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Abstract

The definition of weighted entropy allows for easy calculation of
the entropy of the mixture of measures. In this paper we investigate
the problem of equivalent definition of the general entropy function
in weighted form. We show that under reasonable condition, which
is satisfied by the well-known Shannon, Rényi and Tsallis entropies,
every entropy function can be defined equivalently in the weighted
way. As a corollary, we show how use the weighted form to compute
Tsallis entropy of the mixture of measures.
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1 Introduction

The entropy is an important tool used to examine and analyze the behavior
of statistical and physical systems. It is widely applied in information theory,
thermodynamics, quantum mechanics and many others fields of science (see
Ellis (1985), Gray (1990), Seibt (2006), Wu & Verdú (2010), Franchini, Its
& Korepin (2008) and Li & Zhang (2011)).

There are many kinds of the entropy functions. One of the most popular
is the Shannon entropy (Shannon 1948). Given a probability measure µ on
data space X a countable partition P, the Shannon entropy of P is defined
by:

hS(µ;P) = −
∑

P∈P

µ(P ) log2(µ(P )).

It determines the statistical amount of memory used in lossy coding elements
of X by the elements of partition P. In our consideration we use more
general notion of the Shannon entropy which is based on Rényi’s idea of
entropy dimension (Rényi 1959). Given a measurable cover Q of X , we
define HS(µ;Q) as an infimum of the entropies taken over all partitions finer
than Q (see the next section).

We have recently propose an equivalent weighted approach to the Shan-
non entropy which is based on measures instead of partitions (Śmieja &
Tabor 2012). It can be seen as a horizontal splitting of data space in con-
trast to a classical vertical one. Roughly speaking, given a division of measure
µ into “submeasures” (µi)i∈N (i.e. µ =

∑

i∈N

µi(X)), we rewritten the entropy

in terms of measures as:

hvS(µ; (µi)i∈N) = −
∑

i∈N

µi(X) log2(µi(X)).

This reformulation allows to replace the undefined operation on partitions
P1+P2 into well defined operation on functions µ1+µ2. It is extremely useful
when computing the entropy of the mixture of measures. From practical
point of view this approach describes the idea of random lossy coding.

Others popular entropy functions are the Rényi and Tsallis entropy of
order α (see Rényi (1961) and Tsallis, Mendes & Plastino (1998)). They were
created as the one parametric family of generalized entropy functions (precise
definitions are given in the next section). The dependence of parameter α,
allows to weaken or emphasize some probability events. If α > 1 then the
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entropy is more sensitive on events that occur often while for α ∈ (0, 1) the
entropy is more sensitive on the events that happen seldom (Maszczyk &
Duch 2008). These both entropies generalize the Shannon entropy.

In this paper, we apply the idea of weighted entropy for various kinds of
entropy functions. For this purpose we define a condition under which every
entropy function can be equivalently defined in the weighted way. More
precisely, let P be a partition and let f : R → R and g : [0, 1] → R be
continuous functions. We say that the function of the form:

h(µ;P) := f(
∑

P∈P

g(µ(P ))),

satisfies the condition of general entropy function if f is increasing, g is
subadditive and concave or f is decreasing, g is superadditive and convex.
It is easy to see that Shannon, Rényi and Tsallis entropies satisfy the above
condition. Hence the weighted approach is equivalently defined for these
kinds of entropies.

As it was mentioned, the weighted approach allows to rewritten the en-
tropy in the form of the function of measures instead of partition. It is useful
in calculation the entropy of the combination of measures. As an example of
the application of the weighted entropy, we show in this paper how use the
weighted form for obtaining the estimation of Tsallis entropy of the mixture
of measures (see Theorem 4.1). We prove that calculated bounds are sharp.

2 Weighted Approach to Entropy.

In this section we will show how apply the weighted approach to the general
entropy function. Before that, let us recall the definition of weighted Shannon
entropy (Śmieja & Tabor 2012) to get an idea of weighted entropy. From now
on, if not stated otherwise, we always assume that (X,Σ, µ) is a probability
space.

The entropy is defined on the partition of data space X . We say that a
family P ⊂ Σ is a partition of X if P is countable family of disjoint sets and

µ(X \
⋃

P∈P

P ) = 0.

