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ABSTRACT

T

In this paper, static state and dynamic state feedback linearisation are considered in the
framework of differential algebra. The relationship between dynamic feedback and flatness
defined by Fliess is discussed. The existence of an equivalent proper differential I-O system for
a given differential I-O system is discussed, which is closely related to the choice of a proper
fictitious output in control design. The concept of flatness and its relation to dynamic feedback
linearisability, controllability, observability, invertibility and minimal realisation are discussed.
Finally, it is demonstrated that many fundamental control concepts and their interrelationships
can be incorporated into an extended control diagram.

Keywords: feedback linearisability, flatness, proper differential I-O systems, control diagram.
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1. Introduction

Differential algebra was developed by J. F. Ritt and his students to study nonlinear dynamical
systems [27]. In the last ten years it has been demonstrated that a differential algebraic ( as
distinct from the well established differential geometric) approach can give a clearer under-
standing of some control concepts and their interrelations, such as controllability, observability,
invertibility, decoupling, and controller canonical forms [8, 9, 10] and also observability, the
existence and uniqueness of minimal realisations [18], the equivalence of differential I-O control
systems [19], and feedback linearisation. Some of these works are discussed in the paper [1].

Let K denote a field of characteristic 0; e.g. K = R, or C for time invariant systems and
R (t) or C(t) for time variant systems. A dynamical system may be considered as a finite
differential algebraic extension field over K. Two types of field extensions will be involved in
nonlinear control theory, viz. (pure) algebraic extensions and differential algebraic extensions.
An algebraic extension may be considered as a special case of a differential algebraic extension
when the differential of the algebraic indeterminate is zero. A general differential indeterminate,
for example the control variable u, is naturally an algebraic indeterminate.

For a given differential I-O system, there are three important invariants of equivalence:
differential dimension, differential co-dimension, and system order. The differential dimension
is the number of differentially independent variables ( or differential indeterminates) of the
system. In control theory, even if we know that the differential dimension of the system (model)
is the same as the number of inputs, we are not sure that the inputs are generically differentially

independent unless we can practically choose those input variables as differential parametnc
indeterminates for the system. -
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Based on the previous work on the differential algebraic approach, we consider the problem :
of static and dynamic feedback linearisation using the differential algebraic approach. We also
consider their relationship with the concept flatness defined by Fliess. In fact, flatness is a
special case of dynamic feedback linearisability. We will see that the static feedback lineari-
sation problem will not involve any differential field extension. However, dynamic feedback
linearisation problem will in general involve a differential algebraic extension. This corresponds
to the introduction of extra pseudo-states, i.e. the state variables of the dynamic feedback. In
this sense, the dynamic feedback linearisation problem is a immersion of the integral manifold -
in a flat space.

In [30] it is proved that any locally weakly observable nonlinear state space model is equiva-
lent to a differential input-output model with the number of outputs is no less than the number
of outputs. If they are the same, we get square systems. Corresponding I-O systems are called
proper under some mild regularity constraints. Proper I-O systems are the basis of dynamic
sliding mode control design [20, 21]. We will prove here that algebraically any prime differential
I-O system corresponds (up to local equivalence) to a proper differential I-O system.

The relation of flatness with dynamic feedback linearisability, controllability, observability,
invertibility, minimal realisation are discussed. These control concepts and their relations form
a coherent extended control diagram, which helps in understanding these concepts in both the
differential algebraic and differential geometric frameworks.

In the differential algebra framework, static state and dynamic feedback linearisation is
discussed in Section 2. In Section 3, the existence of an equivalent proper differential I-O system
for a given differential I-O system is discussed. In Section 4, an extended control diagram is
presented. Section 5 considers the relation between flatness and other control concepts. F
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Let z(t) : Ry—R", u(t) : Ry—R™, y(t) : R.——RP. Systems under consideration are of
two types. Input-state-output (I-S-O) systems and differential input-output (I-O) systems.
(1) Differential I-S-O systems 3 :

Flz,z,u,t)=0 (2.1)

or the following explicit form can be recovered by the Implicit Function Theorem,
B= Fl&0,1) _ (2.2)

It is noted that a systems of the form (2.2) can always be put into a time invariant affine form
as follows. Let t = Zpy1, u = (U1, .o Um)’ = (21, .y 2m) T, and u=z=v = (v1,...,Um)" & NEW
set of controls. Then (2.2) becomes

d= f(2, Tns1)
2=
Zpp1=1

which is clearly time invariant. Thus the theoretical discussion may be restricted to the following
time invariant affine systems

i= f(z) + g(z)u (2.3)
2
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In considering feedback linearisation in the differential algebraic approach, thell."e ‘is I_10t
much difference in fomulation when system (2.1) or (2.2) is adopted, while there are distinctive
fomuations if systems (2.1) or (2.3) are adopted as we will see.

