1824

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

[LETTER

- A Simple Algorithm for Transposition-Invariant Amplified

(4, ¥)-Matching

SUMMARY Approximate pattern matching plays an important role in
various applications. In this paper we focus on (§,7y)-matching, where a
character can differ at most 6 and the sum of these errors is smaller than
. We show how to find these matches when the pattern is transformed by
y = ax + B, without knowing « and 8 in advance. ‘

key words: combinatorics, pattern matching, fast Fourier transform

1. Introduction

Approximate pattern matching plays an important role in
various applications, -such as bioinformatics, computer-
aided music analysis and computer vision where the pattern
does not appear exactly but within small differences.

Let T and P be strings over a positive integer alphabet
¥. T[i] denotes the i-th character of T. T[i, j] denotes the
substring T[i]T[i + 1]- - - T[jl. We focus on (6, y)-matching
which is defined as follows.

Definition 1: Given a text T = T[1,n], a pattern P =
P[1,m], and two integer parameters & and v, (6, y)-matching
refers to the problem of finding all the substrings T'[i, i+ m—
1] satisfying two conditions.

o V1 < j<m,|T[i+ j—1]- PLjll £ 6 (5-matching).
° Z’]’.’:] IT[i + j— 11 - P[j]1| < v (y-matching).

Usually the size of alphabet || (the number of elements in
) is large and the value of § is small.

In addition, we consider transposition-invariant ampli-
fied matching where each character of P is multiplied by an
arbitrary integer o (amplified) and added by another integer
B (transposition-invariant).

Definition 2: Transposition-invariant amplified (5,7)
matching refers to the problem of finding all the substrings
T[i, i + m — 1] satisfying two conditions with two integers &
and B which are not known in advance.

e V1 < j<m,|T[i+j-1]—-(aP[jl1+B)| £ 6 (6-matching).
o YT+ j— 11— (aPljl+Bl<y (y-matching).

Figure 1 shows an example with § = 1 and y = 2. ‘

The original pattern P is (1,3,2,1,2) in (a). In (b), T =
(2,5,4,3,4). We can find an occurrence of (1, 2)-matching

Manuscript received October 22, 2007.
Manuscript revised January 28, 2008.
tThe author is with School of Electronic, Telecommunication,
and Computer Engineering, Korea Aerospace University, Republic
of Korea.
a) E-mail: inboklee@kau.ac.kr
DOI: 10.1093/ietisy/e91-d.6.1824

Inbok LEE®, Member
® s o
bl 1T Ry @ Original pattern
L I Transformed pattern by

y=ox+g

(b)Text@5434) o2 p0 |) T
* If W and [appear

] at the same position, only
ioul

! W s visible.

(a) Patterm (1,3.2,1,2)

=]
e

(e)Text (34,3.24) o=1 B=1 (d)Text (3,7,6,3,5) 0=2p=1

Fig.1 (a) The original pattern, (b) amplified, (c) transposition-invariant,
and (d) transposition-invariant amplified occurrence of the pattern.

if P is transformed into (2, 6,4,2,4) by y = 2x. Similarly, in
(), T =(3,4,3,2,4) and by y = x+ 1, we get an occurrence
of (1, 2)-matching of (2,4, 3,2, 3). Finally, T = (3,7,6,3,95)
and we can find (1, 2)-matching of (3,7,5,3,5) by y = 2x+1
in (d). Note that we know just P,T, 8, and y. We need to
determine & and 8 if such (8, y)-matching by some transform
y = ax + f3 exists.

This problem arises from computer-aided music analy-
sis. A simple motif (short melody) in music can evolve into
different variations by changing the frequency or duration
of each note in the motif. In these variations, each character
x (either frequency or duration) is transformed by a linear
equation y = ax + 8.

(6,)-matching can be solved using the Fast Fourier
Transform (FFT, [1]) in O(dnlogm + occ - m) time where
occ is the number of §-matches of P in T. First, we find o-
matching of P. The key to our solution is that all the inner-
products between P[1,m] and T[i, i+m—1](1 < i < n—m+1)

P[1,m) - Tlii+m—11= Y PjITli+j~1]
j=1

can be calculated in O(log m) time [2, Chap 32]. If there is
an exact match between P[1,m] and T[i,i + m — 1],

D P = Tli+j = 117
j=1

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers

LETTER

:2:PUF—2PUJM-T&i+m—H
j=1

m
+§2Tﬁ+j—lf
j=1

should be zero. The total time complexity is O(nlog) be-
cause the first and last terms can be computed in O(n.+ m)
time.