The Shannon entropy is defined as follows:

3



Definition 2.1. Let P be a partition of X . The Shannon entropy of P is
given by:

hS(µ;P) := −
∑

P∈P

µ(P ) log2(µ(P )).

If we consider the problem of lossy data compression then the partition
is interpreted as a coding alphabet. We map every point x ∈ X to unique
P ∈ P such that x ∈ P . The entropy determines a statistical amount of
memory per one element used in the lossy coding generated by partition P.

Based on the Rényi idea of entropy dimension we generalize the Shannon
entropy on the case of any measurable cover of data space. We say that one
family P of subsets of X is finer that the second family Q iff for every P ∈ P
there exists Q ∈ Q such that P ⊂ Q.

Definition 2.2. Given a measurable cover Q of X the Shannon entropy of
Q is

HS(µ;Q) := inf{hS(µ;P) ∈ [0,∞] : P is a partition and P ≺ Q}.

Clearly, if there is no partition finer than Q, then H(µ;Q) = ∞, as
inf(∅) = ∞.

In the case of coding, cover Q defines the maximal error of the compres-
sion. We allow only codings with use of partitions which are finer than Q
(we say then that partition is Q-acceptable). The entropy describes the best
lossy coding determined by Q-acceptable alphabets.

One of the simplest error control family in metric space consists of all
balls with given radius or cubes with specific edge length. Such notions were
used by A. Rényi (Rényi 1959) or E. C. Posner (Posner & Rodemich 1971).
Our approach allows to differ the size of particular sets from the partition.
Intuitively, more probable events should be coded with smaller sets while less
probable with bigger.

The inspiration of weighted entropy, lies in the horizontal partitioning of
data space instead of classical vertical one. We substitute the division of
space X into partition by the division of measure µ into “submeasures”1.
Roughly speaking, this approach provides the computation and interpreta-
tion of the entropy with respect to “formal” convex combination a1P1+a2P2,
where P1,P2 are partitions.

1The idea of weighted entropy is indebted to the notion of weighted Hausdorff measures
considered by J. Howroyd (Howroyd 1995).
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We denote the division of measure µ with respect to Q ⊂ Σ by:

W (µ;Q) := {m : Q ∋ Q → mQ ∈ M(X,Σ) :

mQ(X \Q) = 0 for every Q ∈ Q and
∑

Q∈QmQ = µ},
(1)

where M(X,Σ) is the family of all measures on (X,Σ). Observe that every
function m ∈ W (µ;Q) is non-zero on at most countable number of sets of Q.
We define the weighted Shannon entropy:

Definition 2.3. The weighted Shannon entropy of a given m ∈ W (µ;Q) by:

hvS(µ;m) := −
∑

Q∈Q

mQ(X) log2(mQ(X)), (2)

while the weighted Shannon entropy of measurable cover Q of X is

HvS(µ;Q) := inf{hvS(µ;m) ∈ [0,∞] : m ∈ W (µ;Q)}.

The sum in the formula (2) is taken over Q ∈ Q such that mQ(X) > 0.

We show in (Śmieja & Tabor 2012, Theorem II.1) that the weighted µ-
entropy of Q is equal to the classical one which in consequence allows to
compute the entropy of the mixture of sources:

Shannon entropy of the mixture(Śmieja & Tabor 2012, Theorem
III.1): Let a1, a2 ∈ [0, 1] be such that a1 + a2 = 1. If µ1, µ2 are probability

measures and Q ⊂ Σ then:

HS(a1µ1 + a2µ2;Q) ≥ a1 H
S(µ1;Q) + a2H

S(µ2;Q)

and

HS(a1µ1+a2µ2;Q) ≤ a1H
S(µ1;Q)+a2 H

S(µ2;Q)−a1 log2(a1)−a2 log2(a2).

We distinguish other kinds of the entropy - Rényi and Tsallis entropies.
For the convenience of the reader, we give their definitions.
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Definition 2.4. Let α ∈ (0,∞) \ {1} and let P be a partition of X . The
Rényi entropy of P is

hR
α (µ;P) :=

1

1− α
log2[

∑

P∈P

µ(P )α]

and the Tsallis entropy of P is

hT
α(µ;P) :=

1

1− α
(
∑

P∈P

µ(P )α − 1).