(2) Differential I-O systems:

¢1(7,14,t) =0
: P s (2.4)
> 6,(5,1,t) =0
or locally by the Implicit Function Theorem,
(n1) = =
Y1 = Lfol(y)uat)
s sssw (2.5)
Y™ = 0pl(0,6,t).
; 7 ) n1—1 np—1)\T
where 4 = (u;, ...Tu(fal); ol Wi ...,uggm))T, 7= (Y1, s Yps ___1y§ X ), ey 1(3 p=INT,

7= (4, y§”1),-....y§,"f’))7. with 71 + ... + np = n. The system (2.5) has the following generalised
canonical form realisation (GCCF):

(1)
€n1-1= C‘I(I]i)

(2.6)

where ¢® = (¢, ... ¢, ¢ = (¢W,...,¢"™)T € R". With the introduction of some pseudo-
state variables as

z = (Z(l)s---az(m))-r
D = (uy ., Y, i=1,..,m
-
1 = ('U]_1 ...,’Um)T = (ugﬁl)a '1u$7fm))

a new state space form is obtained as

( = FlC%1)
> = G(z,v)

which is again in the form of (2.2) with v as new control variable. Thus only (2.3) and (2.1)
need to be considered.




3. Control Systems in Differential Algebra

There are several ways to adopt a differential algebraic framework when considering control
systems. For example, a control system may be considered as a differential algebraic manifold
determined by a differential system. Alternatively, it can be considered as a differential ex-
tension field determined by a prime differential system. This is because a perfect differential
ideal [25] can be expressed as a finite irredundant intersection of prime differential ideals. In
most cases, a differential extension field will be adopted as a framework in this paper unless
otherwise stated. The prime differential system could be an I-O system or an [-S-O system.

3.0.1. Differential Extension Field

Let K denote a field of characteristic 0; e.g. K = R, or C for time invariant system and R (t)
or C (t) for time variant systems.

Suppose W = (W, ..,W,) denotes the differential indeterminates over K. Consider the
differential algebra K{W} which is a commutative algebra and is closed with respect to the
differential operator £ [24, 27]. Let

D= {¢‘1= "'!¢5}1 ®; € K{VV},'L' =1,..,8

be a differential prime system in K{W}, ie. it determines a prime differential ideal {D} in
K{W}. Then the localisation of the set of differential cosets K {W}/{D} forms a differential
extension field over A~ determined by D :

K (w) = L(K{W}/{D}).
where w is used to denote the image of W under the natural projection
r: K{W} — K{W}/{D}

T W, —w,. 1=1,.,71

(3.1)

From now on, capital letters denote differential indeterminates in a differential algebra,
corresponding lower case letters denote its image under the natural differential homomorphism
as in (3.1). '

When considering a differential algebraic fleld K, there are two types of extensions with
which we may be concerned. i.e. differential extensions and pure algebraic extensions.

The following notations are used throughout the paper, which are coincide with those used
in [1, 18]

Y : state space model with input u, state =, and output y of appropriate dimension;

II : differential I-O system;

K{W} is the differential algebra generated by W = (W1, ..., W) over K, where W is a set
of differential indeterminates over K.

K (T) (or K (1)) is the differential field determined by prime differential ideal {E} (or
{I1}) over K. Alternatively, they can be denoted as K (u,z) (or K (u,y)).

w (resp. @) denotes the derivatives of W (resp. w) to some finite order.

If F is an (non-differential) extension field over field N, Trd°(F : N) and Al.d°(F : N) are
used to denote the transcendental degree and algebraic dimension of F over N respectively.

If Fis a differential extension field over differential field N, Dif fTrd°(F : N) and
Dif f.d°(F : N) are used to denote the differential transcendental degree and differential alge-
braic dimension of F over N respectively.
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3.0.2. Description of Nonlinear Control Systems

Let u = (uy, ..., um) be differential transcendental over K, K (u) be a differential transcendental
extension field of K, and K (y) be a differential extension field of output y over K.

Let the I-S-O system 3 and the I-O system II be differential prime systems over K, then the
extension filed M = K (u,z) = K (¥) and L = K (u,y) = K (II) are obtained. The composite
field N = (L, M) which is the minimal differential field containing L and M can be constructed.
Furthermore,

K c K{u) CK (u,r)
K c K(u)CK((u,y),

K (u,z) and K (u,y) are finite differential algebralc extension over K (u), which are two main
differential algebraic frameworks.

Let K be the differential algebraic closure of K in N.

A property is said to hold generically implies that it holds in an open dense subset of the
region concerned.
Relativity of the Differential Algebraic Framework: A differential algebraic framework
for a nonlinear control system is determined by the system concerned and will not be the same,
in general. for a different system.

3.1. Algebraic Equivalence

In differential algebraic control theory, the concept of local equivalence of two systems used in
geometric control theory has a corresponding concept algebraic equivalence .
Definition 3.1. Two prime differential (control) systems

F(z,z,u)=0

and ‘

G(g’ C? T) s
are said to be algebraically equivalent if the following two conditions hold.
(1) There exist meromorphic functions a = (aj. ..., a,) such that

alz, ) = 0
dim(z) = dim({)=n

over K (u) or over K (v) and that

dt{aaézc)] 40
da (z,()
o [220) 4

hold generically.
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(2) There exist meromorphic functions 8 = (i, ..., B») such that
B(u,v) = 0
dim(u) = dim(v)=m

over K (z) or over K (¢) such that

hold generically.

