
2076 

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.7 JULY 2008

LETTER

Executable Code Recognition in Network Flows Using Instruction 

Transition Probabilities

Ikkyun KIM†a), Koohong KANG† †,Yangseo CHOI†, Daewon KIM†, Jintae OH†, Nonmembers, 

Jongsoo JANG†,Member, and Kijun HAN† ††, Nonmember

SUMMARY The ability to recognize quickly inside network flows to be 
executable is prerequisite for malware detection. For this purpose, we intro-

duce an instruction transition probability matrix (ITPX) which is comprised 
of the IA-32 instruction sets and reveals the characteristics of executable 

code's instruction transition patterns. And then, we propose a simple al-

gorithm to detect executable code inside network flows using a reference 
ITPX which is learned from the known Windows Portable Executable files. 
We have tested the algorithm with more than thousands of executable and 
non-executable codes. The results show that it is very promising enough to 

use in real world.

key words: executable code, malware detection, IA-32 Instruction

1. Introduction

As the •gzero-day•h worm attacks are becoming more sophis-

ticated in spreading across Internet and their damage to our 

society is getting heavier, malware detection is one of the 

cutting edge research topics in computer security [1]. In 

the process to detect the malicious codes on the network, 

the starting phase is to recognize the presence of the ex-

ecutable code within IP packet's payload [2], [3]. In this 

letter, we propose a practical method to recognize the ex-

ecutable codes inside network flows or any types of files 

without the emulation of the execution level. Whilst the 

semantic-aware schemes explained in [3], [4] give a nearly 

perfect detection of executable codes, it might be not appli-

cable to real-time systems. For this purpose, we introduce 

the instruction transition probability matrix (ITPX) charac-

terizing the features of the instruction transition patterns of 

executable codes. We use the ITPX of typical executable 

codes as a profile to detect whether there are some exe-

cutable codes. Andersson et al. [5] proposed a search al-

gorithm to detect the executable code transmitted in buffer 

overflow attacks. However, the algorithm only identified 

the operation of the buffer overflows attack by printing out 

the sequence of system calls used in the exploit. Moreover, 

Chinchani and Berg [6] proposed a fast static analysis ap-

proach to detect exploit code inside network flows, where 
they relied on the control and data flow analysis at instruc-
tion level. Unfortunately, it still not fast enough to handle 
very large network traffic as mentioned in the paper. In this 
letter, we also rely on instruction patterns of network flows, 
but we use the ITPX of typical executable codes as a profile. 
Our approach does not have to match any signatures or to 
analysis control or data flows.

2. Discrete Markov Model & ITPX

We introduce a discrete parameter Markov chain model to 

generalize the instruction transitions of executable codes. 

That is, we observe every instructions dissembled from the 

network flows and assume that the •gfuture instructions•h only 

depend on the •gcurrent instruction•h. This assumption is 

from that the atomic operations of machine codes would be 

independent on the past ones even if the contexts of high 

level-language programs written by C and C++ are a little 

dependent on the past ones.

First, we classify the several hundreds of IA-32 OP-

codes into 109 instruction groups using the libdasm linear 

disassembler, which consist of arithmetic and logical in-

structions of the integer and floating point, privileged mode 

and NOP instructions, and so on. Now we drive an one-step 

homogeneous ITPX P(1) as follows,

(1)

where pi,j=P(Xn=j|Xn-i=i), i,j=0, •c, 108, n•„0 are 

the transition probabilities from instruction group i to j.

In order to get the reference ITPX of executable 

codes, we scrutinized the sequences of 230,000 instruction 

in the execution code area (.txt section) of 80 Windows 

PE (Portable Executable) files stored at windows/system32 

folder in Windows System using the libdasm linear dis 

assembler, and then we determined the average transition 

probabilities from instruction group i to j. From Fig. 1(a) 

and (b), we note that the ITPX of executable codes has its 

own correlation characteristic of instruction transitions com 

pared with the one of ordinary text files.

Manuscript received March 7, 2008.
† The authors are with Information Security Research Divi-

sion, ETRI, Gajeong-long, Yuseong-gu, Daejeon, 305-700, South 
Korea.
†† The author is with the Dept. of Information and Commu-

nications Engineering, Seowon University 231, Mochung-Dong, 
Chongju, 361-742, South Korea.
††† The author is with the Dept. of Computer Engineering, 

Kyungpook National University 1370 Sankyuk-long, Buk-gu 
Daegu 702-701, South Korea.

a) E-mail: ikkim21@etri.re.kr 
DOI:10.1093/ietisy/e91-d.7.2076

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



LETTER 

2077

(a) ITPX of Windows executable files

(b) ITPX of ASCII text files 

Fig. 1 The visualization of instruction transition probability matrix on 

the executable codes and non-executable data.

