
2192
 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.8 AUGUST 2008

LETTER

Tracing Stored Program Counter to Detect Polymorphic Sheilcode

Daewon KIMa), Ikkyun KIM, Jintae OH, Nonmembers, and Jongsoo JANG, Member

SUMMARY The shellcode use of the polymorphic form has becom
active as the de facto method for avoiding signature based network securit
system. We present a new static analysis method for detecting the decr
tion routine of the polymorphic shellcode. This method traces the pro
cesses by which the decryption routine stores the current program count
in a stack, moves the value between registers and uses the value in orde
to make the address of the encrypted code accessible. Most of decrypti
routines have the feature which they use the program counter stored on a 
stack as the address for accessing the memory that the encrypted code is 
positioned
key words: network, security, shellcode, polymorphi

1. Introduction

The main goal of an attacker is to obtain the chair control 
of the remote host. This is possible because there exists a 
vulnerable service which changes the control flow of the re-
mote host and in which an attacker arbitrarily can execute 
the malicious code. The general method for obtaining the 
chair control of the remote host is against the vulnerable ser-
vice through the shellcode transmission. Recent network-
based attack detection technologies more and more broaden 
the application areas, however, most of them have the basic 
limit which is the signature-based. The shellcode in which 
the polymorphic technique is used due to this limit has a 
difficulty in detection.

To overcome this limit, through some researches the 
binary analysis has been attempted toward the payloads of 
target packets to detect the polymorphic shellcode. With the 
first of these attempts, various static analysis methods were 
used. However, there was a difficulty by static analysis re-
sistant methods [1]-[3] including the disassembly thwarting 
technique and self-modifying code technique in detection.

Not to be influenced in the static analysis resistant tech-
niques, recent researches have been studied as the dynamic 
analysis methods [4], [5] that use CPU emulation and the 
hybrid [6] that uses the static-dynamic analysis. There is 
the advantage that the former can find most of polymor-

phic shellcodes; however, because instructions are one by 
one performed as CPU actually computes, it has the disad-
vantage that the operation overhead high. The latter firstly 
detects the GetPC code used as the object finding out the ad-

dress of the encrypted code through the linear or the recur-
sive disassembly. As the next step, after the tree of instruc-
tion sequence is found with the beginning of the decryption 
routine through static analysis, by emulating from the start 
instruction of tree it detects the feature of the decryption 
routine. As to this method, there is the advantage that the 
operation overhead is lower than the former; however, there 
is the disadvantage that the Polymorphic shellcode which 
does not use GetPC code cannot detect.

The method of this paper shows that it can detect the 

polymorphic shellcode in which the disassembly thwarting 
and self-modifying code techniques are used through the 
static analysis method. In result, compared with the hybrid 
method, this method can achieve the similar detection per-
formance and the little overhead. This method performs the 
disassembly per every byte to detect the seed instruction for 
GetPC so that it is not influenced by the disassembly thwart-
ing technique. Moreover, before the self-modifying code is 

just operated, the feature of the decryption routine is ana-
lyzed and the decryption routine is detected.

Because attackers are difficult to forecast the address 
of the encrypted code of the polymorphic shellcode injected 
into the remote host, they store the current program counter 
value through the decryption routine on a stack and use as 
the address for accessing the memory of the encrypted code. 
The method of this paper statically traces the movement of 
the program counter value between registers.

2. The Proposed Method

2.1 The Overview

The whole idea of this method detects whether the program 
counter value which the decryption routine stores through 
the static analysis method is used in accessing the memory 
or not. In the first step, the method finds the seed instruction 

playing the role of storing the program counter value on a 
stack. As the second, the method detects a register loading 
the value. The third step is to trace the relation between the 
register and others. Finally, if the loaded program counter 
value is used for accessing a memory, the input data is deter-
mined to the decryption routine of polymorphic shellcode.

2.2 The Decryption Routine Detection

Step 1: The seed instruction detection for GetPC

Manuscript received January 7, 2008.
Manuscript revised February 29, 2008.
The authors are with Information Security Research Divi-

sion, Electronics and Telecommunications Research Institute, 161 
Gajeong-long, Yuseong-gu, Daejeon, 305-350, Korea.

a) E-mail: dwkim77@etri.re.kr
DOI: 10.1093/ietisy/e91-d.8.2192

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



LETTER 

2193

The first step to find the decryption routine is the seed in-
struction detection for GetPC. The instruction stores the cur-
rent program counter value on a stack and it is necessary 
code to find the access address of encrypted code and to use 
the self-decrypting technique. If an attacker already knows 
the information about the specific register value when the 

polymorphic shellcode is put on in memory of the remote 
host, the instruction is unnecessary [5]. However, it is not in 
an attacker the easy task to predict a situation. Therefore, by 
using the instruction, in a general way, an attacker draws up 
the decryption routine.