To solve the §-matching problem, we need a function
g(x,y) where Z;"zl g(P[j1,T[i + j— 1]) = 0 if and only if
there is a §-matching between P[1,m] and T[i,i + m — 1].
We briefly explain how to define such g(x,y) when 6 = 1.
Let g(x,y) = (x—y)? +0.5x (=1)* = 0.5. It is easy to show
that g(x,y) = 0if |[x —y| < 1 and g(x,y) > 0 otherwise. To
compute the second term, we define two strings ey and ep:
er[i] = 1if T[i] is even and e7[i] = —1 if T[i] is odd. €p can
be defined similarly. Then, using P[1,m]-T[i,i+m— 1] and
ep[1,m]- erli, i+ m— 1], we can calculate ZJ’?’:l g(PIj1,Tli+
j—1Din O(nlogm) time forall 1 <i <n—m+ 1. The idea
can be extended to the general case where 6 > 1. In that
case the time complexity is O(6rnlog m). We skip the details
of the general case here. Interested readers are directed to
[1, pages 70-74].

For the transposition-invariant matching, several algo-
rithms have been proposed recently in [3]-[S] based on
sparse dynamic programming, which is not easy to under-
stand and implement.

~ 2. Algorithms

~ Our aim is to develop a simple and efficient algorithm for
finding transposition-invariant amplified (9, y)-matches. To
do so, we will show how to modify the original FFT match-
ing algorithm in [1].

We first find occurrences of transposition-invariant am-
plified 6-matches. If T[i,i + m — 1] is a §-match of P
by some linear transformation y = ax + 8, we can check
whether they are also y-matches using the technique in [5].
What we need to know is just @. If there exists such a
transform y = ax + B, B should minimize the value of

’]’.1:1 |T[i+j—1]1-(aP[j]+B)|. Forl < j < m, we compute
T[i + j — 1] — @P[j]. From these m values, we choose the
median T[i+ j — 1]—aP[j']1(1 < j £ m) in O(m) time. Then
we get B = —T[i+ j — 11+ P[] which minimizes the sum
of differences. Using this 8, we check whether it is also a
y-match of P in O(m) time.

Now our problem is to find §-matches of P after the
transformation y = ax + 8. We first explain how to solve
amplified §-mating (by y = ax) and move to transposition-
invariant amplified matching (by y = ax + §).

2.1 Amplified 6-Matching
Now we want to find occurrences of 6-matches of amplified

P where every character of P is multiplied by an integer a.
If T[i,i + m — 1] is such an occurrence, it should satisfy

1825

e V1<j<mT[i+j—-1]-a- P[] £6,and
® Qigjam Tli+ j=11-a-P[jll <.
The problem is that we do not know & in advance. Once
we know the exact value of a, the following equation can be

computed in O(nlogm) time and its value should be zero
when there is an exact match.

D@ PLjl =T+ j-1])?

=1
m
:ufzaPUf—2aPUJﬂ-Tﬁi+m—l]
j=1
m
+§:Tu+j—u%

—_

J=

To find 6-matches, we do the same as we did in the original
¢-matching problem in O(6nlogm) time. The difference is
that now we use P[] instead of P[J].

We do not know the exact value of « in advance. There-
fore, for each substring T[i,i+m—1] (1 <i<n-m+1), we
create an integer array a[1, n—m+ 1] and store the candidate
of a between P[1,m] and T[i, i +m — 1] at a[i]. To compute
a[i], we first select a base element P[k]. For simplicity, as-
sume that P[k] is the greatest in P[1,m]. Then

Thi+k-1]

=17

(I<i<n-m+1).

The base element Plk] should meet one condition.
From the above equation, «[i] — 0.5 < T[i + k— 1]/P[k] <
ali] + 0.5. Also, if there is a §-match between P[1,m] and
Tli,i+m—1],|T[i+k— 1] — «[i] - P[k]| < 6. We obtain

ali] - Pk} -6 <Tli+k—-1]<cli]- Plk] +06

and by eliminating T[i + k — 1], we obtain

am_QSgg@j%?;é<am+05md
am_0552@i%?if<am+05‘

After some calculation using 6 > 0, we get P[k] > 26: at
least one character in P should be greater than 26. In real
applications this condition can be met easily.

Theorem 1: The amplified (6, y)-matching can be solved
in O(énlogm + occ - m) time, where occ is the number of
candidates.

