -1]) in O(n logm) time for all 1•…i•…n-m+1 . The idea

can be extended to the general case where ƒÂ>1. In that

case the time complexity is O(ƒÂn logm). We skip the details

of the general case here. Interested readers are directed to

[1, pages 70-74].

For the transposition-invariant matching, several algo-

rithms have been proposed recently in [3]-[5] based on

sparse dynamic programming, which is not easy to under-

stand and implement.

2. Algorithms

Our aim is to develop a simple and efficient algorithm for

finding transposition-invariant amplified (ƒÂ, ƒÁ)-matches. To

do so, we will show how to modify the original FFT match-

ing algorithm in [1].

We first find occurrences of transposition-invariant am-

plified ƒÂ-matches. If T[i, i+m-1] is a ƒÂ-match of P

by some linear transformation y=ƒ¿x+ƒÀ, we can check

whether they are also ƒÁ-matches using the technique in [5].

What we need to know is just ƒ¿. If there exists such a

transform y=ƒ¿x+ƒÀ, ƒÀ should minimize the value of

•b T[i+j-1]-(ƒ¿P[j]+ƒÀ)•b. For 1•…j•…m, we compute

T[i+j-1]-ƒ¿P[j]. From these m values, we choose the

median T [i+j'-1]-ƒ¿P[j'](1•…j•…m) in O(m) time. Then

we get ƒÀ=-T[i+j'-1]+ƒ¿P[j'] which minimizes the sum

of differences. Using this ƒÀ, we check whether it is also a

ƒÁ-match of P in O(m) time .

Now our problem is to find ƒÂ-matches of P after the

transformation y=ƒ¿x+ƒÀ. We first explain how to solve

amplified ƒÂ-mating (by y=ƒ¿x) and move to transposition-

invariant amplified matching (by y=ƒ¿x+ƒÀ).

2.1 Amplified ƒÂ-Matching

Now we want to find occurrences of ƒÂ-matches of amplified

P where every character of P is multiplied by an integer ƒ¿.

If T[i, i+m-1] is such an occurrence, it should satisfy

•E•Í1•…j•…m, •bT[i+j-1]-ƒ¿•EP[j]•b•…ƒÂ, and •Eƒ°

1•…j•…m •bT[i+j-1]-ƒ¿•EP[j]•b•…ƒÁ.

The problem is that we do not know ƒ¿ in advance . Once

we know the exact value of ƒ¿, the following equation can be

computed in O(n logm) time and its value should be zero

when there is an exact match.

To find ƒÂ-matches, we do the same as we did in the original

ƒÂ-matching problem in O(ƒÂn logm) time . The difference is

that now we use ƒ¿P[j] instead of P[j].

We do not know the exact value of ƒ¿ in advance. There-

fore, for each substring T[i, i+m-1](1•…i•…n-m+1), we

create an integer array ƒ¿[1, n-m+1] and store the candidate

of ƒ¿ between P[1, m] and T[i, i+m-1] at ƒ¿[i]. To compute

ƒ¿[i], we first select a base element P[k]. For simplicity, as-

sume that P[k] is the greatest in P[1, m]. Then

The base element P[k] should meet one condition.

From the above equation, ƒ¿[i]-0.5•…T[i+k-1]/P[k]<

•…[i]+0.5. Also, if there is a ƒÂ-match between P[1, m] and

T[i, i+m-1], •bT[i+k-1]-ƒ¿[i]•EP[k]•b•…ƒÂ. We obtain

and by eliminating T[i+k-1], we obtain

After some calculation using ƒÂ•†0, we get P[k]>2ƒÂ: at

least one character in P should be greater than 2ƒÂ. In real

applications this condition can be met easily.

Theorem 1: The amplified (ƒÂ, ƒÁ)-matching can be solved

in O(ƒÂn logm+occ•Em) time, where occ is the number of

candidates.

Proof. Computing the array ƒ¿[1, n-m+1] takes O(n) time.

The FFT runs in O(ƒÂn logm) time. After finding occ ƒÂ-

matches (candidates), each of them requires O(m) time ver-

ification.

2.2 Transposition-Invariant Amplified ƒÂ-Matching

We show a simple algorithm without using sparse-dynamic

programming. We create two new strings T'=T'[1, n-1]

1826
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

and P'=P'[1, m-1] such that T'[i]=T[i+1]-T[i] and

P'[i]=P[i+1]-P[i]. Then the following simple lemma

holds.

