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Intelligent Extraction of a Digital Watermark from a Distord

Image
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SUMMARY We present a novel approach to developing Machine 
Learning (ML) based decoding models for extracting a watermark in the 

presence of attacks. Statistical characterization of the components of vari-
ous frequency bands is exploited to allow blind extraction of the watermark. 
Experimental results show that the proposed ML based decoding scheme 
can adapt to suit the watermark application by learning the alterations in 
the feature space incurred by the attack employed.
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blind, Machine Learning

1. Introduction

Due to the rapid development of multimedia technologies, 
digital content is easy to create, duplicate and distribute 
through the internet. In these circumstances, implement-
ing digital right management has now become an urgent 

goal. Watermarking is considered to be the most prospective 
technology for answering issues related to digital right man-
agement. The watermark, after being embedded in a digital 
medium and transmitted, is supposed to be extracted at the 
receiving end. However, due to normal image processing 
and intentional attacks on the watermarked image, the accu-
rate extraction of the watermark has become a challenging 

problem [1].
There is no such watermark decoding scheme that can 

perform well under all hostile attacks. However, with the 
growing need of sophisticated watermarking applications, 
we require a decoding scheme that can adapt well towards 
a specific application. Generally, regular signal processing, 
channel noise, and JPEG compression are the most com-
mon attacks. Blind extraction of the hidden information 
becomes complicated, after distortions are incurred to the 
watermarked image. For example, in case of telesurgery; 
due to possible attacks, blind extraction of valuable em-
bedded information about the identity of the patient, hos-

pital, medical instruments, etc. is demanding. Medical data 
networks are now widely used in countries such as Japan. 
Even in transform domain watermarking approaches, for in-
stance, Discrete Cosine Transform (DCT), attacks can ap-

preciably change the underlying distribution of the coeffi-
cients. During watermark extraction phase, it is usually as-
sumed that the distribution of DCT coefficients is not heav-
ily altered. Therefore, watermark extraction performance 

degrades under attacks. As against the conventional correla-
tion based extraction of watermark, some researchers have 
developed new decoder structures [2]. In addition, Machine 
Learning (ML) models for watermark detection/decoding 
are also effectively employed [3]-[6]. For instance, Fu 
et al. [3] utilize the learning capabilities of Support Vec-
tor Machine (SVM) for optimal detection of a watermark. 
On the other hand, Bounkong et al. [4] have proposed inde-

pendent component analysis based watermarking. Fridrich 
et al. [5] exploit the learning capabilities of SVM for improv-
ing blind steganalysis. In a recent work, Khan et al. [6] have 

proposed the modification of decoder structure using Ge-
netic Programming in accordance to both the cover image 
and conceivable attacks.

Nonetheless, most of these approaches do not consider 
the presence of attacks during the training phase and thus are 
not adaptive. Similarly, watermarking approaches [2] that 
do not exploit ML techniques, generally, use simple Thresh-
old Decoding (TD) and thus, are also not adaptive towards 
the attack on the watermark. These approaches neither con-
sider the alterations that may incur to the features and nor 
exploit the individual frequency bands; rather treat all the 
frequency bands collectively. In contrast, we present an in-
novative scheme of exploiting the selected frequency bands 
individually. Our proposed technique is adaptive towards 
a new hostile application of the watermarking scheme, as 
we exploit the learning capabilities of ML models to gain 
knowledge of the distortion that might have incurred vary-
ingly on the different frequency bands due to the attack.

2. Proposed Watermark Extraction

Simple TD model can accurately classify bits if the distribu-
tion of the features does not overlap. This is because using 
a threshold, only linear bifurcation could be possible. How-
ever, in case of an attack on the watermarked image, the 
distributions of the features of a decoding model overlap as 
shown in Fig. 1. Consequently, linear bifurcation is not pos-
sible and thus a simple TD model is unable to decode the 
message bits efficiently. For this purpose, we assume that 
a non-separable message in lower dimensional space might 
be separable if it is mapped to higher dimensional space. 
This mapping to higher dimensional space is what the hid-
den layers in case of Artificial Neural Networks (ANN) and 
the kernel functions in case of SVM perform. As shown in 
Fig. 2, our decoding scheme mainly consists of following 
two modules; Dataset Generation and ML based Decoding.
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Fig. 1 Distribution of sufficient statistics of the maximum likelihood 

based decoding system after Gaussian attack (ƒÐ attack=10).

Fig. 2 Basic block diagram of watermark extraction.

2.1 Generating Attacked Watermarked Images

In order to analyze the performance of the proposed adap-

tive ML based extraction of watermark, we have generated 

a dataset of 16000 bits by considering five different images, 

each of size 256•~256. Next, in each image, a message 

of size 128 bits is embedded [2]. The whole process is re-

peated 25 times by changing the secret key used to gener-

ate the spread spectrum sequence. The anticipated attack 

is performed on each image, which corrupts the embedded 

message as well. The product of the spread-spectrum se-

quence S [k] and expanded code vector b[k]; corresponding 

to the message to be embedded, is multiplied with a percep-

tual mask a[k] to obtain the watermark. [k] denote the 2-D 

discrete indices in DCT domain. The 2-D watermark signal 

W[k] is as:

W[k]=S[k]・b[k]・ α[k] (1)

Adding this watermark to the original image in transformed 

domain performs the embedding:

Y[k]=X[k]+W[k] (2)

where X[k], and Y[k] represents the original and water-

marked images in DCT domain respectively.