A similar definition can be given for the algebraic equivalence of two affine systems (2.3).
Theorem 3.1 Two differential systems are algebraically equivalent if and only if one can be
obtained from the other by a (pure) algebraic elimination procedure described in [15]. &
Definition 3.2 Let Z7 denote that set of vector of dimension m with each entry to be non-
negative integer. The following relation is introduced within Z7. Let n = (n1,...,nm), p =
(p1, ... pm) € Z7. n is said to be lower than p or

n-=<p
if
n+..+nm <pr+.. + Pm-
They are of the same order if

ni+..+np=p+ ..+ Pm

3.2. Feedback Linearisation

Feedback linearisation in the differential algebraic framework can be described in two ways.
This corresponds to using an explicit form or an implicit form. We will discuss both static
feedback and dynamic feedback in these two cases.

3.2.1. Static state feedback linearisation

SFBK1: A system (2.3) is said to be static state feedback linearisable if there exists transfor-

mation u=a(z) + B(z)v
¢ =T(a)
z = P(()

where v is the new control to be designed, «(.) : R™ — R™; 3(.) : R* — R™*™; T(.), P(.) :
R™ — R™ are meromorphic function matrices, such that o (0) =0, (0) # 0, T(0) =0 and

det [B(z)] #0
#0

det [%ﬂ} (3.2)
6




hold generically. Under this transformation, system (2.3) is equivalently transformed into a
Brunovski canonical form

:(1) 1
¢ = C:(z ;
e
Cnl(—1§.= C?gl.]]:)
Cn,l = (33)
i )
gnmnl_ C‘l’(lm)
{m)
Mm =tm
or equivalently
gnl} = U
...... (3.4)
v = m

by choosing the output ¥ = (y1,...Ym) = ( &1), ...,dm)), where nj + ... + np = n = dim(z) =
dim(¢). Naturally

I
F = LoBg i =1 041

These notations will be used throughout.
SFBK?2: System (2.1) is said to be static state feedback linearisable if there exsist the following
relations

s =
where o and T are meromorphic function matrices, such that «(0,0,0) =0, T(0,0) =0 and
det g%] =
det L%} # 0 (3.6)
det g—i] # 0
det {%%} # 0

hold generically and that (2.1) can be algebraically equivalently transformed into (3.4) with
dimension Y7 n; = n = dim(z) = dim(¢).




3.2.2. Dynamic state feedback linearisation

DFBKI1: System (2.3) is said to be dynamic feedback linearisable if there exist the following
relations
= alz,z) + B(z. 2)v
w=n(z,2) +nlz, 2
¢ =T(z.z2) (3.7)

M=P(o

where z € R?,( € R™? and a(.,.) : R* x R? — R?; G(,.) : R* x RP — RP*™, Whag) ¢
R™ x RP = R™; 5(.,.) : R* x R? — R™™; T(,,.), P(...) : R* x RP — R"*? are meromorphic
function matrices such that «(0,0) = 0, v(0,0) =0, T'(0,0) = P(0,0) =0, and

det[n(z,2)] # O
or |
det | —/——
oG] *

are satisfied generically, such that (2.3) is equivalently transformed into the form (3.4) with
dimension Y7, n; = n + p = dim(z) + dim(z) = dim(¢).

DFBK2: System (2.1) is said to be dynamic feedback linearisable if there exist the following
relations

( 0
¥(z,z,u,v) =0 (3.8)

where a = (a1, ..., ap)T, 5y = (7,--,7m) , and T are meromorphic function matrices such that
(0,0,0,0) =0, 4(0,0,0,0) =0, T(0,0,0) = 0 and

w[] 40
det [a—f # 0
det {%%: £ 0
det [g—g £ 0 (3.9)
det Fé% # 0
[ 5

hold generically and that (2.1) is algebraically equivalently transformed into (3.3) with dimen-
sion Y7, n; = n + p = dim(z) + dim(z) = dim(().




3.2.3. Results in the Differential Geometric Framework

Theorem 3.2 A SISO system (2.3), is locally static feedback linearisable in N, which is a
neighbourhood of the origin, if and only if the following condition hold in Nj :

(i) rank span{g, adsg, ..., ad} ™'} = n;

(ii) span{g, adsg, ..., ad’}'_Q} is involutive.{

The following theorem links state feedback linearisability with dynamic feedback linearis-
ability in the SISO case. This naturally implies some necessary and sufficient conditions for
dynamic feedback linearisability although these are not known for MIMO systems.

Theorem 3.3 For an SISO system (2.3), static feedback linearisability is equivalent to dynamic
feedback linearisability ([2]) . ¢

3.3. Feedback Linearisability in Differential Algebra

Linearisation via static state feedback and coordinate transformation is equivalent to the lin-
earisation by the feedback of some outputs and its finite order of derivatives. Linearisation via
dynamic state feedback and coordinate transformation is equivalent to the linearisation with
dynamic feedback of some outputs and its finite order of derivatives. This is because local weak
observability means that there is local diffeomorphism

o : (Z1, 0 Zn) = (U, Y, oy,

This is also related to the choice of output. If a system is feedback linearisable, the corre-
sponding output is called a linearizing output. The following discussion will show that, in the
differential algebraic framework, static state feedback linearisation will not involve a differential
field extension, while dynamic feedback linearisation, on the contrary, will involve a differential
algebraic field extension. This corresponds to the immersion of a maximal integral manifold in
a differential geometric framework.

To study static feedback linearisation in a differential algebraic framework, consider nonlin-
ear systems of the form (2.1) and (2.3) respectively.