Lemma 1: If there is a (ƒÂ, ƒÁ)-matching between P[1, m]

and T[i, i+m-1], then there is a (2ƒÂ, 2ƒÁ)-matching between

P'[1, m-1] and T'[i, i+m-2].

Proof. We first prove 2ƒÂ-matching part. If there is an occur-

rence of ƒÂ-matching at position i of T, for 1•…j•…m-1, it

is evident that

-ƒÂ•…T[i+j-1]-P[j]•…ƒÂ and

-ƒÂ•…T[i+ j]-P[j+1]•…ƒÂ .

It follows that

-2ƒÂ•…(T[i+j]-T[i+j-1])-(P[j+1]-P[j])

=T'[i+j-1]-P'[j]<2ƒÂ.

Now we prove 2ƒÁ-matching part. If there is ƒÁ-matching

between P[1, m] and T[i, i+m-1], ƒ°mj=1•bT[i+j-1]-P[j]•b•…ƒÁ

. By using the simple fact •bA•b+•bB•b•†•bA+B•b, we obtain

For simplicity, we used the basic (ƒÂ, ƒÁ)-matching. Once

we compute ƒ¿ array from T' and P', amplified (ƒÂ, ƒÁ)-

matching can be solved straightforward. Using this fact, we

find occurrences of (2ƒÂ, 2ƒÁ)-matching of P' from T'. The

results are candidates for (ƒÂ, ƒÁ)-matching of P from T. Then

we check whether they are real (ƒÂ, ƒÁ)-matches or not.

Theorem 2: The transposition-invariant (ƒÂ, ƒÁ)-matching

can be solved in O(ƒÂn logm+occ•Em) time, where occ is

the number of candidates.

Proof. Computing T' and P' takes O(n) time (n>m). The

FFT runs in O(ƒÂn logm) time. Again, verifying each of occ

candidates takes O(m) time.

Now we consider the size of occ. If T and P are drawn

randomly from ƒ°, it is easy to show that the probability that

T'[i] and P'[j] can have a 2ƒÂ-matching is (4ƒÂ+ 1)/•bƒ°•b. Hence,

the probability is ((4ƒÂ+1)/•bƒ°•b)m-1. The expected number of

candidates is n((4ƒÂ+1)/•bƒ°•b)m-1, which is small when ƒÂ is

small and •bƒ°•b is large.

3. Conclusion

We showed a simple O(ƒÂn logm+occ•Em) time algorithm for

transposition-invariant amplified (ƒÂ,ƒÁ)-matching. Its space

complexity is O(n) [2]. It is an improvement over [5] which

requires O(mn) time and space. Furthermore, we also con-

sider the amplified (ƒÂ,ƒÁ)-matching. The results in [3],

[4] cannot be compared directly because their problem is

transposition-invariant approximate pattern matching under

edit distance. The algorithm in [3] requires O(n+d3) time

and space where d is the maximal edit distance between T

and P. The one in [4] runs in O((mn + log•bƒ°•b)•bƒ°•b) time and

space.

The merit of our algorithm lies in its simplicity. Using

the FFT libraries available, it is also easy to implement. Fur-

ther research includes finding (ƒÂ,ƒÁ)-matches of P after more

complex transformations.

Acknowledgment

This work was supported by 2007 Korea Aerospace Univer-

sity Faculty Research Grant.

References

[1] P. Clifford, R. Clifford, and C.S. Iliopoulos, •gFaster algorithms for

(ƒÂ,ƒÁ)-matching and related problems,•h Proc. 16th Combinatorial Pat-

tern Matching (CPM'05), pp. 68-78, 2005.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo-

rithms, MIT Press, 1990.

[3] H. Hyrro, •gRestricted transposition invariant approximate string

matching,•h Proc. 12th String Processing and Information Retrieval

(SPIRE '05), pp. 257-267, 2005.

[4] K. Lemstrom, G. Navarro, and Y. Pinzon, •gPractical algorithms

for transposition-invariant string-matching,•h J. Discrete Algorithms,

vol.3, no.2-4, pp. 267-292, 2005.

[5] V. Makinen, G. Navarro, and E. Ukkonen, •gTransposition invariant

string matching,•h J. Algorithms, vol.56, no.2, pp. 124-153, 2005.

