
ar
X

iv
:1

40
7.

29
52

v2
 [

m
at

h.
D

S]
 1

4
N

ov
 2

01
4

Linear Relaxations of Polynomial Positivity for Polynomial Lyapunov

Function Synthesis.

Mohamed Amin Ben Sassi†, Sriram Sankaranarayanan†, Xin Chen∗ and Erika Ábrahám∗.
† Department of Computer Science, University of Colorado, Boulder, CO, USA.
∗ Department of Computer Science, RWTH Aachen University, Aachen, Germany.

June 10, 2018

Abstract

We examine linear programming (LP) based relaxations for synthesizing polynomial Lyapunov functions
to prove the stability of polynomial ODEs. Our approach starts from a desired parametric polynomial form
of the polynomial Lyapunov function. Subsequently, we encode the positive-definiteness of the function, and
the negation of its derivative, over the domain of interest. We first compare two classes of relaxations for
encoding polynomial positivity: relaxations by sum-of-squares (SOS) programs, against relaxations based
on Handelman representations and Bernstein polynomials, that produce linear programs. Next, we present
a series of increasingly powerful LP relaxations based on expressing the given polynomial in its Bernstein
form, as a linear combination of Bernstein polynomials. Subsequently, we show how these LP relaxations can
be used to search for Lyapunov functions for polynomial ODEs by formulating LP instances. We compare
our techniques with approaches based on SOS on a suite of automatically synthesized benchmarks. Posi-
tive Polynomials, Sum-Of-Squares, Bernstein Polynomials, Interval Arithmetic, Handelman Representations,
Stability, Lyapunov Functions

1 Introduction

The problem of discovering stability proofs for closed loop systems in the form of Lyapunov functions, is
an important step in the formal verification of closed loop control systems [59]. Furthermore, extensions of
Lyapunov functions such as control Lyapunov functions can be used to design controllers, and input-to-state
stability (ISS) Lyapunov functions are used to verify the stability of inter-connected systems in a component-
wise fashion.

In this paper, we focus on the synthesis of polynomial Lyapunov functions for proving the stability of
autonomous systems with polynomial dynamics using linear programming (LP) relaxations. At its core, this
requires us to find a positive definite polynomial whose Lie derivatives are negative definite. Therefore, the
problem of finding a Lyapunov function depends intimately on techniques for finding positive-definite polyno-
mials over the domain K of interest. By finding a Lyapunov function over K we ensure the existence of a
region (neighborhood of the equilibrium) contained in K such that the system is stable. But proving that a
multivariate polynomial is positive definite over an interval is co-NP hard, and therefore considered to a be a
hard problem [18]. Many relaxations to this problem have been studied, wherein a relaxed procedure can either
conclude that the polynomial is positive definite with certainty, or fail with no conclusions. We examine two
main flavors of relaxation:

1. The first class of linear representations involve the expression of the target polynomial to be proven
non-negative over the set K of interest as a linear combination of polynomials that are known to be non-
negative over the set K. This approaches reduces the polynomial positivity problem to a linear program
(LP).

2. Alternatively, a different class of approaches uses “Sum Of Squares representations” [14]. This approach
yields relaxations based on semi-definite programming (SDP) [34, 44, 58].

1

http://arxiv.org/abs/1407.2952v2

1 INTRODUCTION 2

As a first contribution of this paper, we extend the so-called Handelman representations, considered in our
previous work [50], using the idea of Bernstein polynomials from approximation theory [6, 16, 40]. Bernstein
polynomials are a special basis of polynomials that have many rich properties, especially over the unit interval
[0, 1]. For instance, tight bounds on the values of these polynomials over the unit interval are known. We show
three LP relaxations, each more precise than the previous, that exploit these bounds in the framework of a
reformulation linearization approach [56, 57]. Next, we compare Bernstein relaxations against SOS relaxations,
demonstrating polynomials that can be shown to be positive using one, but not the other.

Finally, the main contribution of the paper consists of adapting Bernstein relaxations for finding Lyapunov
functions over rectangular domain K. The key difference is that, to find a Lyapunov function, we search for
a parametric polynomial V (x, c) for unknown coefficients c, which is positive definite, and whose derivative is
negative definite over the region of interest. A straightforward approach leads to a bilinear program, that can
be dualized as a multi-parametric program. We apply the basic requirements for a Lyapunov function, to cast
the multi-parametric program back into a LP, without any loss in precision.

We have implemented the approach and describe our results on a suite of examples. We also compare
our work with a SOS programming relaxation using the SOSTOOLS package [41]. On one hand, we find
that LP-based relaxations presented in this paper can find Lyapunov functions for more benchmark instances
while suffering from fewer numerical issues when compared to a SOS programming approach. Overall, the LP
relaxations are shown to present a promising approach for synthesizing Lyapunov functions over a bounded
rectangle K.

1.0.1 Organization

Section 2 presents some preliminary notions of Lyapunov functions, representations of positive polynomials
including Handelman, Schmüdgen and Putinar representations. We then present the basic framework for
synthesizing Lyapunov functions by formulating a parametric polynomial that represents the desired function.
Section 3 presents the basic properties of Bernstein polynomials and three LP relaxations for proving polynomial
positivity. In Section 4, we compare first Linear and SOS relaxations then we compare the proposed Bernstein
relaxations with existing Linear ones. Next, we describe the synthesis of Lyapunov functions using Bernstein
relaxations in Section 5. Section 6 presents the numerical results.

An extended version of this paper including the benchmark examples used in our evaluation along with
the Lyapunov functions found for each is available through arXiv [52].

1.1 Related Work

In this section, we restrict our discussion to those works that are closely related to the overall problem of finding
Lyapunov functions for polynomial systems.

Much research has focused on the topic of stability analysis for polynomial systems, which continues to be
a challenging problem. The sum-of-squares (SOS) relaxation approach is quite popular, and has been explored
by many authors [28, 42, 60, 63]. Papachristadoulou and Prajna were among the first to use SOS relaxations
for finding polynomial Lyapunov functions [42]. The core idea is to express the polynomial and its negative Lie
derivative as sum-of-square polynomials for global stability analysis, or use a suitable representation such as
Putinar representation for finding Lyapunov functions over a bounded region. Their approach is implemented
in the SOSTOOLS package [41]. Extensions have addressed the problem of controller synthesis [28], finding
region of stability [60]; and using a combination of numerical simulations with SOS programming to estimate
the region of stability [63]. A related set of approaches directly relax the positivity of the Lyapunov form
and the negativity of its derivative using Linear Matrix Inequalities (LMIs) [7–9, 27, 62]. Algebraic methods
based, for example, on Gröbner basis [17], or on constructive semi-algebraic systems techniques have been
explored [54, 55].

While the approach in this paper focuses on polynomial system stability using polynomial Lyapunov func-
tions, the general problem of analyzing nonlinear systems with rational, trigonometric and other nonlinear

1 INTRODUCTION 3

terms has received lesser attention. Significantly, Papachristadoulou et al. present SOS relaxations for the
stability of non-polynomial systems through a process of algebraization that augments the original ODE with
more state variables to create an equivalent system involving rational functions [43]. Work by Chesi addresses
the use of LMI relaxations for the stability analysis of a class of genetic regulatory networks involving ODEs
with rational functions on the right-hand sides [8].

Conversely, polynomial systems often require non-polynomial Lyapunov functions. Ahmadi et al. present
an example of a polynomial system that is globally stable but does not admit a polynomial Lyapunov func-
tion [2]. Some previous research, including Papachristadoulou et al. ibid. [43], has focused on the generation of
non-polynomial Lyapunov functions. Recent work by Goubault et al. presents techniques for finding rational,
trigonometric and exponential Lyapunov functions for polynomial systems through ideas from formal integra-
tion [20]. Their approach also reduces to polynomial optimization problems, providing a future avenue for the
application of the linear relaxations developed here.

Recently, Ahmadi et al. have proposed different set of linear relaxations for polynomial optimization prob-
lems called the DSOS approach. This approach further relaxes the positive-semidefiniteness conditions in the
SDP formulation using the condition of diagonal dominance, that yields linear programming relaxations [1].
This idea has been also been extended to synthesize polynomial Lyapunov functions [36]. A detailed comparison
of Ahmadi et al.’s ideas with those in this paper will be carried out as part of our future work.

However, the use of LP relaxation has not received as much attention. Johansen presented an approach
based on linear and quadratic programming [29]. This approach needs a so called linear parametrization form to
reduce the stability conditions to an infinite number of linear inequalities, which are reduced to a finite number
by discretizing the state space. As a consequence, the number of linear inequalities characterizing the Lyapunov
functions grows exponentially with both the dimension of the state space and the required accuracy. Another
approach using linear programming was presented by Hafstein [21, 22]. This approach searches for a piecewise
affine Lyapunov function, and requires a triangulation of the state space. Our approach derives polynomial
(as opposed to affine) Lyapunov function but also benefits from a sub-division of the state-space to increase
accuracy. The use of Bernstein polynomial properties to formulate relaxations is a distinguishing feature of our
approach. The recent work of Kamyar and Peet, which remains under submission at the time of writing, also
examines linear relaxations for polynomial optimization problems using Handelman representations, Bernstein
polynomial representations (which are closely related), and a linear relaxation based on the well-known Polya’s
theorem for characterizing positive polynomials on a simplex [31]. As in this paper, they have used their
approach to search for Lyapunov functions by decomposing the state space. A key difference between the
two papers lies in our use of reformulation linearization that considers nontrivial linear relationships between
Bernstein polynomials. As shown through examples in this paper, these relationships strictly increase the set
of polynomials that can be proven non-negative through our linear relaxations. It must be mentioned that
Kamyar et al. consider more applications including searching for piecewise polynomial Lyapunov functions
and the robust H∞ control of systems. Our future work will consider the application of the LP relaxations
to those considered in Kamyar et al, facilitating an experimental comparison. Ratschan and She use interval
arithmetic relaxations with branch-and-bound to discover Lyapunov like functions to prove a notion of region
stability of polynomial systems [49]. This is extended in our previous work to find LP relaxations using the
notion of Handelman representations [50]. In practice, the interval arithmetic approach is known to be quite
coarse for proving polynomial positivity, especially for intervals that contain 0. Therefore, Ratschan and She
restrict themselves to region stability by excluding a small interval containing the equilibrium from their region
of interest. Furthermore, the coarseness of interval relaxation is remedied by resorting to branch-and-bound
over the domain. A detailed comparison between interval and Handelman approach is provided in our previous
work [50], wherein we conclude that both approaches have complementary strengths. A combined approach is
thus formulated.

In this paper, we start from such a combined approach and generalize it further through Bernstein polyno-
mials. We use non-trivial properties of Bernstein polynomials that cannot be proven through interval analysis
or Handelman representations, to further improve the quality of these relaxations. Section 4 provides detailed
comparisons between the various approaches presented in this paper with the approaches based on interval
arithmetic, Handelman representations and SOS programming relaxations.

2 PRELIMINARIES 4

2 Preliminaries

In this section, we recall the definition of Lyapunov functions and discuss procedures for synthesizing them.
Subsequently, we examine two techniques for proving the positivity of polynomials: so-called Handelman repre-
sentation technique that produces linear programming (LP) relaxations and a Putinar representation technique
that produces semi-definite programming (SDP) relaxations. We extend these to recall algorithmic schemes
for synthesizing Lyapunov functions, wherein we treat constraints that arise from the positivity of polynomials
parameterized by unknown coefficients.

Definition 2.1 (Positive Semi-Definite Functions) A function f : Rn → R is positive semi-definite over a
domain U ⊆ R

n iff
(∀ x ∈ U) f(x) ≥ 0 .

Furthermore, f is positive definite iff f is positive semi-definite, and additionally, (a) f(x) > 0 for all x ∈ U \{0},
and (b) f(0) = 0.

2.1 Lyapunov Functions

We now recall the key concepts of stability and Lyapunov functions. Let S be a continuous system over a
state-space X ⊆ R

n specified by a system of ODEs

dx

dt
= f(x), x ∈ X .

We assume that the right-hand side function f(x) is Lipschitz continuous over x. An equilibrium of the
system x∗ ∈ X satisfies f(x∗) = 0.

Definition 2.2 (Lyapunov and Asymptotic Stability) A system is Lyapunov stable over an open region U

around the equilibrium x∗, if for every neighborhood N ⊆ U of x∗ there is a neighborhood M ⊂ N such that
(∀ x(0) ∈M) (∀ t ≥ 0) x(t) ∈ N . A system is asymptotically stable if it is Lyapunov stable and all trajectories
starting from U approach x∗ as t→∞.

Lyapunov functions are useful in proving that a system is stable in a region around the equilibrium. Without
loss of generality, we assume that x∗ = 0. The definitions below are based on the terminology used by Meiss
([37]).

Definition 2.3 A continuous and differentiable function V (x) is a weak Lyapunov function over a region
U ⊆ X iff the following conditions hold:

1. V (x) is positive definite over U , i.e, V (x) > 0 for all x ∈ U \ {0} and V (0) = 0.

2. dV
dt

= (∇V · f) ≤ 0 for all x ∈ U .

Additionally, V is a strong Lyapunov function if
(
−dV

dt

)
is positive definite.

Weak Lyapunov functions are used to prove that a system is Lyapunov stable over a subset of region U ,
whereas a strong Lyapunov function proves asymptotic stability. The approaches presented in this paper can
be used to search for weak as well as strong Lyapunov functions.

Stability is an important property of control systems. Techniques for discovering Lyapunov functions to
certify the stability of a closed loop model are quite useful in control systems design.

2.2 Proving Polynomial Positivity

At the heart of Lyapunov function synthesis, we face the challenge of establishing that a given function V (x)
is positive (negative) definite over U . The problem of deciding whether a given polynomial V (x) is positive
definite is NP-hard [18]. A precise solution requires a decision procedure over the theory of reals. [10, 61]. To
wit, we check the validity of the formula: (∀ x ∈ U) V (x) ≥ 0 using tools such as QEPCAD [11] and REDLOG
[15]. This process is exact, but intractable for all but the smallest of systems and low degree polynomials

2 PRELIMINARIES 5

for V . Therefore, we seek stricter versions of positive semi-definiteness that yield a more tractable system of
constraints.

We examine relaxations to the problem of establishing that a given polynomial is positive semi-definite over
a region K ⊆ R

n. In the literature, we can distinguish two kind of techniques for establishing that a given
polynomial is positive semi-definite [47]. Here, we call them linear representations and sum of square (SOS)
representations.

2.2.1 Linear Representations

The first approach writes the given polynomial p as a conic combination of products of the constraints defining
K. This idea was first examined by Bernstein for proving the positivity of univariate polynomials over the unit
interval [0, 1] [6]. Furthermore, Hausdorff [26] extended it to the interval [−1, 1].

Theorem 2.1 (Bernstein and Hausdorff). A polynomial p(x) is strictly positive over [−1, 1] iff there exists a
degree d > 0 and exists non-negative constants λ0, . . . , λd ≥ 0, such that

p(x) ≡

d∑

i=0

λi(1− x)
i(1 + x)d−i, (2.1)

This approach is generalized to multivariate polynomials over x : (x1, . . . , xn) and general semi-algebraic
sets K ⊆ R

n rather than the unit interval. Let K be defined as a semi-algebraic set:

K : (p1(x) ≥ 0 ∧ · · · ∧ pm(x) ≥ 0)

for multivariate polynomials p1, . . . , pm. A power-product over the set of polynomials P : {p1, . . . , pm} is a
polynomial of the form f : pn1

1 p
n2

2 · · · p
nm
m . The degree of the power-product is given by (n1, . . . , nm). We say

that (n1, . . . , nm) ≤ D iff nj ≤ D for each j ∈ [1,m]. Let pp(P,D) represent all power products from the set
P bounded by degree D.

Theorem 2.2 (Conic Combination of Power Products) If a polynomial p can be written as a conic combination
of power-products of P : {p1, . . . , pm}, i.e,

p(x) ≡
∑

f∈pp(P,D)

λff, s.t. (∀ f ∈ pp(P,D)) λf ≥ 0 , (2.2)

then the polynomial p is non-negative over K:

(∀ x ∈ R
n) x ∈ K ⇒ p(x) ≥ 0 .

The proof is quite simple. The conic combination of power-products in pp(P,D) as shown in Eq. (2.2), is
said to be a Handelman representation for a polynomial p [14]. However, the converse of Theorem 2.2 does
not hold, in general. Therefore, polynomials that are positive semi-definite over K need not necessarily have a
Handelman representation.

Example 2.3 Consider the first orthant in R
2 given by K1 : (x1 ≥ 0 ∧ x2 ≥ 0) and the polynomial

p : x21 − 2x1x2 + x22. It is easily seen that p cannot be written as a conic combination of power products over
x1, x2, no matter what the degree limit D is chosen to be.

An important question is when the converse of Theorem 2.2 holds. One important case for a compact,

polyhedron K defined as K :

m∧

j=1

(ajx− bj)
︸ ︷︷ ︸

fj

≥ 0 is given by Handelman [23]. Let P denote the set {f1, . . . , fm},

and pp(P,D) denote the power products of degree up to D, as before.