Proposition 3.1 System (2.3) is static feedback linearisable in the sense of SFBK1 if and
only if there exists a set of outputs y = (y1, ..., ym) C K (z,u) such that

(1)

K= K lmu).

(2) K(z) = K(§) as two (pure) algebraic field, where y = (y1, ..., Yp; ..., gt gL,
Proof. Necessity: From (3.4), it is clear that v € K (y) . By choosing

Yi = ](.i)a 1= 17"'va

y = (y1,...,ym) is a set of observable outputs such that y € K (z,u) beacuse ( = T'(z) €
K (z,u). Thus K (y) C K (z,u). To obtain z = P(({) algebraically within K (z,u), it is
necessary that z € K (y) . On the other hand, u € K (z,y),s0 K (z,u) C K (y) . It is concluded
that

K {y) =K i{z,n).
(2) is clear from the relation
(=T(z)
z = P(()
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Sufficiency: By condition (2),

z = T(7)

y = T(=z)

- -1 Nm—
y = (ylﬂ"'7y§.nl )""Jym""?y'l('n 1))'

This also implies that § = T(P()) and z = P(T(z)). Thus
n + ... + ny, = dim(z).

Besides,

| 8P
z = H(Q)+my()

" -1 g
gD = (", Y)
g™ = G, )
where H(7) is a meromorphic function of y.
Now let
& o= g
g = (3.10)
j 1.ngi=1..,m
Then
z = P(()
oP
flz)+g(z)u = H(C) WU

Or equivalently

Il
e
i
St o

a(z) = g '(z)(—f(z)+ H (T(z)))
B(z) g (
det [3(z)] # O.

Under this transformation, (2.3) is of the form (3.10) which is exactly (3.4). ¢
Proposition 3.2 System (2.1) is static feedback linearisable in the sense of SFBK2 if and
only if

(1) there exists a set of outputs y = (y1,...,Ym) C T where T is some (pure) algebraic
extension field of K (x,u) such that

(2) K (y) and K (z,u) are algebraically equivalent;

10
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(3) K(z) and K(7) are algebrically equivalent when considered as (pure) algebraic fields,
where y = (y1, BT I — yé”p—l)).

Proof. Necessity: (a) (3.8) determines a pure algebraic extension T over A {m, 1)

(b) By (3.4), it is clear that v € K (y). By (3.4) and (3.5) it is concluded that y and v are
(pure) algebraic over K (z,u) . Similarly, z and u are (pure) algebraic over K (y) . Furthermore,
(3.6) implies that the conditions (1) and (2) in Definition 2.1 hold. Thus condition (2) is
necessary.

(c) Condition (3) follows directly from the relation

T m) =10l

Sufficiency: Suppose y = (Y1, ..., ym) € K (z,u) satisfies (1)-(3).
By condition (1), u, is algebraic over K (y) and differentially transcendental over K. ie.
there exist non-trivial meromorphic functions w; over K such that

wi(u,g) = 0,i=1,...m

Ow
det [‘a'—u:I ?é 0

W = (qu. ...,wm)

Ow
det £0
L(yw,...w)]
holds generically. Let
v =y™ i=1,..,m. (3.11)
Then
L"z(uisc:ll) = 01 =1 y M
Ow
det | —=
et [81}] == 1)
Ow
det | — 0
¢ lac] T
(gl""’cﬂ) = (yl?"'?yp;"'?y%nlil)*"‘fyénpil))

Because u = (ug,...,un) is a set of differential independent elements over K (xy, v =
(v1, ..., V) has the same property . Thus the first equation in (3.5) and the first two equalities
in (3.6) are recovered.

Condition (3) implies that there exists meromorphic function vectors T' = (T3, ..., 1) such
that T(0,0) = 0 and that

or
det [8_5} 7& 0

det [g—zl # 0
1



hold generically.

Meanwhile, (v1,...,v) is a set of new but equivalent control variables. With this set of
control variables and such a set of outputs y, the system (2.1) has the Brunovski canonical
form (3.11).

This completes the proof.

Intuitively, in a differential algebraic framework, static state feedback linearisation does
not involve a differential extension of K (z,u). It may cause some (pure) algebraic extension.
However, the following discussion will show that dynamic feedback linearisation involves the
introduction of some new state variable z to represent the dynamic compensator beyond the
original state variable. The variable z belongs to some proper differential extension field of
K {z,49):

Consider differential algebras K {X,U} and K {X, Z,V'} Suppose ¢ is a differential inclusion
(injective homomorphism):

K{X,U}>K{X,Z,V}.

Thus K {X,Y} can be identified with its image in K {X,Z,V}. Thus K {X,U} can be con-
sidered as a differential sub-algebra of K {X, Z, V'}. Under this inclusion

@ (XuU) _L>T1[)]= (X Z,V), ji & {11(]}
Y {6:(X,U),i=1,.,p} CK{X,U}
2 {wl (X>Z:V)aj = 1,@} € K{X~ Z,V}

where both 3~ and S are prime differential systems. This induces the following commutative
diagram
K{X,U} - K{X ZV}
71l L7
K{z,u) = K{z,z,v)

where 7y, 7, are natural projections

K{X,U} DK (zu = LEXU/{T))

—_—

K{X,Z,U} DK {z,2,0) = L(K{X,Z,V}/{Z})

which are surjective . This implies that K (z,u) can be considered as a differential algebraic
sub-field of K (z,z,u). tp is a differential inclusion (injective homomorphism).
Proposition 3.3 System (2.3) is dynamic feedback linearisable in the sense of DFBK1 if
and only if the following conditions hold.