The embedded message is supposed to be blindly ex-

tracted by modeling.the coefficients of each frequency band 

of an 8•~8 block DCT domain and applying maximum like-

lihood estimation. We consider the sufficient statistics for 

the watermark decoding as feature for the hidden bit classi-

fication. A statistic T (Z) is sufficient for a parameter ƒÆ, if 

the conditional probability distribution of the data Z, given 

the statistic T (Z), is independent of the parameter ƒÆ. How-

ever, as opposed to [2] that utilize a single feature for the 

TD model, we do not compute sufficient statistics collec-

tively across all the frequency bands; rather we compute it 

across each frequency band individually. This is because we 

assume that the frequency channels are independent, but not 

identical; a single attack might have different effects on the 

different frequency channels. Additionally, this allows us 

to keep the sufficient statistics across each frequency band 

as a separate feature itself. Thus, for a single bit, the num-

ber of features is equal to the number of selected frequency 

bands. Considering all the selected frequency channels to 

be identical, the sufficient statistics ri corresponding to each 

embedded bit is given as:

(3)

where Gi denotes the sample vector of all DCT coefficients 

in different 8•~8 blocks that correspond to a single bit i. 

σ represents the standard deviation of the distribution, while 

c dictates the shape of generalized Gaussian distribution.

We modify this model by assuming that each frequency 

band is distorted differently by an attack. Thus, the suffi-
cient statistics corresponding to a single bit are computed 

separately for each frequency band:

ri=Σjrji j=1, 2, …, Jmax (4)

where Jmax is the maximum number of selected frequency 
bands, and rji is defined as:

(5)

where Qji, is defined as the sample vector of all DCT coef-
ficients in different 8•~8 blocks that correspond to a single 

bit i and the jth frequency band. c and ƒÐ are estimated from 

the received watermarked image.
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2.2 Proposed ML Based Decoding

For bipolar signal; b[k]•¸[-1, 1], the estimated bit bi in TD 

model is computed as bi=sgn(ri) •Íi•¸{1, 2, •c, N}.

In contrast, we treat the sufficient statistics as features 

for the ML based decoding scheme. In order to make these 

features linearly separable, they are first mapped to a higher 

dimensional space. Consider n training pairs (ri, qi), where 

ri∈RN and qi∈[1, -1], then, in case of SVM
, we have the 

nonlinear mapping:

f(r)=NSΣi=1αiqiK(ri, r)+b=NSΣi=1αiqiΦ(ri)・ Φ(rv)+b (6)

where ƒ³(r) is nonlinear mapping function and b is bias. The 

attractiveness of this approach is its ability to develop an 

optimal hyper-plane in view of a new attack by learning the 

distortion in the features. We use three different kernels; 

Linear, Radial basis function (Rbf), and Polynomial. Simi-

larly, ri are provided as features to the multi-layered neural 

Network. Back-propagation learning algorithm is employed 

during training phase and weights are updated according to 

Levenberg-Marquardt Algorithm. This algorithm computes 

the error e, for output neuron m, as:

em(t)=Zm(t)-Pm(t) (7)

where zm(t) and pm (t) are the actual and target output for 
neuron m for iteration t.

3. Simulations

Figure 3(a) and 3(b) show the original and watermarked 

images. Figure 3(c) shows the Gaussian noise attacked 

watermarked image, where the imperceptibility is affected 

strongly by the resultant distortions, as is evident from the 

difference image (d). Figure 4 shows the 4-fold cross-

validation comparison in terms of Bit Correct Ratio (BCR); 

ratio of correct bits to that of total bits. The order of perfor-

mance of decoding models on training data is: PolySVM•„

ANN•„RbfSVM•„LinearSVM•„TD. On the other hand, 

for test data, we have PolySVM•„LinearSVM•„RbfSVM•„

TD•„ANN. In case of test data, PolySVM is able to correctly 

decode all the message bits from a distorted image. This 

shows that in view of conceivable attacks on a watermarked 

image, which are most common in real world applications 

of watermarking, it is far better intelligently employing an 

ML technique for learning the distortion introduced by the 

attack.

To analyze the adaptability of the proposed scheme, 

we change the conceivable attack and retrain the ML model 

accordingly. In this case, the attack is JPEG compression 

(QF=80). The sufficient statistics (Eq. (5)) are computed 

in the same way and the ML model is able to learn the new 

distortion. Consequently, it is able to blindly extract all the 

message bits (Table 1). We then change the conceivable 

attack from JPEG compression to Wiener estimation. The 

(a) (b)

(c)
(d)

Fig. 3 Analyzing distortion. (a) Original, (b) Watermarked, (c) Gaussian 

noise attacked, and (d) Difference of (a), and (c) images.

Fig. 4 BCR comparision using 4-fold cross-validation.

Table 1 BCR performance against different attacks. Note: data size=

16K (bits), and feature set=22.

ML decoding schemes during their training phase are able 
to learn the novel distortion being introduced. It can be ob-
served from Table 1 that RbfSVM is able to cope with such 
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Fig. 5 BCR performance using different feature subsets.

change in distortion and offers highest performance, achiev-

ing BCR=1.0 as compared to a BCR=0.8316 for TD 

model. Figure 5 demonstrates that using a single feature, 

the performance of all the models deteriorates as we move 

from a relatively smooth image towards a textured image. 
In contrast, by exploiting 22 features, ML models are able 

to cope with severity of attack by learning the distortion. 

Specifically, PolySVM, and RbfSVM show BCR=1, even 

across highly textured image of Baboon.

4. Conclusions

As regards blind watermark extraction in presence of at-
tacks, both SVM and ANN decoding models are able to 

adopt according to the hostile environment. Our proposed 

intelligent decoding scheme has blindly extracted message 

bits from a distorted image and is a generic one-not limited 
to a specific set of watermarking schemes. The proposed ap-

proach could be highly effective in dynamic applications of 
watermarking, where varying attacks are expected at differ-

ent times.
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