Theorem 2.4 (Handelman) If p is strictly positive over a compact polyhedron K then there exists a degree
bound D > 0 such that

p ≡
∑

f∈pp(P,D)

λff, for λf ≥ 0 . (2.3)

2 PRELIMINARIES 6

Example 2.5 Consider a polynomial p(x1, x2) = −2x
3
1 + 6x21x2 + 7x21 − 6x1x

2
2 − 14x1x2 + 2x32 + 7x22 − 9 over

the set K : (x1 − x2 − 3
︸ ︷︷ ︸

f1

≥ 0 ∧ x2 − x1 − 1
︸ ︷︷ ︸

f2

≥ 0). We can establish the positivity of p over K through its

Handelman representation:
p ≡ 2f21 f2 + 3f1f2

The problem of checking if a polynomial p is positive semi-definite over a set K :
m∧

j=1
pj(x) ≥ 0 is therefore

tacked as follows:

1. Choose a degree limit D and construct all terms in pp(P,D), where P = {p1, . . . , pm} are the polynomials
defining K.

2. Express p ≡
∑

f∈pp(P,D)

λff for unknown multipliers λf ≥ 0.

3. Equate coefficients on both sides (the given polynomial and the Handelman representation) to obtain a
set of linear inequality constraints involving λf .

4. Use a Linear Programming (LP) solver to solve these constraints. If feasible, the result yields a proof
that p is positive semi-definite over K.

We note that the procedure fails if p is not positive-definite over K, or p does not have a Handelman
representation over K. Nevertheless, it provides an useful LP relaxation for polynomial positivity.

2.2.2 Sum-Of-Squares representations

Another important approach to proving positivity is through the well-known sum-of-squares (SOS) decompo-
sition.

Definition 2.4 A polynomial p(x) is a sum-of-squares (SOS) iff there exists polynomials p1, . . . , pk over x
such that p can be written as

p ≡ p21 + . . .+ p2k

It is easy to show that any SOS polynomial is positive semi-definite over Rn. On the other hand, not every
positive semi-definite polynomial is SOS (the so-called Motzkin polynomial provides a counter-example) [39].

Schmüdgen Representation: Whereas SOS polynomials are positive semidefinite over R
n, we often seek

if p is positive semi-definite over a semi-algebraic set K : (p1 ≥ 0 ∧ · · · ∧ pm ≥ 0).
We define the pre-order generated by a set P = {p1, . . . , pm} of polynomials as the set

R(P) = {pe11 p
e2
2 · · · p

em
m | (e1, . . . , em) ∈ {0, 1}m} .

It is easy to see that if for some given x, pi(x) ≥ 0 for all i ∈ [1,m], then for each r ∈ R(P), we have r(x) ≥ 0.
In fact, the following result follows easily:

Theorem 2.6 If a polynomial p can be expressed as SOS polynomial combination of elements in R(P),

p ≡
∑

r∈R(P)

qrr for SOS polynomials qr , (2.4)

then p is positive semi-definite over K.

Decomposing a polynomial p according to eq. (2.4) will be called the Schmüdgen representation of p. The
terminology is inspired by the following result due to Schmüdgen [53]:

Theorem 2.7 (Schmüdgen Positivstellensatz) If K is compact then every polynomial p(x) that is strictly
positive over K has a Schmüdgen representation of the form given in eq. (2.4).

2 PRELIMINARIES 7

While Schmüdgen representations are powerful, and in fact, subsume the Handelman representation ap-
proach, or even the Bernstein polynomial relaxations to be presented in Section 3, the computational cost of
using them is prohibitive. Using the form eq. (2.4) requires finding 2m SOS polynomials. In our applications, K
typically represents the unit rectangle [−1, 1]n, which makes the size of a Schmüdgen representation exponential
in the size of the variables. As a result, we will not consider this representation any further in this paper.

Putinar Representation: The Putinar representation approach provides a less expensive alternative. Once
again, let K : (p1 ≥ 0 ∧ · · · ∧ pm ≥ 0) be a set of interest.

Theorem 2.8 If a polynomial p can be expressed as

p ≡ q0 + q1p1 + · · ·+ qmpm (2.5)

for SOS polynomials q0, . . . , qm, then p is positive semi-definite over K.

Decomposing a polynomial p according to Equation 2.5 is said to provide a Putinar representation for p.
The converse of Theorem 2.8 was proved by Putinar [48].

Theorem 2.9 (Putinar) Let K : (p1 ≥ 0 ∧ · · · ∧ pm ≥ 0) be a compact set, and suppose there exists a
polynomial p0 of the form p0 = r0 +

∑m
j=1 ripi where r0, . . . , rm are all SOS, and the set K̂ : {x | p0(x) ≥ 0}

is also compact.
It follows that every polynomial p(x) that is strictly positive on K has a Putinar representation: p ≡

q0 +
m∑

j=1

qjpj for SOS polynomials q0, . . . , qm.

A Putinar representation of p for a set P = {p1, . . . , pm} involves expressing p ≡ q0 +
∑m

j=1 qjpj for a
SOS polynomial qj . Searching whether a polynomial p is positive semi-definite over K :

∧

pj∈P

pj ≥ 0 involves

searching for a Putinar representation.

find q0, . . . , qm s.t. p ≡ q0 +

m∑

j=1

qjpj , q0, . . . , qm are SOS .

The key steps involve parameterizing q0, . . . , qm in terms of polynomials of bounded degree D over a set of un-
known coefficients c, and then solving the resulting problem through a relaxation to semi-definite programming,
originally proposed by Shor and further developed by Parillo [44, 58]. The resulting optimization problem is
called a Sum-of-Squares programming problem (SOS).

2.3 Synthesis of Lyapunov Functions

We now summarize the standard approach to synthesizing Lyapunov functions using Handelman or Putinar
representations. The Handelman approach reduces the synthesis to solving a set of linear programs, and was
presented in our previous work [50]. The Putinar representation approach uses SOS programming, and was
presented by Papachristadoulou et al. [42]. This approach is implemented in a package SOSTOOLS that
provides a user-friendly interface for posing SOS programming problems and solving them by relaxing to a
semi-definite program [41].

Let U ⊆ R
n be a compact set and S be a system defined by the ODE dx

dt
= f(x). We assume that the

origin is the equilibrium of S, i.e, f(0) = 0, 0 ∈ interior(U), and wish to prove local asymptotic (or Lyapunov)
stability of S for a subset of the region U .

Therefore, we seek a Lyapunov function of the form V (x, c), wherein V is a polynomial form over x whose
coefficients are polynomials over c. Let V ′ denote the Lie derivative of V , i.e, V ′(x, c) = (∇x V) · f . We define
the set C as follows:

C = {c | V (x, c) is positive definite for x ∈ U} . (2.6)

Also, let Ĉ represent the set:

Ĉ = {c | V ′(x, c) is negative definite for x ∈ U} . (2.7)

2 PRELIMINARIES 8

We replace negative definiteness for negative semi-definiteness if Lyapunov stability, rather than asymptotic
stability is of interest. The overall procedure for synthesizing Lyapunov functions proceeds as follows:

1. Fix a template form V (x, c) with parameters c.

2. Compute constraints ψ[c] whose solutions yield the set C in Equation (2.6).

3. Compute constraints ψ̂[c] whose solutions yield the set Ĉ from Equation (2.7).

4. Compute a value c ∈ C ∩ Ĉ by solving the constraints ψ ∧ ψ̂. The resulting function Vc(x) is a Lyapunov
function.

The main problem, therefore, is to characterize a set C for the unknown parameters c, so Vc(x) is positive
definite over U for all c ∈ C. Thus, the process of searching for Lyapunov functions of a given form devolves
into the problem of finding a system of constraints for the sets C, Ĉ.

Remark 2.1 It must be remarked that finding a (strong) Lyapunov function V (x) inside a region U , as
presented thus far, does not necessarily prove that the system is asymptotically stable for every initial state
x ∈ U . For instance, trajectories starting from x ∈ U may exit the set U .

However, let γ represent the largest value such that for all x ∈ U , V (x) ≤ γ.

γ : max
x∈U

V (x)

It can be shown that the system is asymptotically stable inside the set Vγ : {x|V (x) ≤ γ}.

Handelman representations and Putinar representations provide us two approaches to encoding the positive
definiteness of V and negative definiteness of V ′ to characterize the sets C, Ĉ.

Handelman Representations: We now briefly summarize our previous work that uses Handelman repre-
sentations for Lyapunov function synthesis [50].

Let us assume that the set U is written as a semi-algebraic set:

U :
m∧

j=1

pj(x) ≥ 0

Let P = {p1, . . . , pm} represent these constraints. Given a degree limit D, we construct the set pp(P,D) of all

power-products of the form
m∏

j=1
p
nj

j wherein 0 ≤ nj ≤ D.

We encode positive semi-definiteness of a form V (x, c) by writing it as

V (x, c) ≡
∑

f∈pp(P,D)

λff wherein λf ≥ 0 . (2.8)

Positive definiteness is encoded using a standard trick presented by Papachristodoulou et al. [42]. Briefly, the
idea is to write V = V̂ +

∑n
j=1 ǫx

2p
j for V̂ (x, c), an unknown positive semi-definite function and a fixed positive

definite contribution given by setting ǫ, p. This idea is used in all our examples wherein positive definiteness is
to be encoded rather than positive semi-definiteness.

We eliminate x by equating the coefficients of monomials on both sides of eq. (2.8), and obtain a set of linear
constraints ψ[c, λ] involving c and λ. The set C is characterized as a polyhedron obtained by the projection

C : {c | ∃ λ ≥ 0 ψ(c, λ)} .

In practice, we do not project λ, but instead retain ψ as a set of constraints involving both c, λ. Similarly, we
consider the Lie derivative V ′(c,x) and obtain constraints ψ(c, µ) for a different set of multipliers µ.

The overall problem reduces to finding a value of c that satisfies the constraints

ψ(c, λ) ∧ ψ̂(c, µ) ,

for some λ, µ ≥ 0. This is achieved by solving a set of linear programs.

3 LINEAR PROGRAMMING RELAXATIONS BASED ON BERNSTEIN POLYNOMIALS 9

Example 2.10 Consider a parametric polynomial p(c,x) : c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x2 + c6 and the

set K defined by the constraints: x2 − x1 ≥ −1 ∧ x1 + x2 ≥ 2. We will use a Handelman representation to
characterize a set of parameters C s.t. x ∈ K |= p(c,x) ≥ 0. Using degree-2 Handelman representation, we
obtain the following larger set of constraints:

x2 − x1 + 1 ≥ 0 ∧ x1 + x2 − 2 ≥ 0 ∧
x22 + x21 − 2x1x2 + 2x2 − 2x1 + 1 ≥ 0∧ ← (x2 − x1 + 1)2 ≥ 0
x21 + x22 + 2x1x2 − 4x1 − 4x2 + 4 ≥ 0 ∧ ← (x1 + x2 − 2)2 ≥ 0

−x21 + x22 + 3x1 − x2 − 2 ≥ 0 ← (x2 − x1 + 1)(x1 + x2 − 2) ≥ 0

We express p as a linear combination of these constraints yielding the following equivalence:

c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x2 + c6 ≡

λ+ λ0(x2 − x1 + 1) + λ1(x1 + x2 − 2)+
λ2(x

2
2 + x21 − 2x1x2 + 2x2 − 2x1 + 1)+

λ3(x
2
1 + x22 + 2x1x2 − 4x1 − 4x2 + 4)+
λ4(−x

2
1 + x22 + 3x1 − x2 − 2)

where λ, λ0, . . . , λ4 ≥ 0. Matching coefficients of monomials on both sides, we obtain linear inequality con-
straints involving variables c1, . . . , c6 and λ1, . . . , λ4:

c1 = λ2 + λ3 − λ4 ← Matching x21
c2 = λ2 + λ3 + λ4 ← Matching x22
c3 = −2λ2 + 2λ3 ← Matching x1x2

... ← Matching x1, x2
c6 ≥ λ0 − 2λ1 + λ2 + 4λ3 − 2λ4 ← Matching constant term

λ0, . . . , λ4 ≥ 0

Any nonzero solution yields a set of values for c and the corresponding Handelman representation for degree 2.

Putinar Representations: Papachristadoulou and Prajna present the Putinar representations approach to
synthesizing Lyapunov functions. Once again, we consider a semi-algebraic set U , as before. We fix a form
V (c,x) for the Lyapunov and write

V ≡ q0 +
m∑

j=1

qjpj .

for SOS polynomials q0, . . . , qm. The approach fixes the degree of each qj and uses SOS programming to encode
the positivity. The result is a system of constraints over the parameters c for V and the unknowns λ that
characterize the SOS multipliers qj. The same approach encodes the negative semi-definiteness of V ′ over U .
The combined result is a semi-definite program that jointly solves for the positive definiteness of V and the
negative definiteness of V ′. A solution is recovered by solving the feasibility problem for an SDP to yield the
values for c that yield a Lyapunov certificate for stability.

3 Linear Programming relaxations based on Bernstein polynomials

In this section, we recall the use of Bernstein polynomials for establishing bounds on polynomials in intervals.
Given a multi-variate polynomial p, proving that p is positive semi-definite in K is equivalent to showing that
the optimal value of the following optimization problem is non-negative:

minimize p(x)
s.t x ∈ K.

(3.1)

Whereas (3.1) is hard to solve, we will construct a linear programming (LP) relaxation, whose optimal value
is guaranteed to be a lower bound on p∗. If the bound is tight enough, then we can prove the positivity of
polynomial p on K.

3 LINEAR PROGRAMMING RELAXATIONS BASED ON BERNSTEIN POLYNOMIALS 10

In general, the Handelman representation approach presented in Section 2.2 can be used to construct a
linear programming relaxation [50]. In this section, we will use Bernstein polynomials for the special unit box
(K = [0, 1]n). Bernstein polynomials extend the Handelman approach, and will be shown to be strictly more
powerful when K is the unit box. In our application examples, K is often a hyper-rectangle but not necessarily
the unit box. We use an affine transformation to transform p and K back to the unit box, so that the Bernstein
polynomial approach can be used.

3.1 Overview of Bernstein polynomials

Bernstein polynomials were first proposed by Bernstein as a constructive proof of Weierstrass approximation
theorem [5]. Bernstein polynomials are useful in many engineering design applications for approximating
geometric shapes [16]. They form a basis for approximating polynomials over a compact interval, and have
nice properties that will be exploited to relax the optimization (3.1) to a linear program. Here, we should
mention that a relaxation using Bernstein polynomials was provided in the context of reachability analysis for
polynomial dynamical systems [13] and improved in [51]. The novelty in this work is not only the adaptation of
these relaxations in the context of polynomial Lyapunov function synthesis but also a new tighter relaxation will
be introduced by exploiting the induction relation between Bernstein polynomials. More details on Bernstein
polynomials are available elsewhere [40].

We first examine Bernstein polynomials and their properties for the univariate case and then extend them
to multivariate polynomials (see [3, 4]).

Definition 3.1 (Univariate Bernstein Polynomials) Given an index i ∈ {0, . . . ,m}, the ith univariate Bernstein
polynomial of degree m over [0, 1] is given by the following expression:

βi,m(x) =

(
m

i

)

xi(1− x)m−i, i ∈ {0, . . . ,m}. (3.2)

In the Bernstein polynomial basis, a univariate polynomial p(x) :
m∑

j=0
pjx

j of degree m, can be written as:

p(x) =
m∑

i=0

bi,mβi,m(x)

where for all i = 0, . . . ,m:

bi,m =
i∑

j=0

(
i

j

)

(
m

j

)pj. (3.3)

The coefficients bi,m are called the Bernstein coefficients of the polynomial p.
Bernstein polynomials have many interesting properties. We summarize the most relevant ones for our

applications, below:

Lemma 3.1 For all x ∈ [0, 1], and for all m ∈ N, the Bernstein polynomials {β0,m, . . . , βm,m} have the following
properties:

1. Unit partition:

m∑

i=0

βi,m(x) = 1.

2. Bounds: 0 ≤ βi,m(x) ≤ βi,m(i
m
), for all i = 0, . . . ,m.

3. Induction property: βi,m−1(x) =
m−i
m
βi,m(x) + i+1

m
βi+1,m(x), for all i = 0, . . . ,m− 1.

Using the unit partition and positivity of Bernstein polynomials, the following bounds result holds:

3 LINEAR PROGRAMMING RELAXATIONS BASED ON BERNSTEIN POLYNOMIALS 11

Corollary 3.1 On the interval [0, 1], a polynomial p with Bernstein coefficients b0,m, . . . , bm,m, the following
inequality holds [19]:

min
i=0,...,m

bi,m ≤ p(x) ≤ max
i=0,...,m

bi,m. (3.4)

We generalize the previous notions to the case of multivariate polynomials i.e p(x) = p(x1, . . . , xn)) where
x = (x1, . . . , xn) ∈ U = [0, 1]n. For multi-indices, I = (i1, . . . , in) ∈ N

n, J = (j1, . . . , jn) ∈ N
n, we fix the

following notation:

• I ≤ J ⇐⇒ il ≤ jl, for all l = 1, . . . n.

• I
J
=

(
i1
j1
, . . . , in

jn

)

and

(
I

J

)

=

(
i1
j1

)

. . .

(
in
jn

)

.

• Ir,k = (i1, . . . , ir−1, ir + k, ir+1, . . . , in) where r ∈ {1, . . . , n} and k ∈ Z.

Let us fix our maximal degree δ = (δ1, . . . , δn) ∈ N
n for a multi-variate polynomial p (δl is the maximal degree

of xl for all l = 1, . . . , n). Then the multi-variate polynomial p will have the following form:

p(x) =
∑

I≤δ

pIx
I where pI ∈ R, ∀I ≤ δ.