(1) There exists a differential algebraic extension field K (z,z,u) of K (z,u) determined by

2= az,2) + Bz, z) v

v=n"(z,2) (u—(z,2). (3.12)

(y) = K (z,2,u).
4) K(z,z) = K() as two (pure) algebraic fileds, where y = (y1, ... T TR yire D).
Proof. Necessity:

(2) There exists a set of outputs y = (y1, ..., Yym) C K (z,2,u), such that (3) and (4) hold;
(3) K
(4)

12
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(a) From (2.3) and (3.7), it is necessary that z satisfies 3.12), which determines a differential
extension field over K (z,z,v) over K (z,u) with v =n"'(z,2) (u — 7¥(z,2)). This proves (1).
(b) From
g = (=T(z,2)
(z,2) P(()
g = (yl}"'?ygnl_l)""'7ym""?y1('::m_l))T
it is deduced that
¢ = T(P(C)
(z,2) = P(T(z,2))
Then ‘
n+..+np=n+p.
oT
v o=y =Hz,2) + 7 (f(@) + 9(z))

E?z
oz

u

|

y™)) and H(z, z) is a vector of meromorphic function of (z, z). Thus

(P(o)] (v = H (P(Q) +  (PO)

where y™ = (y{™), ..,

v € K(z,z,u)
u € K(y).

Besides, (z,z) = P(¢) implies (z,2) € K (y). Thus K (y) = K (z,2,u} .
(¢) Condition (4) follows directly from the relation

(=T(z,z2)
X
HEG
Suffictency:
From (4), there exists a relation
©;(z:,7) N
¥i(z,9) = 0,j=1,...p
dim(y) = n+p
which satisfies 8, 0)
@,
det l@(m,z)] #10
which implies the regulaity requirement in DFBK1. Now
Op; - - 09 (n41)
(f(z) + g(z)u) + Hi(z:, §) + =l = 0
3:61- = 6y:(,. 3097
i = 1, ..m
13




where H,(z;,7) is a meoromorphic function of (z;, 7). Let

Then

- BN By
U= —g l(J;)f(:E) - g " (x) [—ag} {H-f— ayz;)t.l}

where H = [Hi(21,9), - Ha(2n, )], v = [v1, - (L

o;(2;,7) . o s OY (nget)
I s+ H (2, D+ Y e = 0
aZj J av=a ) F;Byi k) 7k

g = 15 unP

where Hj is a meromorphic function of (z;,9). Thus

2 e

where H' = [H](z1. 7). Hp (2. 9)] "

Thus all the conditions in DFBK1 are satisfied. &
Proposition 3.4 System (2.1) is dynamic feedback linearisable in the sense of DFBK2 if and
only if the following conditions hold.

(1) There exists a differential algebraic extension field K {z, z,v)

¥(z,z,u,v)

a(z,z,z,v) =

where v = (v, ....Um). K (z,u) can be identified with a differential subfield of K (z.z,v) .
(2) There exists a finite differential transcendental extension field K (y) , vy = (Y1, Um),
over K such that (3) and (4) hold;
(3) K (y) is algebraically equivalent to K (&%)
(4) K(z) and K(J) are algebrically equivalent when considered as (pure) algebraic fields,
(n1—1) :

where y = (1, .- 91 O TR VB

Proof. Necessity:

(a) Condition (1) is required by the definition of DFBK2.
(b) From the Brunovski canonical form (3.4), v € K (y) and

T(z,z,5) = 0
y(z,z,u,v) = 0.

Thus (z, z,u) is (pure) algebraic over K (y) . From (3.9), v is algebraic over K (z,z,u) and
<o are all the differentials of v. Thus y and all its derivatives are algebraic over K (z, z, u) . S0
K (z.z,u) and K (y) are algebraically equivalent.
(¢) From (3.9),
T(z,z,()=0
14
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so (4) is obtained.

Sufficiency: If (1)-(3) hold, the first two relations in (3.9) are obvious. Let
) = Cﬁgl
i = L t=Llegym

Condition (3) implies that the following two compatibility conditions hold;

(a)
(&, z0:0) = 0
detlafyzzuv:{ £ 0
det[@'yxzuv} 20
holds over K, which is just the third relation in (3.9).
(b)
ig(xﬂz’ C’u) = O
98 (z,2,¢,u)
oo [T o
or
ﬁ( C v) = 0

Blz,z.¢.v)
det | ———
e [ 8C # 0
holds over K . If 3(z,2,(,u) = 0, eliminate u from

Blz,z(u) = 0
7(z,2,¢u) = 0,

A compatibility condition

Tz, 2:0) =0
holds.
Similarly, if 3 (z,z,(,v) = 0, then 8 (z,z,(,v(z, z,u)) = 0. Eliminate u by the method in
[15] from
6(I1Z?C!7(I’Z'ﬂu)) ==
v(z,z,u) =
A compatibility condition
T(a,.2,0] =0

will result. $




R |

Corollary 3.1 The following results are true:

(1) Diff.Trd® (K (z.z,u): K) = Diff.Trd’ (K (z,z,v) : K);

(2) there exists another set of differential parameter indeterminates v = (v1, . T
K (z,z,u) such that

Alg Trd° (K (z,2,u) : K (u)) = Alg Trd’ (K (z,z,v) : K{v)) =n+Dp.
Proof. From the results above, u € K (z,u,v) and v € K (z,z,u). It is thus true that
Dif f Trd° (K (z,z,u) : K) < Dif f.Trd’ (K (z,z,v) : K)
and
Dif f.Trd (K {z,z,u) : K) > Dif f.Trd® (K (z,2,v) - K).