There are the call, fsave, fnsave, fstenv and fnstenv with 
seed instructions for GetPC which can be used. This method 

performs every byte disassembly and does not miss the in-
structions. The virtual stack space is created and the in-
between of the space is set as the virtual stack pointer if the 
instruction is detected. The current program counter value 
is stored in the virtual stack that the virtual stack pointer 
is pointing. In the case of call, the value is stored in the 

position of current virtual stack pointer and, in the case of 
f series instruction, the target position of the virtual stack 
pointer is calculated through the static analysis and the value 
is stored in the calculated position.

If the f series have no relation with the stack operation, 
the detected instruction is determined to be not included in 
the description routine. Because an attacker is difficult to 
know the memory and all kinds of the register values of the 
remote host, except for a stack the possibility of making the 
arbitrary memory accessible is due to be low.

Step 2: The register detection loading a program counter

A description routine loads the program counter value stored 
in the virtual stack space into the specific register. If the in-
struction which accesses the memory which is not a stack 
before loading the program counter value from a stack 
shows up, it is not the description routine. It is due to the 
attacker's knowledge limit about the remote host.

In a description routine, many instructions may be in-
serted as dummy with from time to time in order to avoid 

general polymorphic detection methods. Therefore, it needs 
to trace from the virtual stack position in which the pro-

gram counter is stored whether the value is loaded with the 
specific register or not. Firstly this method traces the lo-
cation of the virtual stack pointer by the push/pop and the 
inc/dec/sub/add that are frequently used as the basic opera-
tion instructions. These traces can be simply performed with 
the static analysis.

Step 3: The connection relationship tracing between the 
other registers and the register in which the program 
counter value is stored.

The encrypted original code is accessed by the program 
counter value loaded in the STEP2 with the specific reg-
ister. Therefore, if it is used in the instruction in which the 
register accesses the memory, finally it is determined to a 

polymorphic shellcode including the description routine.
The program counter value may be moved to the oth-

ers in the register which stored the program counter value 
for the first time in order to hide that the value is used in 
the memory access. Like this case, if it is expressed as the 
connection relation between the registers that the program 
counter value is moved and there is among the connected 
registers that it is used in the instruction accessing the mem-
ory, it means that the program counter value pointing at the 
detected seed instruction is used for the access of encrypted 
code.

Like STEP2, an attacker may use dummy instructions 
to confuse the analysis. The register in which the program 
counter value was stored as the first may be again performed 
with push and it can be popped to the other register. More-
over, the value may be moved to the other register through 
the arithmetic or the logical operation instruction. In the 
case of former, the connection relation can be founded out 
through the stack trace like STEP2. In the case of latter, 
firstly the operand part of an instruction is classified an in-

put and output. If the register in connection relation exists 
in an input and the new register exists in an output, the new 
register is included in the connection relation. For example 
if in STEP2 ecx is detected and current instruction is mov 
eax, ecx, eax has a correlation with the ecx.

Finally, in this way, if one among the connected regis-
ters is used in the memory access calculation, our method 
determines that the decryption routine of the polymor-

phic shellcode exists. For example, the instruction is like 
xor[eax+15], 12.

2.3 The Detection Example of Real Decryption Routine

Table 1 presents, in a Honey net, on November 27, 2007, 
a complicated decryption routine of the polymorphic shell-
code detected by our method.

Table 1 The decryption routine detected in the honey net.



2194
 IEICE TRANS. INF. & SYST., VOL.E91-D , NO.8 AUGUST 2008

The call of the address 0x1225 is detected as the seed in 
the STEP1. At this time next instruction address 0x122a of 
current program counter is stored in the virtual stack space. 
Current program counter is updated to the address 0x1239 
by the recursive disassembly. In the STEP2, the recursive 
disassembly has been being from the address 0x1239 till 
0x124d in order to detect the register loading 0x122a. In 
Table 1, these instructions may be performed for some pur-

poses. However, these can be also used to carry out the role 
of the iterative statement which there is no with meaning 
that this part hangs an overload on the detection system in 
which an attacker uses the method for emulating.