Multivariate Bernstein polynomials are given by products of the univariate polynomials:

BI,δ(x) = βi1,δ1(x1) . . . βin,δn(xn) where βij ,δj(xj) =

(
δj
ij

)

x
ij
j (1− xj)

δj−ij . (3.5)

Thanks to the previous notations, these polynomials can also be written as follows:

BI,δ(x) =

(
δ

I

)

xI(1n − x)δ−I . (3.6)

Now, we can have the general expression of a multi-variate polynomial in the Bernstein basis:

p(x) =
∑

I≤δ

bI,δBI,δ(x),

where Bernstein coefficients (bI,δ)I≤δ are given as follows:

bI,δ =
∑

J≤I

(
i1
j1

)

. . .

(
in
jn

)

(
δ1
j1

)

. . .

(
δn
jn

)pJ =
∑

J≤I

(
I

J

)

(
δ

J

)pJ . (3.7)

Therefore, the generalization of Lemma 3.1 will lead to the following properties:

Lemma 3.2 For all x = (x1, . . . , xn) ∈ U we have the following properties:

1. Unit partition:
∑

I≤δ

BI,δ(x) = 1.

2. Bounded polynomials: 0 ≤ BI,δ(x) ≤ BI,δ(
I
δ
), for all I ≤ δ.

3. Induction relation: BI,δr,−1
= δr−ir

δr
BI,δ +

ir+1
δr
BIr,1,δ, for all r = 1, . . . , n., and all I ≤ δr,−1.

Finally, in the case of general rectangle K = [x1, x1]× · · · × [xn, xn] it suffices to make a change of variables
xj = xj + zj(xj − xj) for all j = 1, . . . , n to obtain new variables z = (z1, . . . , zn) ∈ U .

3 LINEAR PROGRAMMING RELAXATIONS BASED ON BERNSTEIN POLYNOMIALS 12

3.2 Bernstein relaxations

We assume that K is a bounded rectangle. Without loss of generality, we can assume that K = [0, 1]n since we
can be reduced to the unit box by a simple affine transformation. Using the previous properties we are going
to construct three LP relaxations to problem (3.1).

Reformulation Linearization Technique (RLT) We first recall a simple approach to relaxing polynomial
optimization problems to linear programs [56, 57]. We then carry out these relaxations for Bernstein polynomi-
als, and show how the properties in Lemma 3.2 can be incorporated into the relaxation schemes. Recall, once
again, the optimization problem (3.1).

minimize p(x)
s.t x ∈ K.

For simplicity, let us assume K : [0, 1]n be the unit rectangle. K is represented by the constraints K :
n∧

j=1
(xj ≥

0 ∧(1−xj) ≥ 0. The standard RLT approach consists of writing p(x) =
∑

I pIx
I as a linear form p(x) :

∑

I pIyI
for fresh variables yI that are place holders for the monomials xI . Next, we write down as many facts about xI

over K as possible. The basic approach now considers all possible power products of the form πJ,δ : xJ (1−x)δ−J

for all J ≤ δ, where δ is a given degree bound. Clearly if x ∈ K then πJ,δ(x) ≥ 0. Expanding πJ,δ in the
monomial basis as πJ,δ :

∑

I≤δ aI,Jx
I , we write the linear inequality constraint,

∑

I≤J

aI,J yI ≥ 0

The overall LP relaxation is obtained as

minimize
∑

I

pIyI

s.t.
∑

I≤J

aI,J yI ≥ 0, for each J ≤ δ
(3.8)

Additionally, it is possible to augment this LP by adding inequalities of the form ℓI ≤ yI ≤ uI through the
interval evaluation of xI over the set K.

Proposition 3.1 For any polynomial p, the optimal value computed by the LP (3.8) is a lower bound on that
of the polynomial program (3.1).

Example 3.1 We suppose to compute a lower bound for the following POP:

minimize x1
2 + x2

2

s.t. (x1, x2) ∈ [0, 1]2
(3.9)

Using the RLT technique for a degree δ = 2 we denote by yi,j the fresh variables replacing the non linear
terms x(i,j) = x1

ix2
j for all (i, j) ∈ N

2 such that i+ j ≤ 2. Using these notations the objective function of the
relaxation will be y20 + y02. The constraints are given by the linearized form of the possible products (degree
less than δ) of the following constraints : x1 ≥ 0, x2 ≥ 0, 1−x1 ≥ 0 and 1−x2 ≤ 0. For example the constraint
y11 ≥ 0 is obtained by multiplying x1 ≥ 0 and x2 ≥ 0.

RLT using Bernstein Polynomials The success of the RLT approach depends heavily on writing “facts”
involving the variables yI that substitute for xI . We now present the core idea of using Bernstein polynomial
expansions and the richer bounds that are known for these polynomials from Lemma 3.2 to improve upon the
basic RLT approach.

First, we write p(x) as a sum of Bernstein polynomials of degree δ.

p(x) :
∑

I≤δ

bI,δBI,δ ,

3 LINEAR PROGRAMMING RELAXATIONS BASED ON BERNSTEIN POLYNOMIALS 13

wherein bI,δ are calculated using the formula in equation (3.7). Let us introduce a fresh variable zI,δ as a place
holder for BI,δ(x). Lemma 3.2 now gives us a set of linear inequalities that hold between these variables zI,δ.
Therefore, we obtain three LP relaxations of increasing precision using Bernstein polynomials. Once again,
let (bI,δ)I≤δ denote Bernstein coefficients of p with respect to a maximal degree δ. We formulate three LP
relaxations, each providing a better approximation for the feasible region of the original problem (3.1).

The first relaxation uses the fact that BI,δ(x) ≥ 0 for all x ∈ [0, 1]n and that
∑

I≤δ BI,δ ≡ 1.

pδ
(1) = minimize

∑

I≤δ

bI,δzI,δ

s.t zI,δ ∈ R, I ≤ δ,
zI,δ ≥ 0, I ≤ δ,
∑

I≤δ

zI,δ = 1,

(3.10)

From corollary 3.1, it is easy to see that p
(1)
δ = min

I≤δ
bI,δ (minimal of Bernstein coefficients for p). The optimiza-

tion is superfluous here, but will be useful subsequently.
Next, we incorporate sharper bounds for BI,δ(x) for each I for x ∈ K.

pδ
(2) = minimize

∑

I≤δ

bI,δzI,δ

s.t zI,δ ∈ R, I ≤ δ,

0 ≤ zI,δ ≤ BI,δ(
I
δ
), I ≤ δ,

∑

I≤δ

zI,δ = 1,

(3.11)

Finally, the recurrence relation between the polynomials are expressed as equations in the LP relaxation to
constrain the relaxation even further.

pδ
(3) = minimize

∑

I≤δ

bI,δzI,δ

s.t zI,δ ∈ R, I ≤ δ,
zJ,δ′ ∈ R, J ≤ δ′, δ′ < δ,

0 ≤ zI,δ ≤ BI,δ(
I
δ
), I ≤ δ,

0 ≤ zJ,δ′ ≤ BJ,δ′(
J
δ′
), J ≤ δ′, δ′ < δ,

∑

I≤δ

zI,δ = 1,

∑

J≤δ′

zJ,δ′ = 1, δ′ < δ,

zJ,δ′ =
δ′r−jr
δ′r

zJ,δ′r,1 +
jr+1
δ′r

zJr,1,δ′r,1 , J ≤ δ
′, δ′ < δ.

(3.12)

Relaxation (3.10) is obtained once the unit partition and the positivity of Bernstein polynomials (Lemma 3.2)
are injected. In relaxation (3.11) we add lower bounds on polynomials BI,δ(y) (given by the second property
of Lemma 3.2) which allow us to obtain a more precise result (greater) since we are adding more constraints
for the previous minimization problem. The third one (3.12) is obtained by adding new variables for Bernstein
polynomials of lower degree and exploiting the induction property of Lemma 3.2. It will be the more precise
one but also the more costly.

We will show using the properties of Bernstein polynomials that each of these relaxations provides a lower
bound on the original polynomial optimization problem.

Proposition 3.2 pδ
(1) ≤ pδ

(2) ≤ pδ
(3) ≤ p∗ where p∗ is the optimal value of (3.1).

Proof.

4 COMPARISON BETWEEN REPRESENTATIONS 14

First, consider any feasible solution y to the problem (3.1)

minimize
∑

I≤δ

bI,δBI,δ(y)

s.t y ∈ [0, 1]n.

We note that replacing zI = BI,δ(y) the vector of all zIs form a feasible solution to each of the three

relaxations eqs. (3.10) to (3.12). Therefore, p
(j)
δ ≤ p

∗ for j ∈ {1, 2, 3}.
Next considering the formulations eqs. (3.10) to (3.12), we note that their objective functions are the

same. Furthermore, the decision variables in eqs. (3.10) and (3.11) are the same; while the decision variables
in eq. (3.11) are a strict subset of those in eq. (3.12). Next, each constraint in eq. (3.10) is present in eq. (3.11),
and likewise, each constraint in eq. (3.11) is also present in eq. (3.12).

As a consequence, any feasible solution for p
(3)
δ is, in turn, a feasible solution for p

(2)
δ with the extra

variables in formulation (3.12) removed. Therefore, since the objectives coincide and we seek to minimize, we

have p
(2)
δ ≤ p

(3)
δ . Similarly, any feasible solution for Eq. (3.11) is, in turn, a feasible solution for Eq. (3.10). Here,

no projection is needed, since the two LPs consider the same set of variables. Once again, we have p
(1)
δ ≤ p

(2)
δ .

Putting it all together, we have pδ
(1) ≤ pδ

(2) ≤ pδ
(3) ≤ p∗.

�

Remark 3.1 The choice of the appropriate relaxation is a tradeoff between complexity and precision. In fact,
the third relaxation (3.12) which gives the more precise result, can be very expensive, especially when the
number of variables and/or their degrees increase.

Finally, eq. (3.12) can be used for a fixed level to alleviate the drastic increase in the number of decision
variables. I.e, instead of exploiting all the constraints arising for the degrees δ′ < δ we may restrict ourselves
to δ′ such that δ′r = δr − 1.

4 Comparison between Representations

In this section, we will first start by comparing linear and SOS representations. Next, we compare the new
Bernstein relaxations with other existing linear relaxations including Handelman and interval representations.

4.1 Comparison between Linear and SOS representations

Comparing the presentations of linear vs. SOS representations, the tradeoffs look quite obvious. Whereas
linear representations produce linear programs, that can be solved using exact arithmetic, SOS representations
produce sum-of-squares programs that are solved numerically by relaxation to semi-definite programs. In fact,
numerical issues sometimes arise, and have been noted in our previous work [50]. On the other hand, it also
seems that Handelman representations may be weaker than Putinar representations. Consider the example
below:

Proposition 4.1 The polynomial p(x) : x2 does not have a Handelman representation inside the interval
[−1, 1].

Proof. Suppose we were able to express x2 as a (non-trivial) conic combination of power products of the form

x2 ≡

m∑

j=1

λj(1− x)
nj(x+ 1)mj , λj > 0

We note that at x = 0, the LHS is zero whereas the RHS is strictly positive. This implies that λj = 0 for
j = 1, . . . ,m. Thus, the RHS is identically zero, yielding a contradiction. �

On the other hand, the polynomial x2 is SOS, and thus trivially shown to be positive over [−1, 1] (if not
over R) by a Putinar representation.

However, in such a situation, we can show that Handelman representations can be useful in showing positivity
where Putinar representations can fail. Consider the set K : [0, 1]× [0, 1] and the bivariate polynomial p(x, y) =
xy.

4 COMPARISON BETWEEN REPRESENTATIONS 15

Proposition 4.2 There do not exist SOS polynomials q0, q1, q2, q3, q4 such that

xy ≡ q0 + q1x+ q2y + q3(1− x) + q4(1− y) .

In other words, the polynomial xy does not have a Putinar representation over the unit box K : [0, 1] × [0, 1].

Proof. Suppose, for contradiction, there exist SOS polynomials q0, q1, q2, q3, q4 such that

xy ≡ q0 + q1x+ q2y + q3(1− x) + q4(1− y) . (4.1)

We establish a contradiction by considering the lowest degree terms of the polynomials q0, . . . , q4. We use
the notation coeff(q, xiyj) to refer to the coefficient of the monomial xiyj in the polynomial q(x, y).

First, plugging in x = 0, y = 0, we observe that coeff(q0, 1) = coeff(q3, 1) = coeff(q4, 1) = 0. In other
words, the constant coefficients of q0, q3, q4 are zero.

Since q0, q3, q4 are psd, if they have zero constant terms then they do not have linear terms involving x or
y.

coeff(qj , x) = coeff(qj , y) = coeff(qj , 1) = 0, j ∈ {0, 3, 4} .

Therefore, the constant terms of q1, q2 are zero as well:

coeff(q1, 1) = coeff(q2, 1) = 0 .

Otherwise, the RHS will have non-zero terms involving x, y but the LHS has no such terms. Once again, from
the positivity of q1, q2, we have

coeff(qj, x) = coeff(qj, y) = 0, j ∈ {1, 2}

Having established that no constant or linear terms can exist for q0, . . . , q4, we turn our attention to the
quadratic terms x2, y2, xy. Consider the coefficients of x2 on both sides of Eq. (4.1):

coeff(q0, x
2) + coeff(q3, x

2) + coeff(q4, x
2) = 0, coeff(q0, y

2) + coeff(q3, y
2) + coeff(q4, y

2) = 0 .

Since qi are psd and lack constant/linear terms, we can show that

coeff(qj , x
2) ≥ 0, coeff(qj, y

2) ≥ 0, j ∈ {0, . . . , 4}

Therefore, we conclude that

coeff(qj , x
2) = coeff(qj , y

2) = 0, j ∈ {0, 3, 4} .

Finally, we compare xy terms on both sides of Eq. (4.1) to obtain:

coeff(q0, xy) + coeff(q3, xy) + coeff(q4, xy) = 1 .

Therefore, we have coeff(qj , xy) > 0 for some j ∈ {0, 3, 4}, while coeff(qj, x
2) = coeff(qj , y

2) = 0. We now
contradict the assumption that qj is psd. Based on what we have shown thus far, we can write

qj(x, y) = cxy + third or higher order terms, where c > 0 .

Let us fix x = ǫ, y = −ǫ for some ǫ > 0.

qj(ǫ,−ǫ) = −c0ǫ
2 + o(ǫ3)

Therefore, we conclude for ǫ small enough, qj(ǫ,−ǫ) < 0, thus contradicting the positivity assumption for qj
for some j ∈ {0, 3, 4}.

�

Furthermore, the SOS relaxation to SDP relies on numerical interior point solvers to find a feasible point.
From the point of view of a guaranteed method, such an approach can be problematic. On the other hand,
LP solvers can use exact arithmetic in spite of the high cost of doing so, to obtain results that hold up to
verification. Examples of numerical issues in SOS programming for Lyapunov function synthesis are noted in
our previous work [50], and will not be reproduced here. Consequently, much work has focused on the problem
of finding rational feasible points for sum-of-squares to generate polynomial positivity proofs that in exact
arithmetic [24, 38, 45]. Recently, a self-validated SDP solver VSDP has been proposed by Lange et al. [25].
However, its application to SOS optimization has not been investigated.

4 COMPARISON BETWEEN REPRESENTATIONS 16

4.2 Comparison of Bernstein relaxations with other Linear Representations

We are going to compare the Bernstein relaxations eqs. (3.10) to (3.12) with other existing linear relaxations
including Handelman and interval LP relaxations. More precisely, we will show the benefit of using Bernstein
relaxations instead of the LP relaxations given by Ratschan et al. [49] and our previous work [50].

Our earlier work [50], uses RLT with a combination of Handelman representation augmented by interval
arithmetic constraints to prove polynomial positivity, as a primitive for Lyapunov function synthesis. As long
as the domain K of interest is a hyper-rectangle, the relaxations provided by Bernstein polynomials will provide
results that are guaranteed to be at least as good, if not strictly better. For simplicity, let us fix K as the unit
box [0, 1]n and compare the two relaxations.

A first remark will be that the Handelman representation contains polynomials with degree less or equal
to the fixed degree δ, whereas our Bernstein polynomials are all of degree equal to δ. This does not affect the
optimal value of the relaxation, as noted by Sherali and Tuncbilek [56]. Therefore, no gain of precision can be
made using the Handelman relaxation thanks to the additional polynomials of degree less than δ.

Lemma 4.1 (Bernstein vs. Handelman Representations) Let K : [0, 1]n represent the unit interval. Any
polynomial that can be shown nonnegative over K using a Handelman representation of degree δ can also be
shown nonnegative using the formulation in eq. (3.10) with the same degree.

Proof. We first note that Handelman representation for p seeks to express p as

p ≡
∑

I≤δ

λIx
I(1− x)δ−I

︸ ︷︷ ︸

BI,δ

.

In fact, over the unit interval, the Handelman representation seeks to write p as a conic combination of Bernstein
polynomials. Consider the relaxation to the POP:

min
x∈K

p(x)

Using a Handelman representation of p(x), we obtain the following relaxation:

pH = minimize
∑

I≤δ

bI,δzI,δ

s.t zI,δ ∈ R, I ≤ δ,
zI,δ ≥ 0, I ≤ δ,

In contrast, we compare this to the formulation eq. (3.10), recalled below:

pδ
(1) = minimize

∑

I≤δ

bI,δzI,δ

s.t zI,δ ∈ R, I ≤ δ,
zI,δ ≥ 0, I ≤ δ,
∑

I≤δ

zI,δ = 1,

Comparing the two LPs, it is easy to see that pH ≤ p
(1)
δ . Also, if pH ≥ 0 then p

(1)
δ ≥ 0. Therefore, the result

follows. �

Comparison with Interval Representations: Now, we compare Bernstein relaxation to the interval
relaxation over [0, 1]n. Interval relaxations are presented by Ratschan et al. [49] and in our previous work [50].
Notably, let K be a hyper-rectangular domain. The interval relaxation replaces each monomial xI with an
interval over K. The interval for a polynomial p is obtained by summing up the interval for each term. While
there exist many approaches to evaluate a polynomial over an interval, we will consider the scheme (implicitly)
adopted by Ratschan et al. [49] and in our previous work [50] that uses an interval arithmetic based LP
relaxation for (parametric) polynomial optimization problems. Here we will fix K : [0, 1]n, mapping arbitrary,
bounded hyper-rectangles to this domain through a linear change of variables (see Section 5.3).