So (1) is true.

K (z,z,u) is differential algebraic over K (u) and K (z,z,v) is differential algebraic over
K (v) . This is also the case for K (y) over K (u) and K (v). Besides, (,z) and § are equivalent
algebraic transcendence basis over both K (u) and K (v). While

Alg Trd° (K () : K (u)) = Alg Trd® (K ) : K (v)) =n+p.

So (2) is true. ¢

3.4. Flatness

Proposed by Fliess et al (1992). Consider dynamic feedback (3.7)
Let

ny—1 N —
Y = (y, ...,y§ l )§ veey Ymo ---s'yin 5

b} = P(Y).

Thus from (3.7) z and u can be expressed as smooth function of (y1, ..., Ym) and its finite number

of derivatives: _
2= A(y,¥, .. y'®)

u = By, y) s
Such a dynamic feedback is endogenous if and only if the converse holds. i.e.
y = C(z,u, %, ..., u"). (3.14)

Such an output y is called flat output. Thus a system (2.2) is flat if and only if such a flat
output exists.
The nonlinear control system (2.2) is called flat if some fictitious output

w = w(z, 1),

exists such that the state z and control variable u can be expressed, without integrating any

differential equation, in terms of the flat output and its associated finite order of derivatives

[9]. This can be interpreted in differential algebra as follows.
16




In differential algebra, (3.4) and (3.13) imply that

v € K{(y)
z € Ky
z € Ky
K{u,z) C K(vy =K.
While (3.14) implies that
y € Kuzx

Thus flatness in the sense of [7] means that
K (u,z) =K (v,§) = K(v,y) = K(y).
Although the differential dimensions are the same
Diff.Trd® (K {u,z): K) = Dif fTrd° (K (v,y) : K)
the algebraic dimensions
AlLTrd® (K (u,z) : K(u)) = n
AlTrd® (K (v,&) : K{(v)) = n+p

are different in general.
An important feature here is that the dynamic feedback (3.7) does not cause differential
field extension. From the discussion above, it can be seen that

K (y) # K (u,z)
in general. From this point of view, it is concluded that
flatness = dynamic feedback linearisability

Corollary 3.2 Flatness is a special case of dynamic feedback linearisability. {

4. Output Choice in Control Design

In practical control problems, the choice of output largely depends on physical availability or
measurement of state variables. Theoretically, proper output choice may simplify controller
design by bringing a state space system (2.2) into a kind of canonical form [14]. In this sense,
output choice is in fact a choice of coordinate transformation. From the control design point
of view, to achieve (static or dynamic) state feedback, all observable outputs can be used in
principle. Based on this idea, [11] chooses proper outputs to render a non-minimum phase
nonlinear system to have acceptable zero dynamics. A system’s relative order is also an output
dependent concept. For the convenience of design, one wishes to choose outputs with as large
17




relative order as possible. If the relative order with respect to an output is n which is the
systems order, the system is exactly linearisable.

Another problem is that, for a given state space model, how many outputs are needed to
observe the system, and how to find such a set of outputs? For a given set of differential 1-O
systems (2.4), it is possible that p # m. Here arise naturally the following problems:

(p-1) Is it possible that m > p ?

(p-2) If p > m and the set of output is observable, does there exist another set of outputs
¥ = (Y1, ---, Um) such that it is a set of observable outputs.

It is noted that (p-2) is meaningful from the control design point of view. If such a set
of outputs exists, then the controller design will be for a square system. The corresponding
differential I-O systems, under some mild regularity condition, are called proper differential
I-O systems which are considered in Dynamic Sliding Mode Control [20, 21, 22, 28]. These
problems are now considered in a differential algebraic approach.

Suppose the system I' (2.4) is differentially prime. y = (y1,...,yp) is a set of observable
outputs which means that y is an differential algebraic transcendence basis of the differential
field K (I'") . Thus the differential transcendence degree of K (I') over K cannot be bigger than
p. This can be seen by eliminating ¥, ..., Y, from the system (2.4). It is then deduced that there
is a set of compatibility conditions among the controls (ui, ..., un,), or equivalently, there exists
a set of non-trivial differential polynomials in K {wy, ..., wn}, say ¥(.,...,.) such that

This answers (p-1).

Proposition 4.1 If controls form a set of (differentially) independent elements, then m < p.
Proposition 4.2 If the system (2.4) is differentially prime and y = (yi,...,yp) is a set of
observable outputs with p > m, then another set of observable outputs 7 = (%, ..., 7,,) always
exists. Besides, any two such two sets of observable outputs differ by a differential algebraic
transformation over K.

Proof. The proof amounts to finding a set of m-outputs which is observable. First, it is noted
that (Y1, o Yps D1, -ory Uy ooy 8, ., y"»= 1) is a set of algebraic transcendence basis over the
differential field K (u). Now consider the differential sub-field

K (u) (Y1, ¥m) C K (u) (y) = K (u,y) .