These definitions are naturally generalized for any measurable cover Q ⊂ Σ
as in Definition 2.2. We denotes these quantities by HR

α (µ;Q) and HT
α (µ;Q),

respectively.

For review of other kinds of information measures see books by J. N.
Kapur (Kapur 1994) and C. Arndt (Arndt 2001).

We move to the definition of weighted entropy for general entropy func-
tion. Let us first define what we are mean by the general entropy function.

Definition 2.5. Let P be a partition of X and let f : R → R and g : [0, 1] →
R be continuous functions. We say that the function of the form:

h(µ;P) := f(
∑

P∈P

g(µ(P ))),

satisfies the condition of general entropy function (CGEF) if one of the fol-
lowing conditions is valid:

1. f is increasing, g is subadditive and concave,

2. f is decreasing, g is superadditive and convex.

The classical examples of the entropy function which satisfy the above
condition are Shannon, Rényi and Tsallis entropies:

Observation 2.1. Shannon, Rényi and Tsallis entropies satisfy the condi-

tion of general entropy function:

• For Shannon entropy, we have f(x) = −x and g(x) = x log2(x);

• For Rényi entropy, we have g(x) = 1
1−α

log2(x) and g(x) = xα where

α ∈ (0,∞) \ {1};
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• For Tsallis entropy, we have g(x) = 1
1−α

(x − 1) and g(x) = xα where

α ∈ (0,∞) \ {1}.

The CGEF will be crucial to define the form of weighted entropy equiva-
lent to the classical one. Let us assume that the entropy function h satisfies
the CGEF. Then given the error-control family Q, we can rewritten it as
follows:

hv(µ;m) = f(
∑

Q∈Q

g(m(Q))), for m ∈ W (µ;Q).

This is the weighted form of the entropy function h. The generalized version
of the weighted entropy H of Q is

Hv(µ;Q) = inf{hv(µ;m) ∈ [0,∞] : for m ∈ W (µ;Q)}.

The weighted entropy provides the form of the entropy as a function of mea-
sures instead of partition. It is useful when computing the entropy of the
combination of measures..

In the next section we show that weighted definition of the entropy is
equivalent to the classical one if the entropy function satisfies the CGEF. As
an example of the application of weighted entropy, in Section 4 we estimate
the Tsallis entropy of the combination of measure.

3 Equivalence between classical and weighted

entropy

We show the equivalence between classical and weighted form of the entropy
under the CGEF. The proofs are based on the idea introduced in (Śmieja &
Tabor 2012). To derive the equality we will show two inequalities.

Proposition 3.1. Let Q ⊂ Σ and let h be the entropy function that satisfies

the CGEF. Then

Hv(µ;Q) ≤ H(µ;Q).

Proof. Let us first observe that if there is no µ-partition finer than Q then

H(µ;Q) = ∞ and the inequality holds.
Thus, we assume that P is a µ-partition finer than Q. We construct a

function m ∈ W (µ;Q) with not grater entropy than P.
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Let us notice that, there exists a mapping π : P → Q such that P ⊂ π(P )
since P ≺ Q. Next, we put

PQ := {PQ}Q∈Q,

where PQ :=
⋃

P :π(P )=Q

P . Finally, we obtain a function m : Q ∋ Q → µ|PQ
∈

M(X,Σ).
Our aim is to verify that m ∈ W (µ;Q). It is easy to see that PQ is a

µ-partition and PQ ⊂ Q, for every Q ∈ Q. Thus, we have

∑

Q∈Q

mQ(X) =
∑

Q∈Q

µ|PQ
(Q) =

∑

Q∈Q

µ(PQ) = µ(X).