5 SYNTHESIS OF POLYNOMIAL LYAPUNOV FUNCTIONS 17

Lemma 4.2 A polynomial p :
∑

I≤δ cIx
I can be shown to be non-negative over [0, 1]n using interval arithmetic

if all its coefficients cI ≥ 0.

Following this, we note that if a polynomial p :
∑

I≤δ cIx
I has cI ≥ 0, then all its Bernstein coefficients are

non-negative following eq. (3.3).

Lemma 4.3 Any polynomial pI that can be shown non-negative over K : [0, 1]n using interval arithmetic can
also be shown non-negative using the Bernstein polynomial based formulation eq. (3.10).

Proof. It can be shown that the optimal value of eq. (3.10) is in fact the minimal Bernstein polynomial
coefficient, which has to be non-negative for pI . �

Comparing Bernstein Relaxations: Note that Prop. 3.2 has already demonstrated that any polynomial
that can be shown nonnegative over the unit interval by eq. (3.10) can be shown nonnegative by eq. (3.11).
Likewise, eq. (3.12) is at least as powerful as eq. (3.11) in this respect. Therefore, the major advantage of using
Bernstein polynomials is that, in addition to positivity, the three non-trivial properties of Lemma 3.2 can be
used to add linear relationships between the decision variables in the reformulation linearization technique. We
first demonstrate that the second relaxation (3.11) is strictly more powerful than the relaxation in (3.10).

Example 4.1 Consider the simple univariate polynomial below:

Show that p(x) : 4x2 − 4x+ 1 ≥ 0 on [0, 1]. (4.2)

For this example, we find that the relaxation (3.11) with a degree 2 computes exact optimal value pδ
(2) =

p∗ = 0, proving positivity of p over [−1, 1]. However, (3.10) yields a minimal value of −1 and fails to prove
positivity on [0, 1].

Now, we demonstrate that the third relaxation (3.12) is strictly more powerful through an example.

Example 4.2 We will consider the following bivariate polynomial:

p(x) = x2 + y2 on [−1, 1]2. (4.3)

For a degree δ = (2, 2), the optimal value of (3.10) is pδ
(1) = −2, which does not establish positivity of p on

[−1, 1]. If we use the second linear program (3.11), the optimal value will be improved and we find pδ
(2) = −0.5,

but still not sufficient to prove positivity of p on [−1, 1]. Now, when we use the third linear program (3.12), we
obtain the exact optimal value pδ

(3) = 0 and ensure the positivity of p over [−1, 1]2.

5 Synthesis of polynomial Lyapunov functions

Given an ODE in the form: dx
dt

= f(x) with equilibrium x∗ = 0, we wish to find a Lyapunov function V (x)
over a given rectangular domain Rx containing 0.

Note 5.1 (Positive Semi-definite vs. Positive Definite) As presented in Section 2.3, our approach fixes a polynomial
template Vc(x) = V (x, c) for the target Lyapunov function, and computes its Lie derivative form V ′(x, c). It
then searches for coefficients c such that V (x, c) is positive definite over Rx and V ′ is negative definite. We
recall the standard approach to encoding positive definiteness, following Papachristodoulou & Prajna [42]), by
writing V = U + xtΛx for a positive semi-definite function U and a diagonal matrix Λ with small but fixed
positive diagonal entries. Therefore, we will focus on encoding positive or negative semi-definiteness and use
this approach to extend to positive/negative definiteness.

We will now demonstrate how the three LP relaxations eqs. (3.10) to (3.12) described in section 3 extend
to search for Lyapunov functions, wherein

(a) The polynomial of interest is V (x, c) parameterized by unknowns c,

(b) The interval of interest is a general box
n∏

j=1
[ℓj, uj] rather than [0, 1]n,

(c) We wish to encode the positive semi-definiteness of −V ′(x, c) rather than V itself (following the technique
in section 5.2).

5 SYNTHESIS OF POLYNOMIAL LYAPUNOV FUNCTIONS 18

5.1 Encoding Positivity of Parametric Polynomial

We first consider the problem of extending the LP relaxation to find values of parameters c, such that, a
parametric polynomial P(x, c) is positive semi-definite over the interval [0, 1]n.

Recall, that given a known polynomial p(x), our first step was to write down p(x) using its Bernstein
expansion as p(x) :

∑

I≤δ bIBI,δ. Thus, the overall form of eqs. (3.10) to (3.12) can be written as

min
∑

I≤δ

bIzI s.t. Az ≤ b .

However, Bernstein coefficients of a parametric polynomial P(x, c) are not known in advance. Let m
denote a vector of monomials xI for I ≤ δ. The polynomial P(x, c) can be written as ct ·m. Furthermore,
each monomial xI itself has a Bernstein expansion:

xI :
∑

J≤δ

bJ,IBJ,δ .

Consider a matrix B, wherein, each row corresponds to a monomial xI , and each column to a Bernstein
polynomial BJ,δ. The coefficient corresponding to row I and column J is bJ,I , the Bernstein coefficient for xI

corresponding to BJ,δ. Therefore, we use B to convert polynomials from monomial to the Bernstein basis.

P(x, c) : ctm = ctBz , wherein z represents the Bernstein polynomials .

Therefore, the LP relaxations eqs. (3.10) to (3.12) have the following form:

min ct B z

s.t. Az ≤ b
(5.1)

Equation (5.1) is, in fact, a bilinear program which can be reformulated using its dual to a multiparamteric linear
optimization problem[30, 33]. However, the direct resolution of a multiparametric program is very expensive
since it requires to find exponentially many critical regions, and for each region we have to find our optimal
value which will be an affine function depending on the parameter vector c. Therefore, rather than solve the
optimization problem (5.1), we simply seek values of c such that

find c s.t. (∀ z) Az ≤ b ⇒ ct B z ≥ 0 . (5.2)

We now use Farkas lemma, a well known result in linear programming, to dualize eq. (5.2).

Lemma 5.1 c is a solution to the problem in eq. (5.2) if and only if there exist multipliers λ ≥ 0 such that

Atλ = −Bt c, bt λ ≤ 0, and λ ≥ 0

As a result, we now have a procedure to reduce the search for a parametric positive polynomial as the
feasibility problem for a set of linear constraints.

Remark 5.1 The trick of using Farkas Lemma to handle multi-linear constraint is well known from previous
work on the synthesis of ranking functions [12, 46].

5.2 Simplified Encoding

Thus far, our approaches have encoded both the positive definiteness of V (x, c) and the negative definiteness
of V ′(x, c) to yield a combined linear or semi-definite program that can be used to synthesize the Lyapunov
function. In this section, we propose a simplified approach that simply focuses on encoding the negative
definiteness of V ′(x, c), extracting a solution c and checking that the result Vc(x) is in fact positive definite.

1. Choose a form V (x, c).

5 SYNTHESIS OF POLYNOMIAL LYAPUNOV FUNCTIONS 19

2. Encode negative definiteness of V ′(x, c) (the Lie derivative) over U . In particular, we do not encode the
positive definiteness of V (x, c).

3. Compute a solution for c and check that the solution is, in fact, positive definite over U .

The approach is motivated by the following result from Vannelli and Vidyasagar (Page 72, Lemma 3) [64].
A proof of this theorem is also included for the sake of completeness.

Theorem 5.1 If S is an asymptotically stable system on U , V (x) is a continuous function over U with
V (0) = 0, and V ′ is negative definite, then V is positive definite in some neighborhood of 0.

Proof. Assume, for the sake of contradiction, that every neighborhood N of 0 has a point x0 6= 0 such that
V (x0) ≤ 0. For each N,x0, we will now show that the trajectory starting at x0 cannot converge asymptotically
to 0. Let t ∈ [0, T) represent a time interval for which x(t) ∈ N \ {0}. If x(t) ∈ N \ {0} forever, then we set
T = ∞. Consider any finite, or infinite sequence of time instances t0 = 0 < t1 < t2 . . . < T . We observe that
0 ≥ V (x(t0)) > V (x(t1)) > · · · , since

V (x(ti)) = V (x(ti−1)) +

∫ ti

ti−1

V ′(x(s))ds

︸ ︷︷ ︸

<0

.

By the continuity of V , and the fact that V (0) = 0, we conclude that the trajectory x(t) cannot converge
asymptotically to 0. In other words, the system is not asymptotically stable. This directly contradicts our
original claim. �

We will focus on encoding the negative definiteness of V ′(x, c) over the given domain Rx, without requiring
that V (x, c) be positive definite. Once a suitable c is found, we simply check of Vc(x) is positive definite over
Rx. Failing this, we simply choose a point y ∈ Rx where V fails to be positive and simply repeat our procedure
by adding an additional constraint that V (y, c) > 0.

Remark 5.2 The advantage of this simplified encoding is that the synthesis part for Vc is replaced by a simple
check of positivity. If the obtained Vc is non positive we can conclude using Theorem 5.1 that the system is
already unstable.

As a result, the simplified encoding results in a LP relaxation with fewer constraints.

It now remains to address: (a) the transformation from a given domain Rx to the domain [0, 1]n for
applying the Bernstein polynomial based LP relaxations, and (b) encode negative definiteness of the parametric
polynomial V ′(x, c).

5.3 Transforming Co-ordinates

Let Rx :
n∏

j=1
[ℓj , uj] be the domain of interest. We consider the change-of-basis transformation from x ∈ Rx to

a new set of variables y ∈ [0, 1]n

xj 7→ ℓj + yj(uj − ℓj)

Let m denote the original monomial basis over x consisting of monomials xI for I ≤ δ. Corresponding to this,
we define m̂ as the monomial basis over y, consisting of monomials yI for I ≤ δ. It is easy to see that any
monomial xI can be written as a polynomial involving monomials yJ of degree J at most I. Therefore,

m ≡ Tm̂ wherein

each row of T corresponds to a monomial xI and each column to a monomial yJ . Each row therefore lists the
coefficients of the monomial xI as a function over y.

Therefore, ct m ≡ ctTm̂. Rather than encoding the positivity of the original polynomial V (x, c) : ctm
over Rx, we encode that of (T tc)tm̂ over [0, 1]n.

5 SYNTHESIS OF POLYNOMIAL LYAPUNOV FUNCTIONS 20

5.4 Lie derivatives

Finally, Lyapunov function synthesis requires us to encode the negative definiteness of V ′(x, c) rather than V .
Once again, this requires us to consider the coefficients of the form V ′(x, c) as a linear transformation applied
over c.

Since the RHS of the ODE is polynomial, we consider the Lie derivative of each monomial xI as a polynomial
pI . Let D represent the matrix wherein each row of D represents the monomial xI and the contents of the row
are the coefficients of the lie derivative of xI .

Therefore, applying Lie derivative to V (x, c) : ctm, we obtain

V ′(x, c) : ct D m′ .

Here the vector m′ represents the set of monomials involved in the Lie derivative.

5.5 Overall Encoding

To summarize, we are asked to find a value of c such that the Lie derivative of the polynomial V (x, c) is
non-negative over Rx. Let D represent the matrix form of the Lie derivatives on the monomial basis m, T
represent the transformation of the monomials from Rx to [0, 1]n, and finally B represent the transformation
to Bernstein form. The overall optimization involves finding c such that

find c s.t. (∀ z) Az ≤ b ⇒ (Bt × T t ×Dtc)tz ≤ 0 (5.3)

As a result, applying Farkas lemma transforms this into solving the feasibility problem below:

find c s.t. (∃ λ) Atλ = BtT tDtc, bt λ ≤ 0, and λ ≥ 0
︸ ︷︷ ︸

LP feasibility

. (5.4)

We note that c = 0 is seemingly a trivial solution to the feasibility problem in eq. (5.4). But, this does not
yield a Lyapunov function. To address, this, we recall that our goal is to encode the negative definiteness
and not the negative semi-definiteness of the derivative. On the other hand, eq. (5.4) encodes the negative
semi-definiteness.

As mentioned earlier, we ensure that U : V ′(x, c)−x′Λx is negative semidefinite using eq. (5.4) rather than
V ′ itself. The matrix Λ is a diagonal matrix whose diagonal entries are all set to a small value ǫ > 0, chosen
by the user. We choose ǫ = 0.1 for most of our experiments.

Remark 5.3 The problem posed in eq. (5.4) can be simplified considerably for the LP relaxation eq. (3.10)).
In the absence of further bounds about the Bernstein polynomials, the smallest Bernstein coefficient is a lower
bound on the minimum value of a polynomial. Therefore, the constraints in eq. (5.4) can be simplified as

find c s.t. B · c ≥ 0 . (5.5)

Effectively the form above imposes that all the Bernstein coefficients of V (x, c) are non-negative. This implicitly
eliminates the multipliers λ from the LP relaxation.

Remark 5.4 Infeasibility of eq. (5.4) means that our search failed to find a Lyapunov function. This can
indicate many problems, including (a) the system is not stable, (b) the system is stable but no polynomial
Lyapunov function exists [2], (c) the system is stable with a polynomial Lyapunov but it is not provable using
the relaxation that we have chosen to arrive at our LP.

5.6 Higher relaxation degree

Our linear relaxations are based on a fixed degree for the Bernstein polynomial expansion. By default, this
degree called δ is fixed to some chosen value at the beginning of the algorithm. However, if the technique fails
to find a Lyapunov function, we may improve precision by increasing the degree δ. The following convergence
result motivates the possible improvement in the lower bounds of the LP relaxation by increasing the degree
bound δ [35]:

6 NUMERICAL RESULTS 21

Theorem 5.2 Let p be a multivariate polynomial of degree δ = (δ1, . . . , δn) and let bI,δ = bI be its Bernstein
coefficients with respect to the unit box [0, 1]n:

∣
∣
∣
∣
bI,δ − p

(
I

δ

)∣
∣
∣
∣
= O

(
1

δ1
+ · · ·+

1

δn

)

for all I ≤ δ. (5.6)

As a consequence, when the optimal value of our linear or bilinear program is negative, we can just increase
the degree of the relaxation allowing the relaxation to be more precise and then increasing the possibility to
find our Lyapunov function.

5.7 Branch and bound decomposition

A second, more widely used approach to improving the relaxation, is to perform a branch and bound decompo-
sition. The essential idea consists on verifying the so called vertex condition [19] for the given hyper-rectangle
which guarantees that the LP relaxation coincides with the optimal value. Informally, this condition requires
that no local minima for a polynomial p exist in the interior of the rectangle. If it doesn’t hold we will simply
divide our rectangle and keep doing it until reaching the global minimum and getting exact bounds in each sub
box. In our case, we have two main differences:

1. We do not have a fixed polynomial, but a parametric polynomial V (x, c).

2. The global minimum for a Lyapunov function V is known in advance as the equilibrium 0. Likewise, the
negation of its derivative also has 0 for a global minimum.

For these reasons, our branch-and-bound approach focuses on decomposing the given region Rx, so that the
equilibrium 0 lies in the boundaries of our cells rather than the relative interior, in an attempt to satisfy the
vertex condition. So if a Lyapunov function is not found, we simply choose a variable xj and consider two cells

R
(1)
x : Rx ∩ {xj ≤ 0} and R

(2)
x : Rx ∩ {xj ≥ 0}. The cells may be recursively subdivided if necessary. In the

limit, this approach creates 2n cells, and can be expensive for systems with more than 10s of variables. The
computational complexity can be mitigated by examining a a few cells in the decomposition and trying to find
a Lyapunov candidate based on the examined cells. We can then check if the Lyapunov candidates are indeed
Lyapunov functions by considering the other cells. This approach can, in the worst case, examine every cell in
the decomposition. However, if a good empirical strategy for selecting the cells can be found, the approach can
save much effort involved in encoding the LP relaxations for an exponential number of cells.

6 Numerical results

In this section, we present an evaluation of various linear programming relaxations using Bernstein polynomi-
als eqs. (3.10) to (3.12), extended using the technique for encoding the positivity of a parametric form, presented
in Section 5.

6.1 Implementation

Our approaches are implemented as a MATLAB(tm) toolbox for synthesizing Lyapunov function. Apart from
a description of the system to be analyzed, the inputs include the maximum degree δ : (δ1, . . . , δn) for the
Bernstein expansion in each variable, the region of interest (fixed to [−1, 1]n for all of our evaluation), and the
number of subdivisions along each dimension. Furthermore, our toolbox implements three LP relaxations, each
adding more constraints over the previous. The first relaxation is based on eq. (3.10) simply uses the non-
negativity and the unit summation properties of Bernstein polynomials. The second LP relaxation is based
on eq. (3.11), adds upper bounds to the Bernstein polynomials and finally, the third approach eq. (3.12) adds
the recurrence relations between the Bernstein polynomials. Each approach is used in the Lyapunov search by
encoding the dual form eq. (5.4).

6 NUMERICAL RESULTS 22

Table 1: Table showing Lyapunov functions computed by each of the three LP relaxations on the three systems
considered in Example 6.1. The column Relaxation indicates which of the three LP relaxations was used, the
Lyapunov function for each approach, the number of Boxes in the subdivision and the computational times
split into computing the matrices and linear programming data, and the actual time needed to solve the LP.
All timings are in seconds.

