
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.7 JULY 2008

 2061

LETTER

Indexing of Continuously Moving Objects on Road Networks

Kyoung Soo BOK•õ, Ho Won YOON•õ•õ, Dong Min SEO•õ•õ•õ, Myoung Ho KIM•õ, Nonmembers, 

and Jae Soo YOO•õ•õ•õa), Member

SUMMARY In this paper, a new access method is proposed for current 
positions of moving objects on road networks in order to efficiently update 
their positions. In the existing index structures, the connectivity of edges is 
lost because the intersection points in which three or more edges are split. 
The proposed index structure preserves the network connectivity, which 
uses intersection oriented network model by not splitting intersection nodes 
that three or more edges meet for preserving the connectivity of adjacent 
road segments. The data node stores not only the positions of moving object 
but also the connectivity of networks.
key words: road network, connectivity, moving object, index structure

1. Introduction

Location Based Service (LBS) rely on the tracking of the 
continuously changing positions of entire populations of 
service users, termed moving objects. This environment is 
characterized by large volumes of updates, for which rea-
son moving objects with frequent updates on their positions 
require fast update mechanisms in spatiotemporal database 
systems. Existing index structures for moving objects can be 
divided into two categories: location-based index structures 
focusing on current/anticipated future locations of moving 
objects [1], [2] and trajectory-based ones for historical tra-
jectories [3], [4].

In real world applications, movements of moving ob-

jects are constrained. That is, objects are moving in a con-
strained network space such as road networks. Recently, 
several index structures improve their performance by ex-

ploiting the properties of network [5]-[10]. The Fixed Net-
work R-tree (FNR-tree) separates spatial and temporal com-
ponents of the trajectories and indexes the time intervals 
that each moving object spends on a given network link [6]. 
The Moving Object in Networks tree (MON-tree) further 
improves the performance of the FNR-tree by representing 
each edge by multiple line segments instead of just one line 
segment [7].

In this paper, we focus on the current positions of 
moving objects on road networks. Indexing Moving Ob-
jects on Road Sectors (IMORS) indexes the poly lines of 
the road network into a spatial index structure for process-

ing current positions of objects [8]. Then each object is 
associated with a poly line. PMR Quadtree, Quadtree and 
R*-tree (PQR-tree) proposes integrated tree for current and 
near future positions of moving objects in networks [10]. In 
PQR-tree, quisi-static objects are indexed to R*-tree and fast 
moving objects are related to PMR Quadtree. The disadvan-
tage of the approaches doesn't support network connectivity 
information. Therefore, each object going out of the corre-
sponding segment retrieves the index from the root to find 
out its next segment. This causes degradation of update per-
formance as the number of objects increases.

In this paper, we propose a new index structure called 
IONR-tree, which is a new access method for efficiently up-
dating current positions of moving objects on road network. 
The proposed indexing method preserves network connec-
tivity by not splitting intersecting nodes that three or more 
edges meet always. Data node additionally stores adjacency 
list that represents the connectivity information.

The rest of the paper is organized as follows. Section 2 
discusses the problem of related works. Section 3 presents 
a new index structure for moving object on road network. 
Section 4 contains experimental evaluation. Section 5 de-
scribes the conclusions and directions for future research.

2. Motivation

The existing index structures have a problem when a mov-
ing object traverses from one segment to adjacent connected 
segment. To find out the connected segment, the network 
R-tree (2DR-tree) must be searched from the root node [8], 
[9]. In [9], adjacency component that captures the network 
connectivity can be used to find out next lines or poly lines 
for escaping whole 2DR-tree searches. Using adjacency 
component can improve the query performance but is not 
a fundamental solution for updating the positions of moving 
objects. This can lead to serious update performance degra-
dation as the number of objects increases.

Our indexing method aims to provide an efficient up-
date of the positions of moving objects on road network. 
IMORS is proposed to improve update costs of moving ob-

jects on road network [8]. IMORS consists of two parts to 
reduce the part of data structure changing upon update re-

quests. Since the information of the geometry and connec-
tivity of road segments rarely changes, static part contains 
R*-tree indexing road networks. The leaf node of static 

part stores a set of road segments. The dynamic part stores

Manuscript received August 17, 2007.
Manuscript revised December 12, 2007.
The authors are with Korea Advanced Institute of Science and 

Technology, Korea.
The author is with Thinkware System Corporation, Korea.
The authors are with Chungbuk National University, Korea.

a) E-mail: yjs@chungbuk.ac.kr
DOI:10.1093/ietisy/e91-d.7.2061

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



2062
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.7 JULY 2008

Fig. 1 The problem of existing network model based indexing .

the information of moving objects directly related with the 
update costs. The dynamic part has two structures; road sec-
tor blocks and data blocks of moving objects. Each road seg-
ment entry on leaf nodes of R*-tree points to a road sector 
block, which stores the identifiers of the moving objects on 
this road segment. The data block of moving objects stores 
the velocities and other related attributes of each moving 
object. Once the update request of moving objects is sub-
mitted, the information data of road sector blocks and data 
blocks of moving objects must be updated. This also leads to 

performance degradation as the number of objects increases 
because the update requests of the object are more likely 
random distributed and display less locality.