K (u) (y1, ..., ym) is a finite differential algebraic extension field over K (u) . If

ALTrd® (K (u, Y1, Ym) : K (u)) = ALTrd® (K (u,y) : K (u))
then ( Y1, ., Yy U1, ooy Ymy ooy Yo yln=1) is an algebraic transcendence base of K (u,y)
over K (u) for some Iy, ..., I,,. Thus (yi,...,ym) is a set of observable outputs.
Otherwise, suppose

ALTrd® (K (u,y1, -, Ym) : K (u)) < ALTrd’ (K (u,y) : K (u)).

In this case K (u,yi, ..., Yym-1) is a proper differential sub-field of K (u,y). The according to
[25], there exists a differential primitive element ¢ € K (u,y) such that

K <U,'y1, --'aym*1> (§> =K (’U.,y) .
18




This means that (y1, ..., Ym-1,&) is a set of m-outputs which is observable.
Remark 4.1 For a given observable state space system (2.2) with output y = (y1, -, Yp) Which
is not proper but p > m, to find a set of m observable outputs, one can make it so by finding

a sub-matrix of
9y
oz

such that the following two conditions are satisfied:
(i) there are exactly m outputs appearing in the sub-matrix. By renumbering the subscripts,
let them be (y1, Y2, ..-s Ym);

(i) Let ¥ = (y1,%1, ...,ygal_l); e Yy Yy oy @), @ > 1. Then
Y
k —_— =
ran [st}

where ay + ... + @ =11 + ... +Np =N
The corresponding set of outputs are just as required. ¢

5. Control Diagram

5.1. Control Diagram

[26]tries to describe some of the fundamental concepts of control theory with a single control
diagram:

N
_ 7N
L M
N
L K M
N TS
K

where K is the basic field of charactoristic zero, K is the differential algebraic closure field
of Kin N, L =K (u,y),M = K (u,z),L = (L K) is the composite field of L and K, M
is the composite field of M and K, and N = K (u,z,y). However, only few concepts such
as controllability and observability in nonlinear control theory may be described within this
figure. To embody most control concepts, we generalise it to the following control diagram.

19



N=K<u,x,y>

I=K(u,y> M=K<u,x>
au
L=K<u,y> M=K<u,x>
N et
1 K
\ /
K<y> K<w K<u> K<{x>
K

Control Diagram

5.2. Controllability

The proper definition of controllability is given in [25] which is equivalent to the strong acces-
sibility in [3, 13, 14, 23] if the system (2.2) is affine or (2.5) has an affine realisation [12].
Definition 5.1 Controllability: K = K . ie. K is differentially algebraically closed in N.
Thus L = L and M = M. In this case the control diagram collapsed as :

Interpretation: All element 9 € K (u,z) but not in K are affected by u because and element
9 in K (u,z) other than in K is differentially transcendental over K.

5.3. Observability

In the work of [6, 25] the following is proposed:
Definition 5.2 Observability: L is algebraically equivalent to M.
Interpretation: z and 7 can be represented in terms of each other as differential polynomial
functions, from which we can conclude that output feedback control and state feedback control
are essentially equivalent. This is true for both static feedback and dynamic feedback.

If adopting a realisation point of view and considering K (y,u) as a jet space on input u
and output y as in [18], the following definition is obtained:

Definition 5.3 Observability: = € K (y,u) and z is an algebraic transcendence basis over
K (u).
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Theorem 5.1 This definition is equivalent to the local observability in (13, 14, 23).

5.4. Elimination ( I-S-O — I-O )

Elimination is a projection: N — L.

A differential geometric elimination method is given by [30, 23]. This method is a local
result based on local observability and the Implicit Function Theorem.

There are two methods for differential algebraic elimination: one is due to the work of (5]
and the other is due to [10]. Both methods use some special ranking systems and have their
roots in [27]. The difference between these two methods is that [10] introduces the method of
characteristic set and works generically whilst [5] tries to work precisely giving rise to certain
inequalities at each step of the elimination procedure.

5.5. Invertibility

Left and right invertibility of nonlinear control systems, in the differential algebraic framework,
have been discussed in [9] and [1]. A proper statement of the result should be:
Theorem 5.2 System (2.5) (or (2.2) ) is left (right) invertible if and only if 1, ..., ym (respec-
tively, us, ..., Un, ) is a differential transcendence basis of L = K (u,y).

Note that this is equivalent to saying that the output (input) channels are differentially
independent.
Interpretation: (1) right invertibility: y; is differentially algebraic over K (u); i.e. there exist
relations ©;(y;,4) = 0,4 = 1, ..., p, over K, where ¢;(y;, @) is a differential polynomial of y; with
coefficients in K (u) .

(2) left invertibility: u; is differential algebraic over K (y) ; i.e. there exist relations v; (2, ) =
0,j = 1,...,m, over K, where 9;(u;,7) is a differential polynomial of u; with coefficients in
K (y) .

5.6. Realisation ( I-O—I-S-O )

Realisation of nonlinear systems in the differential algebraic framework was carried out in
(16, 17, 29, 4]. Differential algebraic realisation theory is developed in [18].