System Relaxation Lyapunov # Boxes Setup LPTime

(6.1) LP1 4.5807x2 + 4.5807xy + 2.2906y2 2 0.06 0.36
LP2 5x2 + 4.9995xy + 2.5002y2 2 0.09 0.34
LP3 5x2 + 5xy + 2.5y2 2 0.15 0.37

(6.2) LP1 4.3039x2 + 4.3039y2 4 0.13 0.38
LP2 4.9998x2 + 5y2 4 0.18 0.41
LP3 5x2 + 5y2 4 0.37 0.77

(6.3) LP1 4.6809x2 + 4.9547y2 4 0.16 0.36
LP2 4.9998x2 + 5y2 4 0.18 0.40
LP3 5x2 + 5y2 4 0.33 0.43

6.2 Numerical Examples

We first compare and contrast the three LP relaxations here over some benchmark examples from our previous
work [50]. Then using using a special problem generator, we compare the results we obtain for each benchmark
with those obtained by using the findlyap function in SOSTOOLS [41], and the Lyapunov functions obtained
in our previous work. For all the examples, we wish to prove asymptotic stability over Rx = [−1, 1]n. We
will report for each program the Lyapunov function, the number of boxes in our decomposition, and two
computational times.

Setup is the needed time to compute the data for the linear program. This includes:

1. The time needed to compute the matrix B (for all three relaxations),

2. Computing bounds on the Bernstein polynomials (for second and third relaxations), and

3. Time needed to compute recurrences for each Bernstein polynomial (for the third relaxation)

In fact, much of the computation of B and the bounds on it are independent of the actual problem instance.
They can be performed once, and cached for a given number n of variables and given degree bounds δ, instead
of recomputing them separately for each problem.

LPTime is the computational time associated with solving the linear programming relaxation using the
linprog function provided by MATLAB(tm). Also, we should mention that since all the LPs are feasibility
problems, the objective function is set to be the maximization of the sum of the coefficients.

6.2.1 Benchmarks from [50] and comparison with Handelman Representations

Example 6.1 Consider the system over (x, y):

dx

dt
= −x3 + y,

dy

dt
= −x− y . (6.1)

The Handelman relaxation technique in our previous work [50] finds the Lyapunov function x2 + y2 taking
less than 0.1 seconds, whereas SOS discovers 1.2118x2 +1.6099× 10−5xy+1.212y2, requiring 0.4 seconds. The
three relaxations each using a subdivision of [−1, 1]2 discover the function x2 + xy+ 1

2y
2 (with a multiplicative

factor, and modulo small perturbations due to floating point error). Interestingly, the system is globally
asymptotically stable, and the Lyapunov function discovered by our approach is valid globally.

6 NUMERICAL RESULTS 23

Next, we consider the system:
dx

dt
= −x3 − y2,

dy

dt
= xy − y3 . (6.2)

The Handelman relaxation approach [50] finds a 4 degree Lyapunov function x4 + 2x2y2 + y4, requiring
less than 0.1 seconds, whereas the SOS approach produces 0.62788x4 +0.052373x3 +0.65378x2y2 +1.1368x2 −
0.18536xy2 + 0.60694y4 + 1.1368y2 after deleting terms with coefficients less than 10−7. The SOS approach
requires roughly 0.4 seconds for this example. Our approach discovers degree two Lyapunov function x2 + y2

that is also globally stable.
Finally, we consider the system:

dx

dt
= −x− 1.5x2y3,

dy

dt
= −y3 + 0.5x2y2 . (6.3)

The approach in [50] proves asymptotic stability over [−1, 1]2 through the function 0.2x2 + y2, requiring 0.4
seconds, whereas the SOS approach finds 2.4229x2 + 4.4868y2 requiring a running time of 8.8 seconds.

The specific Lyapunov functions found for systems eqs. (6.1) to (6.3), the running times and number of
subdivisions needed are summarized in Table 1.

Table 2: Performance of our approach on the synthesized benchmarks. The column n: number of variables,
dmax: maximum degree of the vector field, succ? indicates whether the approach succeeded in finding a
Lyapunov function, 3: succeeded with Lyapunov, np: numerical problem, mo: out-of-memory, dL: degree of
Lyapunov function, dQ: degree of SOS multipliers, Setup: setup time, TSDP : SDP Solver time, Rel. Typ.:
Relaxation Type, #Box: number of boxes in decomposition, TLP : LP solver time. All times are reported in
seconds.

ID n dmax Putinar (SOS) Bernstein (our approach)
succ? dL dQ Setup TSDP Rel. Typ. succ? # Box Setup TLP

1 2 3 ✓ 2 2 0.35 0.9 LP1 ✓ 4 0.17 0.43
LP2 ✓ 4 0.20 0.42
LP3 ✓ 2 0.17 0.38

2 2 3 ✓ 2 2 0.3 0.67 LP1 ✓ 4 0.17 0.42
LP2 ✓ 4 0.19 0.38
LP3 ✓ 2 0.17 0.35

3 2 3 ✓ 2 2 0.33 0.61 LP1 ✓ 4 0.17 0.37
LP2 ✓ 4 0.18 0.35
LP3 ✓ 2 0.16 0.35

4 2 3 ✓ 2 2 0.3 0.97 LP1 ✓ 4 0.17 0.37
LP2 ✓ 4 0.21 0.39
LP3 ✓ 2 0.17 0.35

5 3 3 ✓ 2 2 0.86 1.12 LP1 ✓ 8 0.81 0.47
LP2 ✓ 8 0.97 0.61
LP3 ✓ 4 1.24 0.70

6 3 5 ✗(np) 2 2 0.81 2.3 LP1 ✓ 8 7.15 6.4
✓ 2 4 39.5 4.2 LP2 ✓ 8 7.83 17.17

LP3 ✗(np) 8 17.4 102.3

7 3 5 ✗(np) 2 2 0.8 2.2 LP1 ✓ 8 6.50 5.2
✗(np) 2 4 40 4.6 LP2 ✓ 8 7.42 5.7
✗(np) 4 4 40.5 7 LP3 ✓ 8 13.2 26.8

6 NUMERICAL RESULTS 24

6.2.2 Synthetic Benchmarks and comparison with SOS

We now consider a second class of synthetic benchmarks that were generated using a special problem generator,
constructed for generating challenging examples of locally stable polynomial vector fields of varying degrees
and number of variables to evaluate the various techniques presented here. Our overall idea is to fix two
homogeneous polynomials V1(x) and V2(x) that are positive definite over a region of interest, chosen to be
K : [−1, 1]n for our examples. The benchmarks described in this section along with the Lyapunov functions
synthesized are available on-line through arXiv [52].

Subsequently, for each choice of V1, V2, we attempt to find a system dx
dt

= F (x) such that the Lie derivative
of V1 is −V2, and with an equilibrium at 0.

(∇V1) · F = −V2, and F (0) = 0 . (6.4)

Naturally, any such system using the vector field F is guaranteed to be asymptotically stable due to the existence
of V1, V2. To synthesize a benchmark that is guaranteed to have asymptotic stability, we need to find a suitable
F within a given degree bound. To this end, we parameterize our system F by a set of parametric polynomials
and attempt to find parameters that satisfy eq. (6.4). It is easy to show that our approach leads to a set
of linear equations on the parameters defining the entries in F and solving these equations yields a suitable
system F . The difficulty here lies in choosing appropriate V1, V2 so that the system F can be found. In our
experience, if V1, V2 are chosen arbitrarily, the likelihood of finding a function F that satisfies eq. (6.4) seems
quite small. Furthermore, since F involves n polynomials, the technique yields prohibitively large equations
for n ≥ 6. Our approach to synthesize benchmarks is based on carefully controlling the choice of V1, V2 and
repeated trial-and-error, until feasible system of equations is discovered, to synthesize a benchmark. Having
synthesized our benchmark, we hide the functions V1, V2 used to generate it and simply present the system F

to our implementation, as well as for SOS program.
The key to finding benchmarks lies in the generation of the polynomials V1, V2. We generated V1 as one of

two simple forms: (a) V1 : x
tΛ1x, or (b) V1 : mtΛ2m, wherein m is a vector of squares of the system variables

of the form [x21, x
2
2, · · · , x

2
n]

′, and Λ1,Λ2 are diagonal matrices with non-negative diagonal entries chosen at
random.

The polynomial V2 is chosen to be a positive definite polynomial over [−1, 1]n. The key idea here is to
generate V2 that is guaranteed to be positive definite over [−1, 1]n by writing

V2(x) : xtΛx+
∑

j

qj

n∏

i=1

(1 + xi)
pj,i(1− xi)

qj,i ,

essentially as a Schmüdgen representation involving the polynomials (1− xi), (1 + xi) for i ∈ [1, n] and sum-of-
squares polynomials qj obtained by squaring and adding randomly generated polynomials together.

Remark 6.1 Even though our approach synthesizes an ODE dx
dt

= F (x) that by design has a Lyapunov
function V (x), we note that the resulting system may (and often does) admit many other Lyapunov functions
with a possibility of a larger domain of attraction towards the equilibrium 0.

In many cases, the process of trial and error is required to find pairs V1, V2 that yield a feasible vector field.
Using this process, 15 different benchmarks were synthesized with 5 each of degrees 2, 3, and 4, respectively.
Appendix A reports the ODEs for these benchmarks and the Lyapunov functions synthesized by our technique.

6.2.3 Results

Tables 2 and 3 compare the performance of the three LP relaxations implemented in our prototype with an
implementation Putinar (SOS), based on Putinar representation of the Lyapunov function and the negation
of its derivative, built using SOSTOOLS. Here we should mention that, in order to reduce the complexity
of the ‘LP3’ relaxation, we reduce ourselves to a first level of lower degrees (see Remark 3.1). For each
of the 15 benchmarks, we run both tools under different setups. The Putinar (SOS) approach is run with
varying degrees of the Lyapunov function dL, and degrees of the SOS multipliers dQ. We attempted three sets
(dL, dQ) = (2, 2), (2, 4), (4, 4) in succession, stopping as soon as a Lyapunov function is found without a failure.

6 NUMERICAL RESULTS 25

Table 3: Performance of our approach on the synthesized benchmarks (continued). Note that mo: out-of-
memory termination, to: time-out. All times are reported in seconds.

ID n dmax Putinar (SOS) Bernstein (our approach)
succ? dL dQ Setup TSDP Rel. Typ. succ? # Box Setup TLP

8 3 5 ✗(np) 2 2 0.8 1.7 LP1 ✓ 8 10.63 10.9
✗(np) 2 4 40.9 7.9 LP2 ✓ 8 11.91 30.97
✗(np) 4 4 40.1 5.5 LP3 ✗(np) 8 22.38 130.77

9 3 2 ✗(np) 2 2 0.9 4.1 LP1 ✗(np) 8 1.99 0.61
✗(np) 2 4 42.2 3.7 LP2 ✓ 8 2.06 0.92
✓ 4 4 41.9 3.1 LP3 ✓ 8 3.04 3.81

10 3 5 ✗(np) 2 2 0.9 2.9 LP1 ✗(np) 8 3.48 3.19
✗(np) 2 4 38.3 5.3 LP2 ✓ 8 1.23 1.88
✓ 4 4 38.7 5.54 LP3 ✓ 8 1.56 0.60

11 4 3 ✓ 2 2 3.7 3.1 LP1 ✓ 16 3.58 3.25
LP2 ✓ 16 4.34 17.27
LP3 ✓ 16 9.05 53.5

12 4 3 ✗(np) 2 2 3.7 2.1 LP1 ✓ 16 5.16 16.85
✗(mo) 2 4 > 600 LP2 ✓ 16 6.38 12.86

LP3 ✗(np) 16 22.23 224.23

13 4 6 ✗(np) 2 2 4 3.1 LP1 ✗(np) 16 41.36 627.25
✗(mo) 2 4 > 600 LP2 ✗(np) 16 43.38 988.31

LP3 ✗(to) 16 > 1200

14 4 6 ✗(np) 2 2 3.8 3.6 LP1 ✗(np) 16 37.45 339.86
✗(mo) 2 4 > 600 LP2 ✗(np) 16 41.93 1049.53

LP3 ✗(to) 16 > 1200

15 4 6 ✗(np) 2 2 3.8 3.9 LP1 ✗(np) 16 38.55 368.48
✗(mo) 2 4 > 600 LP2 ✗(np) 16 45.32 888.33

LP3 ✗(to) 16 > 1200

To experiment with our approach and enable a full comparison, we attempt all the three relaxations for all the
benchmarks.

We note that the LP relaxation approach is generally successful in discovering Lyapunov functions. In 7
out of 15 cases, all three LP relaxations succeed, while at least one LP relaxation succeeds in 12 out of 15 cases.
On the other hand, the Putinar (SOS) approach succeeds in 9 out of the 15 attempts, with numerical problems
(np) being the most common failure mode. These may arise due to many reasons, but commonly due to the
Hessian matrix becoming ill-conditioned during the calculation of a Newton step. For benchmarks 12-15, the
polynomials involved become so large, that the Putinar (SOS) approach runs out of memory during the problem
setup, causing MATLAB(tm) to crash. Our approach also suffers from the same set of problems, but to a
noticeably lesser extent. For instance, 11 out of the 45 linear programs failed due to numerical problems, and
3 more due to timeouts. On the other hand, 15 out of the 29 SDPs terminate with a numerical problem with
an additional 4 out-of-memory issues.

On most of the smaller benchmarks, all approaches have comparable timings. In general, the third re-
laxation (LP3) is the most expensive, often more expensive than the other two LP relaxations or the Putinar
(SOS) approach. Likewise, when the degree of the SOS multipliers dQ is increased from 2 to 4, we witness a
corresponding 40× factor increase in the time taken to setup the SDP, with a smaller increase in the time taken
to solve the SDP. For the larger examples, the LP relaxation requires more time, but is generally successful in
finding an answer.

7 CONCLUSION 26

Finally, all approaches fail on benchmarks 13-15. Appendix A shows these benchmarks. A key issue is the
blowup in the number of monomial terms to be considered in the parametric polynomial forms for the Lyapunov
function and its derivatives. This blowup seems to overwhelm both our approach and the SOS programming
approach. We conclude that handling large parametric polynomials efficiently remains a challenging problem
for our approach as well as the Putinar (SOS) approach.

7 Conclusion

To conclude, we have examined three different LP relaxations for synthesizing polynomial Lyapunov functions
for polynomial systems. We compare these approaches to the standard approaches using Schmüdgen and Puti-
nar representations that are used in SOS programming relaxations of the problem. In theory, the Schmüdgen
representation approach subsumes the three LP relaxations. In practice, however, we are forced to use the
Putinar representation. We show that the Putinar representation can prove some polynomials positive semi-
definite that our approaches fail to. On the other hand, the reverse is also true: we demonstrate a polynomial
that is easily shown to be positive semi-definite on the interval [−1, 1]n through LP relaxations. However, the
same fact cannot be demonstrated by a Putinar representation approach. We then compare both approaches
over a set of numerical benchmarks. We find that the LP relaxations succeed in finding Lyapunov functions
for all cases, while the Putinar representation fails in many benchmarks due to numerical (conditioning) issues
while solving the SDP. As future work, we wish to extend our approach to a larger class of Lyapunov functions.
We also are looking into the problem of analyzing systems with non-polynomial dynamics and the synthesis of
non-polynomial Lyapunov functions.

Finally, Lyapunov functions have, thus far, remained important theoretical tools for analyzing the stability
of control systems. However, these tools are seldom used, in practice, for industrial scale systems. This is chiefly
due to the burden of manually specifying Lyapunov functions. Therefore, stability of complex industrial designs
are often “verified” by extensive simulations. Recent work by Kapinski et al. argues that Lyapunov functions
can be of practical values for automotive designs, provided they can be discovered easily, and certified using
formal verification tools [32]. We hope that the use of linear relaxations can provide us with more approaches
to synthesize Lyapunov functions that can serve as certificates for stability.

References

[1] A.A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: LP and SOCP-based alternatives to
sum of squares optimization. In Intl. Conference on Information Sciences and Systems (CISS), pages 1–5.
IEEE Press, March 2014.

[2] Amir Ali Ahmadi, Miroslav Krstic, and Pablo A. Parrilo. A globally asymptotically stable polynomial
vector field with no polynomial Lyapunov function. In CDC-ECE, pages 7579–7580, 2011.

[3] S. Bernstein. Collected Works, volume 1. USSR Academy of Sciences, 1952.

[4] S. Bernstein. Collected Works, volume 2. USSR Academy of Sciences, 1954.

[5] Sergei Nanatovich Bernstein. Démonstration du théoréme de Weierstrass fondée sur le calcul des proba-
bilités. Communcations de la Société Mathématique de Kharkov 2, (1):1–2, 1912.

[6] Sergei Natanovich Bernstein. On the representation of positive polynomials. Soobshch Kharkov marem
ob-va, 2(14):227–228, 1915.

[7] G. Chesi. Estimating the domain of attraction via union of continuous families of Lyapunov estimates.
Systems and Control letters, 56(4):326–333, 2005.

[8] G. Chesi. Polynomial relaxation-based conditions for global asymptotic stability of equilibrium points of
genetic regulatory networks. International Journal of Systems Science, 41(1):65–72, 2010.

REFERENCES 27

[9] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. LMI-based computation of optimal quadratic Lyapunov
functions for odd polynomial systems. International Journal of Robust and Nonlinear Control, 15(1):
35–49, 2005.

[10] G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In
H.Brakhage, editor, Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer
Science, pages 134–183. Springer, 1975.

[11] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier elimination.
Journal of Symbolic Computation, 12(3):299–328, sep 1991.