If there are millions of objects scattered on road net-
works and each object sends update requests to the server 
independently, we don't know where the next update request 
occurs on road networks. An object going out of the seg-
ment means additional disk accesses to the adjacency com-

ponent. Figure 1 shows the problem of the existing index 
structures. When object O2 moves to the new segment in 
real network, the network R-tree must be searched from the 
root to insert the object with a new segment. Moving objects 

going out MBR cause lots of performance degradation.

3. The IONR-Tree

3.1 Architecture

We propose the IONR (Intersection Oriented Network R)-
tree for efficiently updating the current positions of moving 
objects on road networks. The IONR-tree is composed of 
secondary index and network R-tree. Figure 2 shows the 
architecture of our index structure. The secondary index is 
used for directly accessing the current positions of moving 
object. The network R-tree is different from existing index 
structures for current positions on road networks because an 
intersection point in which three or more edges meet is split 
to preserve network connectivity.

In the existing index structures, the intersection point 
in which three or more edges meet is split resulting in con-
nectivity information to be lost. The IONR-tree preserves 
network connectivity through deliberately splitting road net-
works. We preserve network connectivity by not splitting in-
tersecting nodes in which 3 or more edges meet. We define

Fig. 2 The IONR-tree.

Fig. 3 Example of our road network.

IP (Intersection Point) as a node in which 3 or more edges 

meet and CP (Connection Point) as a point split by MBRs. 

Figure 3 shows an example of our road network. There are 

two IPs included in two MBRs that are not split.

The main issue is how we determine the size of each 

MBR. The IMORS has proposed a cost model for deter-

mining the optimal size of a split and indexed poly line. 

Given a road network, the IMORS found the optimal num-

ber of entries nopt that minimizes leaf node access cost 

from the root in the R*-tree. Let Lx, Ly, Qx, Qy be the 

sums of length of all road segments and the side lengths of 

query q along x and y-axis respectively. The optimal num-

ber of entries nopt=•ãLxLy/QxQy. Let the total length of 

road networks be L, then the sum of lengths of road seg-

ments of data node ls is determined by ls=L/nopt. The 

sum of lengths of the split road segments for a data node 

with an IP is obtained by length expansion from the IP to 

other IPs of every direction until it reaches ls. As shown 

in Fig. 3, the sum of lengths of road segments ls in the 

node N1 is computed as the sum of road segment a, b, 

and c.

In a data node, adjacency list that represents the con-

nectivity information is added additionally. Poly-line part 

stores the concrete shape between IP and CP or CP and CP. 

The moving objects are stored in the objects part of the node. 

Figure 4 shows the structure of a data node. There are two 

kinds of data nodes according to the number of CPs that 

the node has. Figure 4 (b) and (c) represent the adjacency 

lists for a data node with N CPs. Offsetn points to Poly-

line part to represent the real shape between IP and the n-th 

Connecting Point CPn. Pn points to a data node which has 

a road segment connected to CPn. We can directly access



LETTER

 2063

the connected road segment by this pointer Pn when objects 
exit from CPn.

3.2 The Operations of IONR-Tree

The Insertion of a new moving object is similar to IMORS 
except that the position of moving object is inserted to data 
node. First, a new moving object with object id is first reg-
istered in secondary hash index of the IONR-tree and then 
Network R-Tree is searched to find out a data node in which 
the object must be included. The search algorithm of Net-
work R-tree is the same as that of IMORS except for the 
representation of a data node. The object is inserted to the 
data node with its id and coordinates. In general, moving 
objects have fast movement pattern along road segments. 
Therefore, a fast and simple overflow treatment method is 
required. If there is no room in data node for adding a new 
moving object, a new data node called overflow node is cre-
ated. A new moving object is stored in a new data node. Fi-
nally, the object in secondary index points to the data node 
to be accessed directly next time. Deletion of an object is 
handled by deleting it from secondary index and the corre-
sponding data node in network R-tree.