The realisation process is just a matter of proper choice of state variables z. A faithful
realisation is such that M = K (u,z) is algebraically equivalent to L = K (u,y). A minimal
realisation should simultaneously achieve both controllability and observability.

Definition 5.4 A realisation M = K (u,z) is minimal if there exists M such that

KcK{uyycMcCL

and that
(1) z = (21, ..., z,) is an algebraic transcendence basis of M over K (u) (observability);
(2) K is differentially algebraically closed in M (controllability); and
(3) F is a maximal differential sub-field of L satisfying (1) and (2).

Theorem 5.3 (Existence and Uniqueness of Minimal Differential Algebraic Realisation) For a
given prime differential I-O system (2.5) there exists a differential algebraic minimal realisation.
Any two minimal realisations of a given prime I-O system are algebraically equivalent (i.e. they
differ by an algebraic transformation over K (u)).
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5.7. Equivalence Problem

The equivalence problem of differential algebraic control systems is discussed in [19]. Now these
relations can be restated with the help of the control diagram.

Definition 5.5 Let L; = K (IL;), i = 1,2. Two prime differential I-O systems II; and II; are
said to be equivalent if L, is algbraically equivalent to Ls.

Definition 5.6 II; and II, are said to be minimal equivalent if there exists M such that

K c KluycMCL;
i = L4

and that

(1) £ = (21,...,,) is an algebraic transcendence basis of M over K {u);

(2) K is differentially algebraically closed in M ; and

(3) F is a maximal differential sub-field of both L; and L, satisfying (1) and (2).

Some necessary conditions for minimal equivalence of SISO systermns have been found in [19].
Sufficient conditions are not yet known. Minimal equivalence is useful in realisation, system
identification, and system design.

6. Flatness and Other Control Concepts

6.1. Flatness and Controllability and observability

Controllability: K is differential algebraically closed in K (z,u). However, for any artificial
output

y = (1, ...,yp)T = h(z,u) € K (u,z)

such that (y1,...,¥,) is an algebraic transcendence basis of K (u,z) over K (u) (observability),
L€,
K (u,5) = K (u.)

they are algebraicélly equivalent. It might happen that
K (y) C K (u,7)

i.e. K (u,y) and K (u,z) are not algebraically equivalent.

Flatness = Controllability.

Now the following concept of defects measures the difference between controllability and
dynamic feedback linearisability.

Definition 6.1 For a given output y = (%1, ..., ¥p) such that

(1) y is an algebraic transcendence basis of K (u, z) over K (u);

(2) y is a purely differential transcendental basis of K < z,u > over K.

The differential dimension of K (u,z) over K (y) is called the defects of the system with
respect to output y. The minimal defect of K (u, z) with respect to all possible artificial output
y € K (u,z) is called the defects of the system.

Clearly, a system is flat if and only if its defect is zero.
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Algebraic Interpretation: defect is the number of times in total needed to integrate y to
get u.
Example (Controllable but non-flat) The Kapitsa pendulum

; u
a = p-’r—l-sma

. g u? _ u

P = (f - ﬁcosa)sma— TPcosa
z2 = 1

Vertical speed is the control.

To prove that it is not dynamic feedback linearisable, it suffice to prove that it is not static
feedback linearisable. To achieve this, let 4= v as artificial control. Then an affine system is
obtained ;

z= f(z) + g(z)v

with £ = (z1,...,24) = (¢, p, z,u) " and let [ = 1 for convenience

ZTo + T4s8inT; 0
(g — 2 cosx;)sinT; — T4ToCOST 0
f(:l’:) = 4 5 i (m) — 0
4
0 1
Now calculate
1sinx;
T COS T + I48In 21
adsg = 1
0
—2coszi(Ty + T4sin T
3 e 2
adfrg _ | gsin2z; — z¥sinz; + 22974 cos 2z, — A2 4 325 S;"?’Il
0
0
0
sin 2z,
l9,adsgl = |
0

It is easy to check that
rank [g,adfg, adfeg, [g,adfg]] =17
Thus
span{g, ad;g, adig}
is not involutive. Thus the system is not static feedback linearisable and so not dynamic

feedback linearisable.
Suppose y is a flat output. Then

K{y) =2 K{u,z) = K (u,y) = K (u, z)
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It is clear that y is an observable output. Thus

Flatness = Observability.

However the reverse is not true as discussed above since observable output may have non-
zero defects.
Corollary 6.1 Flatness implies minimality in realisation.

6.2. Flatness and Invertibility

If y is a flat output. Then necessarily, y is a purely differential transcendental basis of K (u, )
over K. Thus y and u have the same number of elements which is the differential transcendental
dimension of K (u,z) over K. Thus the system is invertible [9]. Thus

Flatness = Invertibility.

7. Conclusion

In a differential algebra framework, static state and dynamic state feedback linearisation are
considered for affine systems and general nonlinear systems in an implicit form. Flatness defined
by Fliess is a special case of dynamic feedback linearisability. It can be seen that dynamic feed-
back linearisability requires very restrictive conditions. The existence of an equivalent proper
differential I-O system of a given differential I-O system is discussed, which is closely related
to he choice of proper outputs in control design. The concept flatness and its relation with
dynamic feedback linearisability, controllability, observability, invertibility, minimal realisation
are discussed. Finally, many fundamental control concepts and their relationships are shown
to fit in a control diagram.
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