[12] Michael Colon and Henny Sipma. Synthesis of linear ranking functions. In Tiziana Margaria and Wang
Yi, editors, Tools and Algorithms for Construction and Analysis of Systems, volume 2031, pages 67–81.
Springer, April 2001.

[13] T. Dang and D. Salinas. Image computation for polynomial dynamical systems using the Bernstein ex-
pansion. In CAV’09, volume 5643 of LNCS, pages 219–232. Springer, 2009.

[14] Ruchira Datta. Computing Handelman representations. In Mathematical Theory of Networks and Systems,
2002. Cf. math.berkeley.edu/~datta/MTNSHandelman.ps.

[15] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets computer logic. ACM
SIGSAM Bull., 31(2):2–9, June 1997.

[16] Rida T. Farouki. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geom. Des.,
29(6):379–419, August 2012.

[17] K. Forsman. Construction of Lyapunov functions using Gröbner bases. In In Proc. of the 30th Conf. on
Decision and Control, pages 798–799. IEEE, 1991.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability: A guide to the theory of NP-
Completeness. W.H.Freeman, 1979.

[19] J. Garloff. The Bernstein algorithm. Reliable Computing, 2:154–168, 1993.

[20] Eric Goubault, Jacques-Henri Jourdan, Sylvie Putot, and Sriram Sankaranarayanan. Finding non-
polynomial positive invariants and lyapunov functions for polynomial systems through darboux poly-
nomials. In Proc. American Control Conference (ACC), pages 3571 – 3578. IEEE Press, 2014.

[21] S. Hafstein. Stability Analysis of Nonlinear Systems with Linear Programming. PhD thesis, Gerhard-
Mercator-University Duisburg, 2002.

[22] S. Hafstein. Revised CPA method to compute Lyapunov functions for nonlinear systems. Journal of
Mathematical Analysis and Applications, 4(20):610–640, 2014.

[23] David Handelman. Representing polynomials by positive linear functions on compact convex polyhedra.
Pacific J. Math, 132(1):35–62, 1988.

[24] John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus Schneider and Jens Brandt,
editors, Proc. Intl. Conf. on Theorem Proving in Higher Order Logics, volume 4732 of Lecture Notes in
Computer Science, pages 102–118. Springer-Verlag, 2007.

[25] V. Härter, C. Jansson, and M. Lange. VSDP: A matlab toolbox for verified semidefinte-quadratic-linear
programming, 2012. Cf. http://www.ti3.tuhh.de/jansson/vsdp/.

[26] F. Hausdorff. Summationsmethoden und Momentfolgen i. Math. Zeit, 9:74–109, 1921.

[27] D. Henrion and J.B. Lasserre. Convergent relaxations of polynomial matrix inequalities and static output
feedback. IEEE Transactions on Automatic Control, 51(42):192–202, 2006.

math.berkeley.edu/~datta/MTNSHandelman.ps
http://www.ti3.tuhh.de/jansson/vsdp/

REFERENCES 28

[28] Z. W. Jarvis-Wloszek. Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using
Sum-of-Squares Optimization. PhD thesis, UC Berkeley, 2003.

[29] A. Johansen. Computation of Lyapunov functions for smooth nonlinear systems using convex optimization.
Automatica, 36(11):1617–1626, 2000.

[30] C.N. Jones, M. Baric, and M. Morari. Multiparametric Linear Programming with Ap-
plications to Control. European Journal of Control, 13(2-3):152–170, March 2007. URL
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2699.

[31] Reza Kamyar and Matthew M. Peet. Polynomial optimization with applications to stability anal-
ysis and control - alternatives to sum of squares. arXiv, abs/1408.5119, 2014. Available online:
http://arxiv.org/abs/1408.5119.

[32] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga. Simulation-
guided lyapunov analysis for hybrid dynamical systems. In Hybrid Systems: Computation and Control
(HSCC), pages 133–142. ACM Press, 2014.

[33] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-Parametric Toolbox (MPT). In
HSCC (Hybrid Systems: Computation and Control), pages 448–462, March 2004. URL
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=53.

[34] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on
Optimization, 11:796–817, 2001.

[35] Q. Lin and J. Rokne. Interval approximation of higher order to the ranges of functions. Computers Math.
Applic, 31(7):101–109, 1996.

[36] A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control and verification of high-dimensional systems via
dsos and sdsos optimization. In IEEE Conference on Decision and Control (CDC), December 2014. To
Appear (Dec. 2014).

[37] James D. Meiss. Differential Dynamical Systems. SIAM, 2007.

[38] David Monniaux and Pierre Corbineau. On the generation of Positivstellensatz witnesses in degenerate
cases. In ITP, volume 6898 of Lecture Notes in Computer Science, pages 249–264. Springer, 2011.

[39] T.S. Motzkin. The arithmetic-geometric inequality. In Proc. Symposium on Inequalities, pages 205–224.
Acaemic Press, 1967.

[40] César Muñoz and Anthony Narkawicz. Formalization of a representation of Bernstein polynomials and
applications to global optimization. Journal of Automated Reasoning, 51(2):151–196, August 2013. doi:
10.1007/s10817-012-9256-3. URL http://dx.doi.org/10.1007/s10817-012-9256-3.

[41] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS:
Sum of squares optimization toolbox for MATLAB Version 3.00, October 2013.

[42] Antonis Papachristodoulou and Stephen Prajna. On the construction of Lyapunov functions using the
sum of squares decomposition. In IEEE CDC, pages 3482–3487. IEEE Press, 2002.

[43] Antonis Papachristodoulou and Stephen Prajna. Analysis of non-polynomial systems using the sum of
squares decomposition. In Didier Henrion and Andrea Garulli, editors, Positive Polynomials in Control,
volume 312 of Lecture Notes in Control and Information Science, pages 23–43. Springer Berlin Heidelberg,
2005. doi: 10.1007/10997703 2.

[44] Pablo A Parillo. Semidefinite programming relaxation for semialgebraic problems. Mathematical Program-
ming Ser. B, 96(2):293–320, 2003.

http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2699
http://arxiv.org/abs/1408.5119
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=53
http://dx.doi.org/10.1007/s10817-012-9256-3

REFERENCES 29

[45] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verification. In Proceedings of Intl.
Conf. on Automated Deduction, pages 485–501. Springer, 2009.

[46] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. Lecture
Notes in Computer Science, 2937:239–251, 2004.

[47] Victoria Powers and Bruce Reznick. Polynomials that are positive on an interval. Trans. Amer. Maths.
Soc, 352:4677–4692, 2000.

[48] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math, 42:969–984, 1993.

[49] Stefan Ratschan and Zhikun She. Providing a basin of attraction to a target region of polynomial systems
by computation of Lyapunov-like functions. SIAM J. Control and Optimization, 48(7):4377–4394, 2010.

[50] Sriram Sankaranarayanan, Xin Chen, and Erika Ábraham. Lyapunov function synthesis using Handelman
representations. IFAC conference on Nonlinear Control Systems, 2013.

[51] M.A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis for polynomial system using
linear programming relaxations. In ATVA’2012, pages 137–151, 2012.

[52] Mohamed Amin Ben Sassi, Sriram Sankaranarayanan, Xin Chen, and Erika Abraham. Linear relaxations
of polynomial positivity for polynomial lyapunov function synthesis. arXiv, arXiv:1407.2952 [math.DS],
2014.

[53] K. Schmüdgen. The k-moment problem for compact semi-algebraic sets. Math. Ann, 289:203–206, 1991.

[54] Zhikun She, Bican Xiab, Rong Xiaob, and Zhiming Zhenga. A semi-algebraic approach for asymptotic
stability analysis. Nonlinear Analysis: Hybrid Systems, 3(4):588–596, 2009.

[55] Zhikun She, Haoyang Li, Bai Xue, Zhiming Zhenga, and Bican Xiab. Discovering polynomial Lyapunov
functions for continuous dynamical systems. Journal of Symbolic Computation, 58:41–63, 2013.

[56] H.D. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial programming using a
reformulation-linearization technique. Journal of Global Optimization, 2:101–112, 1991.

[57] H.D. Sherali and C.H. Tuncbilek. New reformulation-linearization/convexification relaxations for univariate
and multivariate polynomial programming problems. Operation Research Letters, 21:1–9, 1997.

[58] N.Z. Shor. Class of global minimum bounds on polynomial functions. Cybernetics, 23(6):731–734, 1987.
Originally in Russian: Kibernetika (6), 1987, 9–11.

[59] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, 2009.

[60] W. Tan and A. Packard. Stability region analysis using sum of squares programming. In Proc. ACC, 2007.

[61] Alfred Tarski. A decision method for elementary algebra and geometry. Technical report, Univ. of California
Press, Berkeley, 1951.

[62] B. Tibken. Estimation of the domain of attraction for polynomial systems via LMIs. In IEEE CDC,
volume 4, pages 3860–3864 vol.4. IEEE Press, 2000.

[63] Ufuk Topcu, Andrew Packard, Peter Seiler, and Timothy Wheeler. Stability region analysis using simula-
tions and sum-of-squares programming. In Proc. ACC, pages 6009–6014. IEEE Press, 2007.

[64] A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and domains of attraction for autonomous
nonlinear systems. Automatica, 21(1):69–80, 1985. ISSN 0005-1098. doi: http://dx.doi.org/10.1016/
0005-1098(85)90099-8.

http://arxiv.org/abs/1407.2952

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 30

A Description of Synthesized Benchmarks

In this section,we describe each of the 15 benchmarks and present the results of our implementation.

Benchmark #1: Consider the two variable polynomial ODE:

dx

dt
= −12.5x+ 2.5x2 + 2.5y2 + 10x2y + 2.5y3.

dy

dt
= −y − y2.

The second relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

2 .02 xˆ2+5y ˆ2 .

Lyapunov d e r i v a t i v e funct i on :

−50.5xˆ2−10yˆ2+10.1 xˆ3+10.1 xyˆ2−10yˆ3+40.4 xˆ3y+10.1xy ˆ3 .

Benchmark #2: Consider the two variable polynomial ODE:

dx

dt
= 6.933333x3 + 4.566667x2 − 21.5x.

dy

dt
= 6.933333x3 + 0.4x2y + 2.066667x2 + xy2 + 0.6xy − 9x− y2 − y.

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

4 .9183 xˆ2−3.3198 xy+4.1497y ˆ2 .

Lyapunov d e r i v a t i v e funct i on :

−181.6089xˆ2−8.2995yˆ2+38.0596xˆ3+8.2995xyˆ2−8.2995y ˆ3 .
+45.1833xˆ4+33.1978xˆ3y+8.2995 xy ˆ3 .

Benchmark #3: Consider the two variable polynomial ODE:

dx

dt
= −1.5x− x2 + 0.5xy + 0.5y2 − 2x3 + x2y.

dy

dt
= −0.5y.

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

4 .9693 xˆ2+4.8581y ˆ2 .

Lyapunov d e r i v a t i v e funct i on :

−14.908xˆ2−4.8581yˆ2−9.9386xˆ3+4.9693xˆ2y+4.9693 xyˆ2−19.8773 xˆ4+9.9386xˆ3y .

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 31

Benchmark #4: Consider the two variable polynomial ODE:

dx

dt
= −2x3 − 0.5xy − 0.5x.

dy

dt
= 0.25xy2 − 0.125xy + 0.25y2 − 0.4125y.

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

4 .9663 xˆ2+4.8552y ˆ2 .

Lyapunov d e r i v a t i v e funct i on :

−4.9663xˆ2−4.0056yˆ2−4.9663xˆ2y−1.2138 xyˆ2+2.4276yˆ3−19.8653 xˆ4+2.4276xy ˆ3 .

Benchmark #5: Consider the three variable polynomial ODE:

dx

dt
= −2x3 − 0.5xy − 0.5x− z3 − z2.

dy

dt
= 0.25xy2 − 0.125xy + 0.25y2 − 0.4125y.

dz

dt
= −z2 − z.

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

4 .9295 xˆ2+4.9513yˆ2+4.9848 z ˆ2 .

Lyapunov d e r i v a t i v e funct i on :

−4.9295xˆ2−4.0848yˆ2−9.9696 z ˆ2−4.9295xˆ2y−1.2378 xyˆ2−9.859 xzˆ2
+2.4756 yˆ3−9.9696 z ˆ3−19.7179 xˆ4+2.4756xyˆ3−9.859 xz ˆ3 .

Benchmark #6: Consider the three variable polynomial ODE:

dx

dt
= −0.5x3y + 0.5x3z2 − 3x3 + y5 − y4 + yz4 − z4.

dy

dt
= 0.25y2 − 0.25y.

dz

dt
= yz4 + z4 − 2z3.

The third relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

4 .1212 xˆ4−0.0292xˆ3y+4.9077 xˆ3+3.5749xˆ2yˆ2+4.9755xˆ2 zˆ2
+4.9863 xˆ2−1.5913xyˆ3+1.5914xyˆ2+4.9939yˆ4+0.0598yˆ3 z
−1.1362yˆ3+4.9812yˆ2 z ˆ2−0.0597yˆ2 z+4.9950 yˆ2+0.0198 yzˆ3

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 32

+4.9864 z ˆ4+4.9926 zˆ2

Lyapunov d e r i v a t i v e funct i on :

−2.4975yˆ2−0.79571 xyˆ2+3.3496yˆ3+0.029844yˆ2z−29.9178xˆ4−1.7881xˆ2yˆ2
+1.9892 xyˆ3−5.8461yˆ4−0.07469 yˆ3z−2.4885 yˆ2 z ˆ2−0.0 049472 yz ˆ3−19.9701 z ˆ4
−44.1693xˆ5−4.9696xˆ4y+0.041946xˆ4z−4.7815 xˆ3yˆ2+0.013348 xˆ3 z ˆ2+1.7874xˆ2yˆ3
+0.013982xˆ2 z ˆ3−11.166 xyˆ4−9.9552 xz ˆ4+4.994yˆ5+0.0452yˆ4+2.4906yˆ3 zˆ2
+0.12432yˆ2 z ˆ3−0.033711 yz ˆ4+9.9792 z ˆ5−49.4547 xˆ6−7.0989xˆ5y−0.057848xˆ5 z
−21.4464xˆ4yˆ2−24.8666 xˆ4 z ˆ2+3.9781xˆ3yˆ3−0.011402 xˆ3yz ˆ2−14.7231 xˆ2yˆ4
−34.6321xˆ2 z ˆ4+9.9782xyˆ5+0.013982 xyˆ4 z+9.9597 xyz ˆ4+0.01905 xz ˆ5−1.5914yˆ6
−0.11959yˆ3 z ˆ3−21.576yˆ2 z ˆ4+9.8832 yz ˆ5−39.8832 z ˆ6−8.2424xˆ6y+0.04377xˆ5yˆ2
+7.3615 xˆ5 z ˆ2−3.575xˆ4yˆ3−4.9783xˆ4yz ˆ2−15.6893 xˆ3yˆ4+0.79344xˆ3yˆ2 z ˆ2
−16.4807xˆ3 z ˆ4+14.8106xˆ2yˆ5−0.019283 xˆ2yˆ4+14.8042xˆ2yz ˆ4+9.9317xˆ2 zˆ5
−7.1553xyˆ6−0.01503 xyˆ5z−9.951xyˆ4 z ˆ2−7.155xyˆ2 z ˆ4−0.0148 xyz ˆ5−9.958xz ˆ6
+3.1827 yˆ7+3.1828yˆ3 z ˆ4+9.9793yˆ2 z ˆ5+0.053588 yz ˆ6+19.9477 z ˆ7+8.2424xˆ6 zˆ2
−0.043771xˆ5yz ˆ2+3.5749xˆ4yˆ2 z ˆ2+4.975xˆ4 z ˆ4+16.485xˆ3yˆ5−0.79563 xˆ3yˆ3 z ˆ2
+16.4936xˆ3yz ˆ4−0.08754 xˆ2yˆ6+0.019xˆ2yˆ5z−0.087017xˆ2yˆ2 z ˆ4+9.9703xˆ2yzˆ5
+7.1497 xyˆ7+9.951xyˆ5 z ˆ2+7.15 xyˆ3 z ˆ4+0.0101xyˆ2 z ˆ5+9.944xyz ˆ6−1.5913yˆ8
−1.5315yˆ4 z ˆ4+9.9627yˆ3 z ˆ5+0.063907 yˆ2 z ˆ6+19.9431 yz ˆ7 .