Figure 5 shows the update algorithm of the IONR-Tree. 
Updating the position of an object is processed in three 
steps. First, we find a data node that the object is stored 
in secondary hash index and check whether the object still 
lies on the poly lines of the data node. If so, we just over-
write position value (x,y) of the object and terminate the

Fig. 4 Structure of data node.

Fig. 5 Update algorithm of IONR-tree.

process. If not so, we delete the object from the data node 
and calculate the nearest CP to the object's new position in 
Euclidean distance. Then we access the data node that the 
CP points to. Finally, we insert the object into the data node 
and modify secondary index for directly accessing this node 
next time the object requests update.

IONR-tree supports range queries. Given a query re-

gion, our search algorithm is the same as the IMORS. As 
a result, the objects contained in the given query region are 
returned as a query result.

4. Performance Evaluation

We implemented both IONR-tree and IMORS in Java and 
carried out experiments on a Pentium 4, 2.8GHz PC with 
512MB RAM running Windows XP. A network-based gen-
erator of moving objects has been used to create trajecto-
ries of moving objects on the real-world road network of 
Oldenburg [11]. In Fig. 7, the maximum speed division de-
fines the speed of the moving object in a network-based gen-
erator. The larger this value is the slower moving object is. 
To evaluate the update performance, we measure the total 
number of disk accesses when the number of moving ob-

jects and the speed of moving objects vary.
Figures 6 and 7 show the results of update performance

Fig. 6 The total number of disk access for updating when the number of 
moving objects varies.

Fig. 7 The total number of disk access for updating when the speed of 
moving objects varies.



2064
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.7 JULY 2008

Fig. 8 The total number of disk accesses for query processing.

Fig. 9 The average number of data node accesses for query processing.

in terms of disk I/O. The IONR-tree has shown about 
2 times faster update performance than IMORS because the 
IONR-tree directly accesses the old positions of moving ob-
jects by secondary index and stores the connectivity infor-
mation in a data node to preserve network connectivity. To 
evaluate the query performance, we measure the total num-
ber of disk accesses and the average number of data node 
accesses when query size varies.

Figures 8 and 9 show the range query performance 
when the number of queries was 2000. The IONR-tree 
needs additional information such as adjacency list to 
improve the update efficiency and so degrades space

utilization. In the worst case, the IONR-tree increases its 

depth for preserving network connectivity. As a result, the 

query performance of the IONR-tree is slightly deteriorated 

as the size of queries is increased.

5. Conclusions

We proposed the IONR-tree for efficiently updating the 

current positions of moving objects on road networks. 

IONR-tree exploits intersection-oriented network model 

that split networks deliberately to preserve network connec-

tivity. IONR-tree has shown about 2 times better update 

performance and similar query performance compared to 

IMORS. Future work includes applying k-NN processing 

algorithms to the IONR-tree.

References

[1] Y. Tao, D. Papadias, and J. Sun, •gThe TPR*-tree: An optimized 

spatio-temporal access method for predictive query,•h Proc. VLDB, 

pp. 790-801, 2003.

[2] X. Xiong and W.G. Aref, •gR-trees with update memos,•h Proc. ICDE, 

p. 22, 2006.

[3] Y. Tao and D. Papadias, •gMV3R-tree: A spatio-temporal ac-

cess method for timestamp and interval queries,•h Proc. VLDB, 

pp. 431-440, 2001.

[4] D. Pfoser, C. Jensen, and Y. Tehodoridis, •gNovel approaches to the 

indexing of moving object trajectories,•h Proc. VLDB, pp. 395-406, 

2000.

[5] C.S. Jensen and D. Pfoser, •gIndexing of network constrained moving 

objects,•h Proc. ACM-GIS, pp. 25-32, 2003.

[6] E. Frentzos, •gIndexing objects moving on fixed networks,•h Proc. 

SSTD, pp. 289-305, 2003.

[7] V.T. Almeida and R.H. Guting, •gIndexing the trajectories of moving 

objects in networks,•h GeoInformatica, vol.9, no.1, pp. 33-60, 2005.

[8] K.S. Kim, S. Kim, T. Kim, and K. Li, •gFast indexing and updat-

ing method for moving objects on road networks,•h Proc. WISEW, 

pp. 34-42, 2003.

[9] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, •gQuery processing 

in spatial network databases,•h Proc. VLDB, pp. 802-813, 2003.

[10] J. Guo, W. Guo, and D. Zhou, •gIndexing of constrained moving ob-

jects for current and near future positions in GIS,•h Proc. IMSCCS, 

pp. 504-509, 2006.

[11] T. Brinkhoff, •gA framework for generating network-based moving 

objects,•h GeoInformatica, vol.6, no.2, pp. 153-180, 2002.