Proof. Computing the array a[1,n —m + 1] takes O(n) time.
The FFT runs in O(6nlogm) time. After finding occ 6-
matches (candidates), each of them requires O(m) time ver-
ification. ~ O

2.2 Transposition-Invariant Amplified 6-Matching

We show a simple algorithm without using sparse-dynamic
programming. We create two new strings 77 = T'[1,n — 1]

1826

and P’ = P'[1,m — 1] such that 7"[{] = T[i + 1] — T[i] and
P'[i] = P[i + 1] — P[i]. Then the following simple lemma
holds.

Lemma 1: If there is a (4, y)-matching between P[1,m]

and T'[i, i+ m— 1], then there is a (26, 2y)-matching between
Pl,m—1]and T'[i,i + m —2].

Proof. We first prove 26-matching part. If there is an occur-

rence of §-matching at position i of T, for 1 < j<m -1, it
is evident that

-0<Tli+j-1]-P[j]<dand
-0<Tli+jl-Pj+1]<o.

It follows that
=20 <(Tli+jl-Tli+j—-1D—-(Plj+ 1] - PLiD

=T'li+j—-1]1-P[j] < 26.

Now we prove 2y-matching part. If there is y-matching
between P[1, m] and T'[i, i+m—1], Z;il ITLi+j—-1]-P[j]] <
v. By using the simple fact |A| + |B| > |A + B|, we obtain

m—1
Tl + j = 11- P’
Jj=1
m~1
((TLi + 1= Tli+ j = 11) = (Pli + 11 = PLiD)
Jj=1
m—1
= D WTLi+ j1 = Pli+ 1) + (Plil = Ti + j - 1D)]
J=1 '
m—1
< D U(TLi+ j1 = PLi+ D]+ [P[i] = Tli + j = 1D

i=1

_2~Z|T[i+j—1]

i=1

.

— Pl < 2y.

|

For simplicity, we used the basic (8, y)-matching. Once

we compute « array from T’ and P’, amplified (6, 7)-

matching can be solved straightforward. Using this fact, we

find occurrences of (26, 2y)-matching of P’ from 7’. The

results are candidates for (6, y)-matching of P from 7. Then
we check whether they are real (6, y)-matches or not.

Theorem 2: The transposition-invariant (6,y)-matching

can be solved in O(énlogm + occ - m) time, where occ is .

the number of candidates.

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

Proof. Computing T’ and P’ takes O(n) time (n > m). The
FFT runs in O(6nlog m) time. Again, verifying each of occ
candidates takes O(m) time.]

Now we consider the size of occ. If T and P are drawn
randomly from Z, it is easy to show that the probability that
T’[i] and P’[j] can have a 26-matching is (46+1)/|Z|. Hence,
the probability is ((46 + 1)/ |Z[)"~1. The expected number of
candidates is n((45 + 1)/[Z)""!, which is small when & is
small and |Z| is large.

3. Conclusion

We showed a simple O(6n log m+ occ-m) time algorithm for
transposition-invariant amplified (6, y)-matching. Its space
complexity is O(n) [2]. It is an improvement over [5] which
requires O(mn) time and space. Furthermore, we also con-
sider the amplified (6,y)-matching. The results in [3],
[4] cannot be compared directly because their problem is
transposition-invariant approximate pattern matching under
edit distance. The algorithm in [3] requires O(n + d°) time
and space where d is the maximal edit distance between T
and P. The one in [4] runs in O((mn + log[Z|)|Z|) time and
space.

The merit of our algorithm lies in its simplicity. Using
the FFT libraries available, it is also easy to implement. Fur-
ther research includes finding (9, y)-matches of P after more
complex transformations.

Acknowledgment

This work was supported by 2007 Korea Aerospace Univer-
sity Faculty Research Grant.

References

[1] P. Clifford, R. Clifford, and C.S. lliopoulos, “Faster algorithms for
(6, 7)-matching and related problems,” Proc. 16th Combinatorial Pat-
tern Matching (CPM °05), pp.68-78, 2005.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo-

- rithms, MIT Press, 1990.

[3] H. Hyrro, “Restricted transposition invariant approximate string
matching,” Proc. 12th String Processing and Information Retrieval
(SPIRE °05), pp.257-267, 2005.

[4] K. Lemstrdm, G. Navarro, and Y. Pinzén, “Practical algorithms
for transposition-invariant string-matching,” J. Discrete Algorithms,

. vol.3, no.2-4, pp.267-292, 2005.

[5]1 V. Mikinen, G. Navarro, and E. Ukkonen, “Transposition invariant
string matching,” J. Algorithms, vol.56, no.2, pp.124-153, 2005.