Benchmark #7: Consider the three variable polynomial ODE:

dx

dt
= −0.5x3y + 0.5x3z2 − x3 + y4z + y4 − yz3 + yz2 + z3 − z2

dy

dt
= 0.5y2z − 0.5y2 − 2y

dz

dt
= −yz2 + yz + z2 − z

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

1 .8371 xˆ5+0.1146xˆ4y+0.1431 xˆ4 z+4.9587 xˆ4−2.0557xˆ3yˆ2
−0.0014xˆ3yz−0.4698 xˆ3y+3.2944 xˆ3 z ˆ2+4.0441xˆ3−1.2295xˆ2yˆ3
+4.9584 xˆ2yˆ2+3.2610xˆ2yz ˆ2+0.6981xˆ2 z ˆ3+4.9648xˆ2 z ˆ2+4.9858xˆ2
+1.9598 xyˆ4+0.9480xyˆ3+1.0295xyˆ2 z ˆ2+0.6737 xyz ˆ3+2.3539 xyzˆ2
−1.1976xz ˆ4+0.2212 xz ˆ3−3.3047 xz ˆ2−0.3773yˆ5+0.1262yˆ4 z
+4.9884 yˆ4−1.7272yˆ3 z ˆ2−4.5919yˆ3+0.7677yˆ2 z ˆ3+4.9842yˆ2 zˆ2
+4.9898 yˆ2+1.8746 yz ˆ4+0.4655 yz ˆ3+0.9830 yz ˆ2+0.8032 z ˆ5
+4.9823 z ˆ4−0.6791 z ˆ3+4.9962 zˆ2

Lyapunov d e r i v a t i v e funct i on :

−10.087xz ˆ2+24.0416 yz ˆ2+16.1044 z ˆ3−9.9716xˆ4−66.1853 xˆ2 zˆ2
+15.7876xyz ˆ2+1.3715 xz ˆ3−19.9593 yˆ4−71.2314 yˆ2 z ˆ2−12.204 yzˆ3
−48.9619 z ˆ4−12.1323 xˆ5−4.986xˆ4y−0.42935xˆ4z−77.376 xˆ3 zˆ2
+50.8098xˆ2yz ˆ2+15.7832xˆ2 z ˆ3+9.9739xyˆ4−27.3951 xyˆ2 zˆ2
−11.3265 xyzˆ3−7.6925 xz ˆ4+17.5716yˆ5−0.37814 yˆ4 z+65.4124yˆ3 z ˆ2
+16.8366yˆ2 z ˆ3−8.169 yz ˆ4+4.3258 z ˆ5−19.8348 xˆ6−4.6566xˆ5y
−9.917xˆ4yˆ2−32.0142 xˆ4 z ˆ2+45.0923xˆ3yz ˆ2+24.9503xˆ3 zˆ3
−7.7016xˆ2yˆ4+3.208xˆ2yˆ2 z ˆ2−16.9243 xˆ2yz ˆ3−17.7736 xˆ2 zˆ4

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 33

−5.6866xyˆ5+9.9714xyˆ4+55.9384xyˆ3 z ˆ2+9.1352xyˆ2 z ˆ3+18.4209 xyzˆ4
+0.61781xz ˆ5−26.132yˆ6+9.9786yˆ5z−32.7928yˆ4 z ˆ2−21.8781 yˆ3 z ˆ3
−9.2688yˆ2 z ˆ4+6.4374 yz ˆ5+12.9884 z ˆ6−9.1857xˆ7−10.3757 xˆ6y
−0.57258xˆ6 z+6.8718 xˆ5yˆ2−3.8171xˆ5 z ˆ2−2.7287xˆ4yˆ3+16.0705xˆ4yzˆ2
+7.6749 xˆ4 z ˆ3+26.0935xˆ3yˆ4−0.83166 xˆ3yˆ2 z ˆ2−14.3316 xˆ3yz ˆ3
+0.1192 xˆ3 z ˆ4−3.9495xˆ2yˆ5+12.1284xˆ2yˆ4z−25.0232xˆ2yˆ3 z ˆ2
−1.0817xˆ2yˆ2 z ˆ3+29.6455xˆ2yz ˆ4+6.6222xˆ2 z ˆ5−8.6057 xyˆ6−3.9191 xyˆ4 zˆ2
−21.5587xyˆ3 z ˆ3+19.5651xyˆ2 z ˆ4−1.2779 xyz ˆ5+0.72252 xz ˆ6−15.233yˆ7
−14.7866yˆ6 z+8.6278 yˆ5 z ˆ2−2.7363yˆ4 z ˆ3−1.1648yˆ3 z ˆ4+5.8781yˆ2 zˆ5
−4.6757yz ˆ6−3.0722 z ˆ7−4.5929xˆ7y−0.22917xˆ6yˆ2−0.28629 xˆ6yz
+9.9174 xˆ6 z ˆ2+3.0835xˆ5yˆ3−5.6463xˆ5yz ˆ2+10.3006xˆ4yˆ4
+1.6974 xˆ4yˆ2 z ˆ2−9.8837xˆ4yz ˆ3+4.9648xˆ4 z ˆ4+3.5898xˆ3yˆ5
+19.9386xˆ3yˆ4z−0.040754xˆ3yˆ3 z ˆ2−0.79519 xˆ3yˆ2 z ˆ3+1.2032xˆ3yzˆ4
+0.11062xˆ3 z ˆ5−2.4786xˆ2yˆ6+8.502xˆ2yˆ5 z+6.6209xˆ2yˆ4 z ˆ2
+6.167xˆ2yˆ3 z ˆ3−9.8832xˆ2yz ˆ5−10.2983 xyˆ7+12.7599 xyˆ6 z
+4.4632 xyˆ5 z ˆ2+15.465xyˆ4 z ˆ3−6.5221xyˆ2 z ˆ5−1.3962 xyzˆ6
+3.8462 yˆ8+20.3974yˆ7+6.2115yˆ6 z ˆ2+9.5007yˆ5 z ˆ3−2.3862yˆ4 zˆ4
−1.0295yˆ3 z ˆ5−0.67367 yˆ2 z ˆ6+1.1976 yz ˆ7+4.5929xˆ7 zˆ2
+0.22917xˆ6yz ˆ2+0.28629xˆ6 z ˆ3−3.0835xˆ5yˆ2 z ˆ2+4.9416xˆ5 zˆ4
+9.3003 xˆ4yˆ4z−1.2295 xˆ4yˆ3 z ˆ2+3.261xˆ4yz ˆ4+0.6981xˆ4 z ˆ5
−3.653xˆ3yˆ5 z+1.5511 xˆ3yˆ4 z ˆ2+0.51474xˆ3yˆ2 z ˆ4+0.33683xˆ3yz ˆ5
−0.5988xˆ3 z ˆ6−9.8555xˆ2yˆ6 z+13.1442xˆ2yˆ4 z ˆ3+5.3804xyˆ7 z
+8.581xyˆ5 z ˆ3+2.0699xyˆ4 z ˆ4+0.073499yˆ8 z+0.50561yˆ7 z ˆ2
−4.152yˆ6 z ˆ3+2.209yˆ5 z ˆ4+0.677yˆ4 z ˆ5 .

Benchmark #8: Consider the three variable polynomial ODE:

dx

dt
= −0.5x3y + 0.5x3z2 − x3 + y4z + y4 − yz3 + 3yz2 + z3 − 3z2

dy

dt
= y4z − y4 − 2y3 − z3 + 3z2

dz

dt
= z2 − 3z

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :

1 .8371 xˆ5+0.1146xˆ4y+0.1431 xˆ4 z+4.9587 xˆ4 −2.0557xˆ3yˆ2
−0.4698xˆ3y+3.2944 xˆ3 z ˆ2+4.0441xˆ3 −1.2295xˆ2yˆ3+4.9584xˆ2yˆ2

+3.2610 xˆ2yz ˆ2+0.6981xˆ2 z ˆ3+4.9648xˆ2 z ˆ2+4.9858xˆ2+1.9598xyˆ4
+0.9480 xyˆ3+1.0295xyˆ2 z ˆ2+0.6737 xyz ˆ3+2.3539 xyzˆ2 −1.1976xzˆ4
0.2212 xzˆ3 −3.3047xzˆ2 −0.3773yˆ5+0.1262yˆ4 z+4.9884 yˆ4
−1.7272yˆ3 z ˆ2 −4.5919yˆ3+0.7677yˆ2 z ˆ3+4.9842yˆ2 z ˆ2+4.9898yˆ2
+1.8746 yz ˆ4+0.4655 yz ˆ3+0.9830 yz ˆ20.8032 z ˆ5+4.9823 z ˆ4
−0.6791z ˆ3+4.9962 z ˆ2

Lyapunov d e r i v a t i v e funct i on :

−29.977z ˆ2−10.087 xz ˆ2+24.0416 yz ˆ2+16.1044 z ˆ3−9.9716xˆ4−66.1853 xˆ2 zˆ2
+15.7876xyz ˆ2+1.3715 xz ˆ3−19.9593 yˆ4−71.2314 yˆ2 z ˆ2−12.204 yz ˆ3−48.9619 z ˆ4
−12.1323xˆ5−4.986xˆ4y−0.42935xˆ4z−77.376 xˆ3 z ˆ2+50.8098xˆ2yz ˆ2+15.7832xˆ2 zˆ3
+9.9739 xyˆ4−27.3951 xyˆ2 z ˆ2−11.3265 xyz ˆ3−7.6925 xz ˆ4+17.5716yˆ5−0.37814 yˆ4 z

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 34

+65.4124yˆ3 z ˆ2+16.8366yˆ2 z ˆ3−8.169yz ˆ4+4.3258 z ˆ5−19.8348 xˆ6−4.6566xˆ5y
−9.917xˆ4yˆ2−32.0142 xˆ4 z ˆ2+45.0923xˆ3yz ˆ2+24.9503xˆ3 z ˆ3−7.7016xˆ2yˆ4
+3.208xˆ2yˆ2 z ˆ2−16.9243 xˆ2yz ˆ3−17.7736 xˆ2 z ˆ4−5.6866xyˆ5+9.9714xyˆ4 z
+55.9384xyˆ3 z ˆ2+9.1352xyˆ2 z ˆ3+18.4209 xyz ˆ4+0.61781 xz ˆ5−26.132yˆ6
+9.9786 yˆ5z−32.7928yˆ4 z ˆ2−21.8781 yˆ3 z ˆ3−9.2688yˆ2 z ˆ4+6.4374 yzˆ5
+12.9884 z ˆ6−9.1857xˆ7−10.3757 xˆ6y−0.57258xˆ6 z+6.8718 xˆ5yˆ2−3.8171xˆ5 z ˆ2
−2.7287xˆ4yˆ3−0.0013497 xˆ4yˆ2+16.0705xˆ4yz ˆ2+7.6749xˆ4 z ˆ3+26.0935xˆ3yˆ4
−0.83166xˆ3yˆ2 z ˆ2−14.3316 xˆ3yz ˆ3+0.1192xˆ3 z ˆ4−3.9495xˆ2yˆ5+12.1284xˆ2yˆ4 z
−25.0232xˆ2yˆ3 z ˆ2−1.0817xˆ2yˆ2 z ˆ3+29.6455xˆ2yz ˆ4+6.6222xˆ2 z ˆ5−8.6057xyˆ6
−3.9191xyˆ4 z ˆ2−21.5587 xyˆ3 z ˆ3+19.5651 xyˆ2 z ˆ4−1.2779 xyz ˆ5+0.72252 xzˆ6
−15.233yˆ7−14.7866 yˆ6 z+8.6278 yˆ5 z ˆ2−2.7363yˆ4 z ˆ3−1.1648yˆ3 z ˆ4+5.8781yˆ2 zˆ5
−4.6757yz ˆ6−3.0722 z ˆ7−4.5929xˆ7y−0.22917xˆ6yˆ2−0.28629 xˆ6yz+9.9174 xˆ6 zˆ2
+3.0835 xˆ5yˆ3−5.6463xˆ5yz ˆ2+10.3006xˆ4yˆ4+1.6974xˆ4yˆ2 z ˆ2−9.8837xˆ4yz ˆ3
+4.9648 xˆ4 z ˆ4+3.5898xˆ3yˆ5+19.9386xˆ3yˆ4z−0.040754xˆ3yˆ3 z ˆ2−0.79519 xˆ3yˆ2 zˆ3
+1.2032 xˆ3yz ˆ4+0.11062xˆ3 z ˆ5−2.4786xˆ2yˆ6+8.502xˆ2yˆ5 z+6.6209 xˆ2yˆ4 zˆ2
+6.167xˆ2yˆ3 z ˆ3−9.8832xˆ2yz ˆ5−10.2983 xyˆ7+12.7599xyˆ6 z+4.4632 xyˆ5 zˆ2
+15.465 xyˆ4 z ˆ3−6.5221 xyˆ2 z ˆ5−1.3962 xyz ˆ6+3.8462yˆ8+20.3974yˆ7 z+6.2115 yˆ6 z ˆ2
+9.5007 yˆ5 z ˆ3−2.3862yˆ4 z ˆ4−1.0295yˆ3 z ˆ5−0.67367 yˆ2 z ˆ6
+1.1976 yz ˆ7+4.5929xˆ7 z ˆ2+0.22917xˆ6yz ˆ2+0.28629xˆ6 z ˆ3−3.0835xˆ5yˆ2 z ˆ2
+4.9416 xˆ5 z ˆ4+9.3003xˆ4yˆ4z−1.2295 xˆ4yˆ3 z ˆ2+3.261xˆ4yz ˆ4+0.6981xˆ4 z ˆ5−3.653xˆ3yˆ5 z
+1.5511 xˆ3yˆ4 z ˆ2+0.51474xˆ3yˆ2 z ˆ4+0.33683xˆ3yz ˆ5−0.5988xˆ3 z ˆ6−9.8555xˆ2yˆ6 z
+13.1442xˆ2yˆ4 z ˆ3+5.3804xyˆ7 z+8.581xyˆ5 z ˆ3+2.0699xyˆ4 z ˆ4+0.073499 yˆ8 z
+0.50561yˆ7 z ˆ2−4.152yˆ6 z ˆ3+2.209yˆ5 z ˆ4+0.677yˆ4 z ˆ5 .

Benchmark #9: Consider the three variable polynomial ODE:

dx

dt
= 0.05x2yz + 0.05x2y − 0.05x2z − 0.05x2 + 0.05xyz + 0.05xy − 0.05xz − 0.05x + 0.125y3z − 0.125y3

+ 0.125y2z − 0.125y2 + 0.2yz5 + 0.2yz4 − 0.2z5 − 0.2z4;

dy

dt
= 0.125y2z − 0.125y2 + 0.125yz − 0.125y + 0.2z5 + 0.2z4

dz

dt
= −0.1z2 − 0.1z

The second relaxation finds the Lyapunov function and derivative shown below:
Lyapunov function :

2.7500x2 + 2.7500y2 + 5.0000z2

Lyapunov derivative function :

−0.275xˆ2−0.6875yˆ2−z ˆ2−0.275xˆ3+0.275xˆ2y−0.275xˆ2z−0.6875 xyˆ2−0.6875yˆ3
+0.6875 yˆ2z−z ˆ3+0.275xˆ3y−0.275xˆ3 z+0.275xˆ2yz−0.6875 xyˆ3+0.6875xyˆ2 z
+0.6875yˆ3 z+0.275xˆ3yz+0.6875 xyˆ3z−1.1 xz ˆ4+1.1 yz ˆ4+1.1 xyzˆ4−1.1 xz ˆ5+1.1 yz ˆ5+1.1 xyzˆ5

Benchmark #10: Consider the three variable polynomial ODE:

dx

dt
= −0.01x+ 1.666667xz2y2 − 1.111111xzy + 0.555556xz2 − 0.555556z2

− 1.111111zy3 + 1.111111zy2 + 1.111111y3 − 1.111111y2

dz

dt
= −5zy2 + 5zy − 7.5z − 5y3 + 5y2

dy

dt
= 2y2 − 2y

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 35

The third relaxation finds the Lyapunov function shown below:

Lyapunov funct i on :

1 .5308 xˆ2+4.9266 z ˆ2+4.9819yˆ2

Lyapunov d e r i v a t i v e funct i on :

−0.030616xˆ2−73.8988 z ˆ2−19.9274 yˆ2−1.7009 xz ˆ2−3.4017xyˆ2+49.2659 z ˆ2y
+49.2659 zy ˆ2+19.9274yˆ3+1.7009xˆ2 z ˆ2+3.4017 xzy ˆ2+3.4017xyˆ3−49.2659 z ˆ2yˆ2−
+49.2659 zy ˆ3−3.4017xˆ2 z ˆ2y−3.4017 xzy ˆ3+5.1026xˆ2 zˆ2yˆ2

Benchmark #11: Consider the four variable polynomial ODE:

dx

dt
= −18xyw − 13xy − 18xw − 37.5x − 16z3 + 4z2y − 31.5z2w − 6.5z2 + 32zyw + 48zy − 16zw2 − 36zw

+ 8y3 + 36y2w + 28y2 + 68yw + 16y − 14w2

dz

dt
= −16z2 + 24zy − 31.5zw − 27.5z − 32y2 + 32yw + 16y − 16w2 − 28w

dy

dt
= −36y2w − 52y2 − 36yw − 112y + 64w

dw

dt
= −4w.

The first relaxation finds the Lyapunov function and derivative shown below:

Lyapunov funct i on :
1 .6209 yˆ2 +1.3650 yw + 4.8875wˆ2

Lyapunov d e r i v a t i v e funct i on :

−363.0877yˆ2−303.641wˆ2−168.5765 yˆ3−187.6862 yˆ2w
−49.1398ywˆ2−116.7068 yˆ3w−49.1397yˆ2wˆ2

Benchmark #12: Consider the four variable polynomial ODE:

dx

dt
= 28x3 − 28x2z − 28x2y + 0.5x2w + 9.5x2 + 3xz2 + 28xzy − xzw + 21xz + 14xy2 + 2xyw − 1.5x+ 10.5xw − 60.5x − 6z2y

− 15.5z2w + 19.5z2 − 22.5zy2 − 2zyw − 18zy + 9zw + 9z + 12.5y3 − 8y2w + 8y2 + 1yw2 − 8yw + 41y + 12.5w2 + 6w

dz

dt
= 2z3 + 4z2y + 8.5z2w + 4.5z2 + 4zy2 + 5.75zyw − 7.25zy + 8.5zw2 − 11zw − 42.5z + 9y2w + 17.75y2 + 22.5yw2

+ 12.5yw − 23y + 2.25w3 + 11.25w2 − 7w

dy

dt
= −21y2 − 12yw − 129y − 45w3 − 101w2 − 62w

dw

dt
= −13.5w2 − 27w.