3. Basic Idea and Experimental Results

We define two new terminologies as follows,

● Definition 1. MDR (Minimum Decision Range): The 
number of minimum instructions required for the deter-
mination in which the instruction sequence of the exe-
cutable code exists.
● Definition 2. EES (Expectation of Executable Se-

quence):

EES n=Pr(yn, yn+1, …, yn+MDR-1|ITPX). (2)

where n is from 1 to (length (payload)-MDR) and yi's are 
the observed ith instruction transitions of nth chunk of an 
IP packet. From the assumption, individual observation yi's 
are statistically independent of one another, and we estimate 
EES by the log function for computational convenience [7] 
as follows,

log_EESn=-n+MDR-1ƒ°k=n1n pki, j, (3)

where pki, j is the corresponding Pi, j in Eq. (1) of the refer-
ence ITPX when the k-th instruction is i and the (k+1)-th 
instruction is j. We note that we choose MDR=50 accord-
ing to the general size of shellcodes of which very short ex-
ecuuable codes.

Even if many threshold-based anomaly intrusion detec-
tions have the trouble do deal with their high false alarm 
rate, we also use this well-studied method in this letter.

Fig. 2 Histogram of the Expectation of Executable Sequence (log_EES) 
for the learning Windows PE files. 

Table 1 False negative and false positive for each file type when the 

threshold is based on 90% reliability.

Table 2 False negative and false positive for each file type when the 

threshold is based on 95% reliability.

Figure 2 shows the histogram of log_EES s of our learn-

ing Windows PE files, from which we obtain mean and 

variance and note that Nor(m=96.17, ƒÐ2=21.81) matches 

well the histogram. In order to detect executable code, 

we adopt an acceptance region for a right-hand one-sided 

test of normal distribution. To evaluate the proposed ap-

proach, we tested nine different types of files, such as gen-

eral ASCII text, Hangul (Korean character) text, JPG image, 

MP3 audio, PDF, Windows DOC, XLS, and PPT files. As 

experiment results, Tables 1 and 2 present the false posi-

tives and negatives for 90% and 95% confidence intervals of 

Nor (96.17, 21.81), respectively. Unfortunately, we notice 



2078 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO .7 JULY 2008

Fig. 3 The proportion of executable chunks in the network packets of 

FTP connections.

that the false positive of Windows XLS files is very high be-

cause the instruction transition patterns of the files might be 

very similar to executable codes.

4. Packet-Based Experiment

The final goal of this letter is to recognize any executable 

parts in the network packets. So we tried two types of ex-

periments with dump files captured bi-directional network 

packets. The first experiment used two FTP traffic dump 
files in which one delivered a Windows executable file and 

another delivered a text file, respectively. From Fig. 3, we 

note that there is no executable chunk in the FTP stream for 
text file, while we can see about 80% the executable chunks 

in the packets of the sequence number between 48 and 80 of 

the FTP stream delivering Windows PE file. We also veri-
fied that the packet sequence numbers of executable part of 
the graph in Fig. 3 are identical to the txt section of PE exe-

cutable file. In the second experiment, we used a real worm 

dump file - the Blaster worm - which exploits the RPC 
DCOM vulnerability in Windows OS. These captured pack-

ets are composed of bidirectional 824 packets, where the 
first shellcodes of the exploit are delivered to the target sys-

tem on TCP 445 port, and then the worm file - blaster. exe -

is delivered to victim system using a UDP TFTP service 

like a typical propagation scenario of a malware. As shown 

in Fig. 4, we can confirm that our proposed mechanism can 

recognize not only the executable part of the PE file but also 
the executable part of shellcode of the exploits in the net-

work packet.

Fig. 4 The proportion of executable chunks in the network packets of the 

Blater worm. ((ƒ¿) indicates recognition of the shellcode in the exploit.)

5. Conclusion

We have presented a fast method to detect executable codes 

in network traffic that can be implemented with simple and 

practical. The proposed novel ITPX-based approach shows 
very promising results for the detecting of the most current 

executable codes. Moreover this method can be applied to 

malware detection system without network session tracking 

and any packet reassembling.

References

[1] S. Singh, C. Estan, G. Varghese, and S. Savage, •gAutomated worm 

fingerprinting,” OSDI, pp. 45-60, 2004.

[2] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, •gStatic disassem-

bly of obfuscated binaries,•h SSYM'04: Proc. 13th Conference on 

USENIX Security Symposium, pp. 255-270, USENIX Association, 

Berkeley, CA, USA, 2004.

[3] X. Wang, C.C. Pan, P. Liu, and S. Zhu, •gSigfree: A signature-free 

buffer overflow attack blocker,•h USENIX-SS'06: Proc. 15th Confer-

ence on USENIX Security Symposium, pp. 225-240, USENIX Asso-

ciation, Berkeley, CA, USA, 2006.

[4] M. Christodorescu, S. Jha, S.A. Seshia, D.X. Song, and R.E. Bryant, 
“Semantics -aware malware detection

,” IEEE Symposium on Security 

and Privacy, pp. 32-46, 2005.

[5] S. Andersson, A. Clark, and G. Mohay, •gNetwork-based buffer over-

flow detection by exploit code analysis,•h Information Technology Se-

curity Conference 2007, pp. 39-53, 2007.

[6] R. Chinchani and E. van den Berg, •gA fast static analysis approach to 

detect exploit code inside network flows,•h 8th International Sympo-

sium, RAID 2005, pp. 284-301, Seattle, WA, USA, 2005.

[7] I.J. Myung, •gTutotial on maximum likelihood estimation,•h J. Math. 

Psychol., vol.47, pp. 90-100, 2003.


