
© Author accepted version 2014. The final version was published by Oxford University Press on behalf of The BCS.
You can access the final version on the publisher site via the DOI below:

doi:10.1093/iwcomp/iwc/iwu016

Wizard of Oz Experimentation for
Language Technology Applications:

Challenges and Tools
Stephan Schlögl1, Gavin Doherty2 and Saturnino Luz2

1Department of Management, Communication & IT, MCI Management Center Innsbruck,
Innsbruck, Austria

2School of Computer Science and Statistics, Trinity College, The University of Dublin, Ireland
∗Corresponding author: Gavin.Doherty@tcd.ie

Wizard of OZ (WOZ) is a well-established method for simulating the functionality
and user experience of future systems. Using a human wizard to mimic certain
operations of a potential system is particularly useful in situations where extensive
engineering effort would otherwise be needed to explore the design possibilities offered
by such operations. The WOZ method has been widely used in connection with
speech and language technologies, but advances in sensor technology and pattern
recognition as well as new application areas such as human-robot interaction have
made it increasingly relevant to the design of a wider range of interactive systems. In
such cases achieving acceptable performance at the user interface level often hinges
on resource intensive improvements such as domain tuning, which are better done
once the overall design is relatively stable. While WOZ is recognised as a valuable
prototyping technique, surprisingly little effort has been put into exploring it from
a methodological point of view. Starting from a survey of the literature, this paper
presents a systematic investigation and analysis of the design space for WOZ for
language technology applications, and proposes a generic architecture for tool support
that supports the integration of components for speech recognition and synthesis
as well as for machine translation. This architecture is instantiated in WebWOZ -
a new web-based open-source WOZ prototyping platform. The viability of generic
support is explored empirically through a series of evaluations. Researchers from a
variety of backgrounds were able to create experiments, independent of their previous
experience with WOZ. The approach was further validated through a number of real
experiments, which also helped to identify a number of possibilities for additional
support, and flagged potential issues relating to consistency in Wizard performance.

Categories and subject descriptors: natural language processing; design tools and techniques

Keywords: wizard of oz; prototyping; language technologies; machine translation; dialog systems;
speech

Responsible Editorial Board Member: Name

1. INTRODUCTION

Obtaining feedback early in the design process is impor-
tant for developing high quality interactive systems. Gould
and Lewis (1985) identified ‘Iterative Design’ as one of
three key principles for developing usable products and

argue that problems and design faults can be discovered
and consequently fixed through early and ongoing user
testing. Prototypes, either physical or in the form of soft-
ware, are valuable instruments for eliciting this sort of

Interacting with Computers, 2014

ar
X

iv
:2

40
2.

14
56

3v
1 

 [
cs

.H
C

] 
 2

2 
Fe

b 
20

24



2

user feedback. Examples include paper prototypes (Bai-
ley et al., 2008), sketches (Kieffer et al., 2010), and wire-
frames (Li et al., 2010) as well as 3D prototypes (Séquin,
2005) and more advanced mock-ups (Aleksy et al., 2010).
Wizard of Oz (WOZ) is an important prototyping method
used by researchers and designers to obtain feedback on
functionalities that would otherwise require significant
resources to be implemented. In a WOZ experiment a
human ‘wizard’ mimics the functions of a system, either
entirely or in part, which permits the evaluation of poten-
tial user experiences and interaction strategies without the
need for building a fully functional product first (Gould
et al., 1983). While WOZ can be applied in a variety
of interaction scenarios, ranging from mixed-reality simu-
lations (Dow et al., 2005a) to human-robot interaction
(Saint-Aimé et al., 2011), it is mainly in the area of
speech and Natural Language Processing (NLP) where
the method is regularly employed, and where we see an
even greater demand for it in the future.

The reason for this expected increase can be found
in the fact that the use of language technologies
such as Automatic Speech Recognition (ASR), Machine
Translation (MT) and Text-to-Speech Synthesis (TTS)
has risen significantly in recent years. One driver
of adoption has been increasingly ubiquitous access
to products and services outside traditional office
environments, where in many cases language technology
solutions offer distinct advantages (e.g. hands-free and
eyes-free interaction such as the use of speech to control
a mobile phone).