The above sums are taken only over Q ∈ Q such that mQ(X) > 0. Moreover,
we get

mQ(X \Q) = µ|PQ
(X \Q) ≤ µ|Q(X \Q) = 0,

for Q ∈ Q. We conclude that m ∈ W (µ;Q).
We would like to check that the entropy of m is not grater than the

entropy of P. For this purpose, we use the CGEF:

hv(µ;m) = f
(

∑

Q∈Q

g(mQ(X))
)

= f
(

∑

Q∈Q

g(µ|PQ
(X))

)

= f
(

∑

Q∈Q

g(µ(PQ))
)

= f
(

∑

Q∈Q

g(µ(
⋃

P :π(P )=Q

P ))
)

≤ f
(

∑

Q∈Q

∑

P :π(P )=Q

g(µ(P ))
)

= f
(

∑

P∈P

g(µ(P ))
)

= h(µ;P).

Hence, we get that Hv(µ;Q) ≤ H(µ;Q).

To derive the inequality Hv(µ;Q) ≥ H(µ;Q) we will apply Hardy Lit-
tlewood Polya Theorem. The version of Hardy Littlewood Polya Theorem
for finite sequences is given in (Niculescu & Persson 2006, Theorem 1.5.4)
while the case of infinite sequences is presented in (Śmieja & Tabor 2012,
Appendix A). Let us recall this theorem:
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Hardy Littlewood Polya Theorem. Let a > 0 and let ϕ : [0, a] → (0,∞),
ϕ(0) = 0 be a continuous function. Let (xi)i∈I , (yi)i∈I ⊂ [0, a] be given

sequences where either I = N or I = {1, . . . , N} for a certain N ∈ N. We

assume that (xi)i∈I is a nonincreasing sequence and

n
∑

i=1

xi ≤
n

∑

i=1

yi for n ∈ I,

∑

i∈I

xi =
∑

i∈I

yi.

Then

•
∑

i∈I ϕ(xi) ≥
∑

i∈I ϕ(yj) if ϕ is concave,

•
∑

i∈I ϕ(xi) ≤
∑

i∈I ϕ(yj) if ϕ is convex.

Then the following proposition holds:

Proposition 3.2. Let Q = {Qi}i∈I ⊂ Σ, where either I = N or I =
{1, . . . , N} for a certain N ∈ N. Let m ∈ W (µ;Q) and let h be the en-

tropy function which satisfies the CGEF. We assume that

• µ(X \
⋃

i∈I

Qi) = 0,

• the sequence I ∋ i → mQi
(X) is nonincreasing.

We define the family P = {Pi}i∈I ⊂ Σ by the formula

P1 := Q1, Pi := Qi \
i−1
⋃

k=1

Qk for i ∈ I, i ≥ 2.

Then P is a µ-partition, P ≺ Q and

hv(µ;m) ≥ h(µ;P). (3)

Proof. Directly from the definition of family P and Q, we get that P is
Q-acceptable partition.
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We prove the inequality (3). To do this we will use Hardy Littlewood
Polya Theorem. We define the sequences (xi)i∈I ⊂ [0, 1] and (yi)i∈I ⊂ [0, 1]
by the formulas

xi := mQi
(X) = mQi

(Qi), yi := µ(Pi)

for i ∈ I.
Clearly, (xi)i∈I is nonincreasing and

∑

i∈I

xi = µ(X) =
∑

i∈I

yi.

Moreover, for every n ∈ I:

n
∑

i=1

xi =

n
∑

i=1

mQi
(Qi) = (

n
∑

i=1

mQi
)(Q1 ∪ . . . ∪Qn)

≤ µ(Q1 ∪ . . . ∪Qn) =
n

∑

i=1

µ(Pi) =
n

∑

i=1

yi.

Thus these sequences satisfy the assumptions of Hardy Littlewood Polya
Theorem. Making use of CGEF, we conclude that

hv(µ;m) = f
(

∑

i∈I

g(mQi
(X))

)

= f(
∑

i∈I

g(xi))

≥ f(
∑

i∈I

g(yi)) = f
(

∑

i∈I

g(µ(Pi))
)

= h(µ;P),

which completes the proof.

We are going to present the main result of this paper – the equivalence
between classical and weighted entropy under the CGEF.

Theorem 3.1. Let Q be an error-control family and let h be the entropy

function which satisfies the CGEF. The weighted form of the entropy function

H equals the classical one, i.e.