The second relaxation finds the weak Lyapunov function shown below:

Lyapunov funct i on :

1 .5759 yˆ2−1.2527yw+5.0000wˆ2

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 36

Lyapunov d e r i v a t i v e funct i on :

−406.592yˆ2−192.3343wˆ2−66.1895 yˆ3−11.5165 yˆ2w
−286.3966ywˆ2−8.4804wˆ3−141.8345ywˆ3+56.3701wˆ4

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 37

Benchmark #13: Consider the four variable polynomial ODE:

dx

dt
= −1.510417x5 + 8x4yw + 8.5x4y − 8x4w − 12.208333x4 − 12x3zyw

− 9.75x3zy − 6x3zw + 2x3y2w + 22x3y2 + 4x3yw + 6.5x3y + 2.5x3w2 − 47x3w − 60.875x3

− 8x2z3w + 2x2z2yw − 16.875x2z2y + 8x2z2w2 − 13x2z2w − 8x2zy2w

− 7.5x2zy2 + 2x2zyw2 + 37x2zyw − 3.75x2zy − 4x2zw3 − 14.75x2zw2 − 46.5x2zw − 8x2y3w

− 7.5x2y3 + 4x2y2w + 1x2y2 + 16x2yw3 + 6.5x2yw2 − 2x2yw + 2x2y − 12x2w3

+ 6.5x2w2 − 7x2w + 11.75x2 − 4xz4w − 7xz3yw − 6.4375xz3y + 16xz3w2 + 25.5xz3w

+ 4xz2y2w + 12.25xz2y2 − 2xz2yw2 + 26.5xz2yw + 1.125xz2y − 1xz2w3

− 60.875xz2w2 − 47.75xz2w + 44xzy3w + 54.25xzy3 − 24xzy2w2 − 83xzy2w − 55.5xzy2

+ 49.25xzyw2 + 29xzyw − 13xzy + 42xzw3 − 20.75xzw2 − 32.5xzw − 1.5xy4 + 16xy3w2

+ 9xy3w − 0.5xy3 − 29.5xy2w2 − 43xy2w − 45.5xy2 + 16xyw3 + 30.5xyw2 + 15xyw + 24xy

− 6xw3 − 64.5xw2 + 58.5xw − 41.833333x − 4z5w + 6.5z4yw − 12.71875z4y + 12z4w2

− 7.25z4w − 6z3y2w − 8.375z3y2 − 9z3yw2 − 15.75z3yw − 22.4375z3y − 9z3w3

− 50.4375z3w2 − 69.875z3w + 14z2y3w + 11.625z2y3 − 2z2y2w2 − 56.5z2y2w

− 34.75z2y2 + 54.625z2yw2 − 33.5z2yw + 11z2y + 61z2w3 + 14.625z2w2 − 0.25z2w

− 8zy4w − 20.75zy4 + 8zy3w2 + 18.5zy3w + 22.75zy3 − 31.75zy2w2 − 50.5zy2w

− 17.75zy2 − 12zyw3 + 1.25zyw2 + 71.5zyw + 8zy − 1zw4 + 33zw3 − 143.25zw2 − 1.75zw

+ 16y5w + 18y5 − 16y4w2 − 56y4w − 46y4 + 5y3w2 + 4y3w + 22y3 + 8y2w4

+ 1y2w3 − 49y2w2 − 137y2w + 19y2 + 2yw5 − 25.5yw4 − 9yw3 + 31.5yw2 − 55yw + 12y

− 2w5 − 23.5w4 − 11w3 + 31.5w2 − 11w

dz

dt
= −3.020833x5 + 15.46875x4z + 10.583333x4 − 21.0625x3z2 − 18.625x3z

− 31.75x3 + 18.875x2z3 + 9.75x2z2 − 51.625x2z + 8.5x2 − 10.25xz4 − 7.5xz3

+ 12.75xz2 + 14.25xz − 40.666667x + 3.5z5 − 8z4 − 51.5z3 − 5.5z2 − 41.5z

dy

dt
= 3.25z5w − 6.359375z5 + 13z4yw + 15.3125z4y − 4.5z4w2 + 0.125z4w

− 44.71875z4 − 9z3y2w − 10.1875z3y2 − 1z3yw2 − 20.25z3yw − 20.875z3y

+ 42.3125z3w2 − 12.75z3w − 3.5z3 − 6.375z2y3 + 4z2y2w2 − 6.75z2y2w

− 17.125z2y2 + 27.625z2yw2 − 9.25z2yw − 72.375z2y − 6z2w3 − 19.375z2w2 − 23.25z2w

− 3.5z2 + 8zy4w + 9zy4 − 8zy3w2 − 2zy3w − 23zy3 + 9zy2w2 − 42zy2w + 38zy2

+ 4zyw4 − 11zyw3 − 57.5zyw2 − 164.5zyw + 45.5zy + zw5 − 12.75zw4 − 44.5zw3 + 74.75zw2

− 23.5zw − 22z + 4y5w + 4y5 + 8y4w + 6y4 − 16y3w2 − 16y3w − 85y3 + 8y2w3

+ 3y2w2 + 11y2w − 1y2 + 8yw4 + 6yw3 − 52.5yw2 + 17yw − 25.5y − 8w5 − 16.5w4 − 3w3 − 14.5w2 + 9w

dw

dt
= −2z6 + 6z5w + 5.375z5 − 4.5z4w2 − 22.21875z4w − 74.9375z4

+ 34.5z3w2 + 22.3125z3w − 15.125z3 − 5z2w3 + 33.5z2w2 − 128.125z2w

− 40.875z2 − zw4 − 21.75zw3 + 13.5zw2 + 13.75zw + 4.5z − 12w4 − 22w3 − 12.5w2 − 4w

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 38

Benchmark #14: Consider the four variable polynomial ODE:

dx

dt
= 7.145833x5 − 20x4y − 2.416667x4 − 10x3zy + 16x3zw + 20x3y2 − 18x3yw − 28x3y

− 10x3w2 − 12x3w − 77.541667x3 + 3.5x2z2yw − 25x2z2y + 2.5x2z2w

− 20x2zy2w − 30x2zy2 + 12x2zyw2 − 9x2zyw + 11x2zy − 12x2zw3 − 21x2zw2 + 15x2zw

+ 28x2y3w + 28x2y3 + 28x2y2w2 + 26x2y2w + 18x2y2 + 14x2yw3 + 2x2yw2

− 40x2yw − 7x2y − 2x2w3 − 8x2w2 − 17x2w − 42x2 + 13.75xz3yw + 5.5xz3y − 24xz3w2

− 2.75xz3w + 4xz2y2w + 9xz2y2 + 32xz2yw2 − 2xz2yw + 9.5xz2y − 6xz2w3

− 10.5xz2w2 + 31.5xz2w + 2xzy3w + 19xzy3 − 24xzy2w2 − 12xzy2w + 2xzy2 + 31xzyw3

+ 43xzyw2 + 15xzyw − 23.5xzy − 13xzw3 − 14xzw2 − 70.5xzw + 2xy4 + 28xy3w2

+ 7xy3w + 45xy3 + 38xy2w3 + 83xy2w2 − 16.5xy2w − 142xy2 + 28xyw4 − 12xyw3

− 76xyw2 − 34xyw + 25xy − 23xw4 − 38xw3 − 64.5xw2 + 48xw − 92x− 12z5w + 10.375z4yw

+ 4.25z4y − 12z4w2 + 3.125z4w − 1z3y2w + 0.5z3y2 + 4z3yw2 + 16z3yw + 23.75z3y

− 15z3w3 − 30.25z3w2 + 25.75z3w + 1z2y3w + 39.5z2y3 − 32z2y2w2

+ 16z2y2w + 63z2y2 + 29.5z2yw3 − 40.5z2yw + 47.75z2y − 36.5z2w3 − 27.5z2w2

− 88.25z2w − 3zy4w + 7zy4 + 26zy3w2 + 48zy3w + 26.5zy3 + 7zy2w3 + 35.5zy2w2

+ 26.75zy2w − 51zy2 + 14zyw4 − 2zyw3 − 5zyw2 − 62zyw − 50.5zy − 19.5zw4 − 29zw3

− 53.25zw2 − 37zw + 2.5y5 − 2y4w − 8.5y4 + 24y3w3 + 72.5y3w2 + 88y3w + 3y3 + 18y2w3

− 94.5y2w2 − 126y2w − 58y2 + 14yw5 + 5yw4 + 10yw3 − 46.5yw2 + 84yw + 12y

− 14w5 − 42w4 + 16w3 + 29.5w2 − 13w

dz

dt
= 4.291667x5 + 5.4375x4z − 20.833333x4 − 11.125x3z2 + 12.75x3z − 102.083333x3 − 10.25x2z3 − 0.5x2z2 − 2.625x2z

− 88x2 − 24.5xz4 − 21xz3 − 51.25xz2 − 70xz − 57x + 5z5 + 7z4 − 112.5z3 − 31z2 − 90z

dy

dt
= 5.1875z5w − 7.875z5 + 5z4yw + 10.25z4y + 20z4w2 − 4.5z4w − 2.625z4

+ 5z3y2w + 9.75z3y2 − 16z3yw2 − 12z3yw + 9.5z3y + 14.75z3w3 − 56z3w2

− 85.25z3w − 33.125z3 + z2y3w + 31z2y3 + 3z2y2w2 + 8z2y2w + 7.25z2y2

+ 3.5z2yw3 − 14.25z2yw2 − 34.625z2yw − 74z2y + 7z2w4 + 4z2w3 + 24.5z2w2

− 20z2w − 35.75z2 + 10zy4w + 11.25zy4 − 10zy3w2 + 22zy3w + 28.75zy3 + 12zy2w3

+ 4.25zy2w2 + 44zy2w − 10.5zy2 + 37zyw3 + 24.75zyw2 − 83zyw − 58zy + 7zw5

+ 41zw4 + 30zw3 + 47.75zw2 − 12zw − 18z + 10y5w + 10y5 − 20y4w2 + 17.5y4

+ 12.5y3w3 − 7.5y3w2 + 8y3w − 100y3 + 10y2w3 + 103.5y2w2 + 14y2w − 4y2 − 42.5yw3

− 70.5yw2 − 15yw − 36.5y + 10w5 − 8w4 + 20w3 + 8.5w2 − 12w

dw

dt
= −6z6 − 6z5w + 13.5625z5 − 7.5z4w2 − 15.125z4w + 3.375z4 − 6.25z3w2

− 22.75z3w + 9.875z3 − 9.75z2w3 − 38.5z2w2 − 74.125z2w − 91z2 − 7zw4

− 13zw3 + 8zw2 + 21.75zw + 30.5z − 13.5w4 − 39.5w3 − 7w2 − 43w

A DESCRIPTION OF SYNTHESIZED BENCHMARKS 39

Benchmark #15: Consider the four variable polynomial ODE:

dx

dt
= 8x5 + 84x4zw − 2x4z − 204.5x4yw − 4x4w2 + 42x4w + 29x4 + 28x3z2w + 18.375x3z2 − 53.25x3zyw

+ 13x3zw2 − 25.5x3zw + 8.75x3z − 19x3w2 − 56.5x3w − 70x3 − 1.187500x2z3 + 1.375x2z2yw

− 7.5x2z2w2 + 43.25x2z2w + 30.25x2z2 − 44.75x2zy2w + 15x2zyw2 − 244.5x2zyw − 28x2zw3 − 177x2zw2

+ 300x2zw − 48.5x2z + 31.5x2y3w − 46x2y2w2 + 374.5x2y2w − 12x2yw3 + 275x2yw2 − 596.5x2yw

+ 2x2w4 + 112x2w3 + 88.5x2w2 + 128x2w − 41.5x2 + 9.656250xz4 + 0.6875xz3yw − 3.75xz3w2

+ 74.625xz3w + 28.562500xz3 − 15.375xz2y2w + 7.5xz2yw2 − 159.25xz2yw − 26xz2w2 + 126xz2w

− 93.75xz2 + 29.75xzy3w − 25xzy2w2 + 210.25xzy2w + 36xzyw3 + 169.5xzyw2 − 420.25xzyw + 18xzw4 − 57xzw3

− 52.25xzw2 − 266xzw + 17.25xz − 11xw4 − 108xw3 − 135xw2 + 42xw − 76x+ 14.015625z5 + 0.343750z4yw − 1.875z4w2

+ 31.312500z4w + 33.734375z4 − 7.687500z3y2w + 3.75z3yw2 − 62.625z3yw + 33z3w − 142.468750z3 + 16.875z2y3w

− 16.5z2y2w2 + 109.125z2y2w + 22z2yw3 + 96.25z2yw2 − 204.625z2yw + 9z2w4 − 25.5z2w3

− 37.625z2w2 − 147.5z2w − 2.25z2 − 117.75zy4w + 117zy3w2 − 73.25zy3w − 72zy2w3

− 264.5zy2w2 + 538.25zy2w − 18zyw4 − 24zyw3 + 97.25zyw2 + 188zyw − 28zw4 + 95zw3

+ 104zw2 − 51zw − 164.875000z + 246y5w − 238y4w2 + 120y4w + 173y3w3+

564y3w2 − 1049.5y3w + 40y2w4 + 65y2w3 − 134.5y2w2 − 440.5y2w − 34.5yw5

− 37.5yw4 − 285yw3 − 248yw2 + 243yw + 17w5 + 40w4 + 13w3 + 23w2 − 42w

dz

dt
= −7x4yw − 8x4w2 + 85x4w − 16x2y2w2 − 71x2y2w − 28x2yw3 − 66x2yw2 + 70x2yw + 4x2w4 + 140x2w3

+ 84x2w2 + 278x2w + 15.468750z5+

18.093750z4 − 130.937500z3 + 8z2 − 183.75z

dy

dt
= 203x5w + 8x5 + 30.75x4z + 3.5x4y − 59.5x4 + 11.25x3z2 − 39.5x3zy − 38.25x3z − 33.5x3y2w + 4x3y2

+ 38x3yw2 − 331x3yw + 59.5x3y − 268x3w2 + 722.5x3w + 38x3 + 44.5x2z3 + 21x2z2y − 1.125x2z2

+ 7x2zy2 + 19.75x2zy − 59x2z + 14.5x2y2 − 52x2y − 57x2 + 3.90625xz4 + 8.812500xz3y + 14.8125

xz3 + 26.625xz2y2 + 35.625xz2y − 0.25xz2 + 4.25xzy3 + 17.25xzy2 − 2.5xzy − 65.75xz

− 243.5xy4w + 2.5xy4 + 238xy3w2 − 140.5xy3w − 21.5xy3 − 144xy2w3

− 549xy2w2 + 1021.5xy2w − 6xy2 − 40xyw4 − 48xyw3 + 176.5xyw2 + 438xyw − 37.5xy

+ 35xw5 + 36xw4 + 296xw3 + 315xw2 − 212xw − 68x+ 9.921875z5 − 0.343750z4yw+

32.375z4y + 1.875000z4w2 − 3.312500z4w − 10.546875z4 + 15.75z3y2 − 4.1875z3y

− 96.40625z3 − 44.875000z2y3w + 31.5z2y3 + 44.5z2y2w2 − 53.125000

z2y2w + 2.625z2y2 − 22z2yw3 − 152.25z2yw2 + 226.625z2yw − 45.875000z2y − 9z2w4

− 30.5z2w3 + 39.625z2w2 + 75.5z2w + 24.25z2 − 4.75zy3 − 8.75zy2 − 21.5

zy − 119.625z − 246y5w + 182y4w2 − 184y4w − 15.5y4 − 117y3w3 − 548y3w2 + 1027.5y3w

+ 6.5y3 − 40y2w4 − 93y2w3 + 208.5y2w2 + 527.5y2w − 16y2 + 34.5yw5+

105.5yw4 + 299yw3 + 336yw2 − 169yw − 93.5y − 52w5 + w4 + 165w3 − 73w2 + 74w

dw

dt
= 246y6 − 182y5w + 168.5y5 + 145y4w2 + 548y4w − 1026y4 + 40y3w3

+ 116y3w2 − 191.5y3w − 523.5y3 − 34.5y2w4 − 105.5y2w3 − 324.5y2w2

− 366y2w + 125y2 + 34.5yw4 − 18.5yw3 − 191.5yw2 + 28.5yw − 128y − 29w4 − 74w3 + 2.5w2 − 41w

	1 Introduction
	1.0.1 Organization
	1.1 Related Work

	2 Preliminaries
	2.1 Lyapunov Functions
	2.2 Proving Polynomial Positivity
	2.2.1 Linear Representations
	2.2.2 Sum-Of-Squares representations

	2.3 Synthesis of Lyapunov Functions

	3 Linear Programming relaxations based on Bernstein polynomials
	3.1 Overview of Bernstein polynomials
	3.2 Bernstein relaxations

	4 Comparison between Representations
	4.1 Comparison between Linear and SOS representations
	4.2 Comparison of Bernstein relaxations with other Linear Representations

	5 Synthesis of polynomial Lyapunov functions
	5.1 Encoding Positivity of Parametric Polynomial
	5.2 Simplified Encoding
	5.3 Transforming Co-ordinates
	5.4 Lie derivatives
	5.5 Overall Encoding
	5.6 Higher relaxation degree
	5.7 Branch and bound decomposition

	6 Numerical results
	6.1 Implementation
	6.2 Numerical Examples
	6.2.1 Benchmarks from Sriram2013 and comparison with Handelman Representations
	6.2.2 Synthetic Benchmarks and comparison with SOS
	6.2.3 Results

	7 Conclusion
	A Description of Synthesized Benchmarks