Our method moves by the destination address through 
the recursive disassembly firstly, if it meets the conditional 

jump. However, because of moving by the next instruction 
if the method again meets the condition jump of the same 
address, it does not come off in these traps. In the address 
0x124f, because the seed instruction again came out, current 
detection try is over.

The call of address 0x122a is detected in the STEP1 
because the seed is detected per a byte. The instruction of 
address 0x1291 moves the value of the stack area in the spe-
cific register. After that, our method records an eax as the 
state where the instruction of the address accesses the stack 
area. The instruction of the address 0x1295 stores the pro-

gram counter value into [eax+B8]. However, because the 
tracing is impossible by the static analysis, current detection 
try is over.

The next detected seed is the call of address 0x124f. 
Our method sets the virtual stack pointer up as the mid-
dle position of stack and stores 0x1254 in the virtual stack 
space. In the address 0x128d, the STEP2 in which the value 
is loaded in an ecx is detected. It is now altogether traced as 
the movement of the value relating to an ecx by the method 
of STEP3. By the retn of address 0x129d, current program 
counter is updated to the next instruction address 0x1254 
stored in advance when the call was detected. By analyzing 
next instructions, since it is confirmed that 0x1254 is used in 
the calculation accessing the memory in the mov al, [ecx] of 
address 0x126e, finally our method can decide that these in-
structions are included in the decryption routine of the poly-
morphic shellcode.

3. Evaluations

In the prototype program used in this evaluation, the branch 
stack is added to process recursively the branch instruc-
tion. If the decryption code is finally not detected starting 
from a branched address, the detection process is continued 
from the address of next instruction, which is pushed on the 
branch stack, of the branch instruction.

In Table 2, we evaluated the detection rate against the 
famous polymorphic engines referred in recent papers. For 
each engines, 10 polymorphic instances were generated.

In the case of processing cost this method has not been 
optimized yet, however, our implementation demonstrates 
a linear relationship between the input data size, and run-

Table 2 The detection evaluation against polymorphic engines .

ning time. Moreover, because of performing only the simple 
static analysis, it is a reasonable fact that the performance of 
this method is better than the other methods that the emula-
tion technique is included.

4. Conclusions

We have considered the overhead problem of detecting 
the polymorphic shellcode with the static analysis resistant 
techniques. The starting point for this work is to detect 
whether the program counter value which the decryption 
routine stores through the static analysis method is used in 
accessing the memory or not.

Through our analysis of the real detected polymorphic 
shellcodee and other evaluations, the method of this paper 
shows that it can detect the polymorphic shellcode in which 
the disassembly thwarting and self-modifying code tech-
niques are used. Moreover the performance property is also 
better than other methods.

Acknowledgments

This work was sponsored by the Korea Ministry of Informa-
tion and Communication under the Zero-day Attack Signa-
ture Management INfrastructure (ZASMIN) Project.

References

[1] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, •gPoly-

morphic worm detection using structural information of executables,•h 

Proc. International Symposium on Recent Advances in Intrusion De-

tection (RAID), Sept. 2005.

[2] X. Wang, C. Pan, P. Liu, and S. Zhu, •gSigFree: A signature-free buffer 

overflow attack blocker,•h Proc. 15th USENIX Security Symposium, 

pp. 225-240, July 2006.

[3] R. Chinchani and E. Berg, •gA fast static analysis approach to detect 

exploit code inside network flows,•h Proc. 8th International Sympo-

sium on Recent Advances in Intrusion Detection (RAID), pp. 284-

308, Sept. 2005.

[4] M. Polychronakis, K. Anagnostakis, and E. Makatos, •gNetwork-level 

polymorphic shellcode detection using emulation,•h Proc. Conference 

on Detection of Intrusions and Malware & Vulnerability Assessment 

(DIMVA), July 2006.

[5] M. Polychronakis, K. Anagnostakis, and E. Makatos, •gEmulation-

based detection of non-self-contained polymorphic shellcode,•h Proc.



LETTER 
2195

International Symposium on Recent Advances in Intrusion Detection 

(RAID), 2007.

[6] Q. Zhang, D.S. Reeves, P. Ning, and S.P. Lyer, •gAnalyzing network 

traffic to detect self-decrypting exploit code,•h Proc. ACM Sympo-

sium on Information, Computer and Communications Security (ASI-

ACCS), 2007.