Hv(µ;Q) = H(µ;Q).
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Proof. We will show that Hv(µ;Q) ≥ H(µ;Q). The opposite inequality
follows directly from Proposition 3.1.

Let us first observe that if W (µ;Q) = ∅ then Hv(µ;Q) = ∞ and conse-
quently the proof is completed since Hv(µ;Q) ≥ H(µ;Q).

Thus let us assume that m ∈ W (µ;Q). We construct the subset of family
Q by:

Q̃ := {Q ∈ Q : mQ(X) > 0}.

Clearly, Q̃ is a countable family since
∑

Q∈Q̃

mQ(X) = 1 and m̃ := m|Q̃ ∈

W (µ; Q̃). Moreover, Q̃ ≺ Q and hv(µ; m̃) = hv(µ;m).
As Q̃ is countable, we may find a set of indices I ⊂ N such that Q̃ =

{Qi}i∈I and the sequence I ∋ i → mQi
(X) is nonincreasing. Making use of

Proposition 3.2 we construct a µ-partition P ≺ Q̃, which satisfies

hv(µ; m̃) ≥ h(µ;P).

This completes the proof since P ≺ Q̃ ≺ Q and hv(µ;m) = hv(µ; m̃) ≥

h(µ;P).

4 Application of weighted form of the en-

tropy

In this section we present how use the weighted form of the entropy in the
calculation of the entropy of the mixture of measures. The reader interested
in the topic of the mixture of measures is referred to (Śmieja & Tabor 2012)
where this problem is explain in details.

Our aim is to show how estimate the Tsallis entropy HT
α of the mixture

of measures in terms of the entropies of the individual measures. Let us start
with the proposition:

Proposition 4.1. We assume that α ∈ (0,∞) \ {1} and n ∈ N. Let ak ∈

(0, 1) for k ∈ {1, . . . , n} be such that
n
∑

k=1

ak = 1 and let {µk}
n
k=1 be a family

of probability measures. We define µ :=
n
∑

k=1

akµk.

11



• If P is a µ-partition of X then P is a µk-partition of X for k ∈
{1, . . . , n} and

hT
α(µ;P) ≥

n
∑

i=1

ai h
T
α(µi;P). (4)

• If Q ⊂ Σ and m
k ∈ W (µk;Q) for k ∈ {1, . . . , n} then m :=

n
∑

k=1

akm
k ∈

W (µ;Q) and

hvTα (µ;m) ≤
n

∑

i=1

aαi hv
T
α (µi;m) +

∑n

k=1 a
α
k − 1

1− α
. (5)

Proof. Let us first observe that P is a µk-partition of X , for every k ∈
{1, . . . , n}.

Then, making use of CGEF, we have

hT
α(µ;P) =

1

1− α

[

∑

P∈P

(

n
∑

k=1

akµk(P )
)α

− 1
]

≥
1

1− α

[

n
∑

k=1

(

ak
∑

P∈P

µk(P )α
)

− 1
]

=
1

1− α

[

n
∑

k=1

ak
(

∑

P∈P

µk(P )α − 1
)]

=
n

∑

k=1

ak h
T
α(µk;P).

It completes (4).
We derive the second part of the proposition. Clearly, m ∈ W (µ;Q). To

see that (5) holds, we again use the CGEF:

hvTα (µ;m) =
1

1− α

[

∑

Q∈Q

(

n
∑

k=1

akmk(Q)
)α

− 1
]

≤
1

1− α

[

n
∑

k=1

(

aαk

∑

Q∈Q

mk(Q)α
)

− 1
]
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=
1

1− α

[

n
∑

k=1

aαk
(

∑

Q∈Q

mk(Q)α − 1
)]

+

∑n

k=1 a
α
k − 1

1− α

=

n
∑

k=1

aαk hv
T
α (µk;m) +

∑n

k=1 a
α
k − 1

1− α
.

This result allows us to estimate the Tsallis entropy HT
α of the mixture

of measures.

Theorem 4.1. Let α ∈ (0,∞) \ {1} and n ∈ N. We assume that ak ∈ [0, 1]

for k ∈ {1, . . . , n} be such that
n
∑

k=1

ak = 1. Let {µk}
n
k=1 be a family of

probability measures and µ :=
n
∑

k=1

akµk. If Q ⊂ Σ then

HT
α (µ;Q) ≥

n
∑

i=1

ai H
T
α (µi;P). (6)

and

HT
α (µ;Q) ≤

n
∑

i=1

aαi H
T
α (µi;P) +

∑n

k=1 a
α
k − 1

1− α
. (7)

Proof. Let us first consider the case when HT
α (µk;Q) = ∞ for a certain

k ∈ {1, . . . , n}. Then also HT
α (µ;Q) = ∞ and the inequalities hold trivially.

Thus let us assume that for every k ∈ {1, . . . , n}, HT
α (µk;Q) < ∞.

Without loss of generality, we may assume also that ak 6= 0 for every
k ∈ {1, . . . , n}. Let ε > 0 be arbitrary.

To prove the first inequality, we find a µ-partition P finer than Q such
that

HT
α (µ;Q) ≥ hT

α(µ;P)− ε. (8)

Consequently, by Proposition 4.1 and the definition of Tsallis entropy, we
have

hT
α(µ;P) = hT

α(
n

∑

k=1

akµk;P) (9)

≥
n

∑

i=1

ai h
T
α(µi;P) ≥

n
∑

i=1

ai H
T
α (µi;Q). (10)
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Finally by (8), we obtain

HT
α (µ;Q) ≥ hT

α(µ;P)− ε ≥
n

∑

i=1

ai H
T
α (µi;Q)− ε, (11)

which proves (6).
We prove the inequality (7). For each k ∈ {1, . . . n} we find m

k ∈
W (µk;Q) satisfying

hvTα (µk;m
k) ≤ HT

α (µk;Q) +
ε

n
. (12)

Making use of Proposition 4.1 and (12), we have

HT
α (µ;Q) ≤

n
∑

i=1

aαi hv
T
α (µi;m) +

∑n

k=1 a
α
k − 1

1− α
(13)

≤
n

∑

i=1

aαi H
T
α (µi;Q) +

∑n

k=1 a
α
k − 1

1− α
+ ε. (14)

This completes the proof as ε > 0 was an arbitrary number.

Let us observe that the estimation (6) and (7) cannot be improved.

Example 4.1. We assume that α ∈ (0,∞) \ {1}, X = {0, 1} and µ1, µ2

denote discrete measures such that:

µ1({0}) = 1 and µ2({1}) = 1. (15)

Then, we have

HT
α (a1µ1 + a2µ2) =

aα1 + aα2 − 1

1− α
. (16)

It is exactly the right side of the inequality (7).
On the other hand, let µ1, µ2 be two measures which satisfy µ1 = µ2.

Then
HT

α (a1µ1 + a2µ2) = HT
α (µ1) = HT

α (µ2). (17)

It equals the right side of (6).
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It is well-known that hT
α(µ;P) → hS(µ;P), when α → 1. Let us observe

a similar relation between bounds obtained for Shannon entropy (Śmieja &
Tabor 2012, Theorem III.1) and Tsallis entropy from Theorem 4.1. Let us
consider the functions:

lα(x, y) = a1x+ a2y, (18)

uα(x, y) = aα1x+ aα2y +
aα1 + aα1 − 1

1− α
, (19)

which describe the lower and upper bound for the Tsallis entropy of order
α. If x, y are non negative real numbers then these functions converge to the
corresponding bounds calculated for Shannon entropy as α → 1, i.e.:

{

lα(x, y) → a1x+ a2y

uα(x, y) → a1x+ a2y − a1 log2(a1)− a2 log2(a2),
(20)

when α → 1.

5 Conclusion

The weighted form of the entropy is very useful to derive properties of the
entropy of the mixture of measures. We presented the condition under which
every entropy function can be defined in the weighted way. The well-known
Shannon, Rényi and Tsallis entropies satisfy this natural condition. We gave
an example how use the weighted entropy to estimate the Tsallis entropy
of order α of the mixture of measures. Obtained bounds are sharp and
as a function of parameter α, they converge to the corresponding bounds
calculated for Shannon entropy. In similar manner, we can apply the tool of
weighted entropy to compute for instance Rényi entropy of the mixture.
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