Another contributing factor is the improved perfor-
mance of these technologies which has opened up new
application areas in different fields. This trend is visible
both from an application perspective, in the widespread
use of voice dialing, in-car navigation systems with speech
interfaces, instant web-based machine translation from
mobile devices, and transactions accessed through Inter-
active Voice Response (IVR) systems, as well as from a
research perspective, in emerging areas such as speech-to-
speech translation (Stüker et al., 2006) and human-avatar
interaction (Bradley et al., 2010).

However, the technology at hand is not perfect and
typically substantial engineering effort (gathering of
corpora, training, tuning) is needed before prototypes
involving such technologies can deliver a user experience
robust enough to allow potential applications to be
evaluated with real users. For Graphical User Interfaces
(GUI), methods like sketching and wire-framing enable
the designer to obtain early impressions and initial
user feedback on a given application scenario. However,
these low-fidelity prototyping techniques do not map
well onto systems based around speech and other forms
of natural language. Applications that use Language
Technology Components such as ASR, MT or TTS as their

predominant interaction channel require a different design
approach and WOZ can be seen as a method that offers a
means of ‘sketching’ language-based interaction.

A review of the literature supports the view that WOZ
is strongly associated with the design of interfaces that
include natural language components, and related tasks
such as the gathering of corpora. The ACM Guide to
Computing Literature, which contains over 2.1 million
bibliographic entries at the time of writing3 lists 2,045 hits
for the search term ‘Wizard of Oz’, of which 35.6% (727
hits) also include the keyword ‘Natural Language’, 25.4%
the keyword ‘Dialog(ue) System(s)’ (520 hits), 25.8% the
keywords ‘Corpus’ or ‘Corpora’ (528 hits), 29.3% the
keyword ‘Speech recognition’ (600 hits) and 59.8% the
keyword ‘Speech’ (1,222 hits). 653 entries for Wizard of Oz
did not contain any of these keywords (31.9%). The IEEE
Xplore Digital Library (over 3.6 million records at time of
writing)4 lists 885 entries for ‘Wizard of Oz’, 33.6% (297
hits) of which also contain the term ‘Natural Language’,
35.6% (315 hits) ‘Dialog(ue) System(s)’, 28.4% (251 hits)
the terms ‘Corpus’ or ‘Corpora’, 40.3% (357 hits) the
term ‘Speech Recognition’ and 68.1% (603 hits) the term
‘Speech’. 248 entries did not contain any of these keywords
(28%). Papers including the term ‘Machine Translation’
are less common with 50 hits in the ACM library and
31 hits in the IEEE library, with most of these being
recent. While early applications of WOZ mainly focused
on simulating natural language interaction based on pure
text or speech, we do see a shift towards multi-modality in
recent years. However, even within this shift it is the NLP
aspect of a study that typically needs the most simulation,
as existing technology is simply not mature enough to be
used without significant upfront investment.

Within this language-centred application area we can
identify three distinct uses of the WOZ technique for
designing interactive systems. Firstly, within interaction
design, it is clearly possible to apply this approach to
investigate the design of human-computer dialogues. Sec-
ondly, it can be used as a means for collecting lan-
guage corpora (which feeds into both interaction design
and engineering work to train and tune technology com-
ponents), and thirdly researchers developing technology
components can employ it as a means for conducting eval-
uations of their performance in specific application areas,
without facing the engineering effort of constructing the
application itself (which may require more robust compo-
nents than are currently available).

In order to expand on this general classification of WOZ
prototyping for Language Technology applications this
paper presents a systematic analysis of the existing design

3http://dl.acm.org/ [Accessed: Dec. 23rd 2013]
4http://ieeexplore.ieee.org/Xplore/guesthome.jsp [Accessed:

Dec. 23rd 2013]

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 3

space. This analysis is based on an extensive survey of
the literature, semi-structured interviews with researchers
from industry and academia who are actively involved
in WOZ studies, and the requirements of researchers
from a large collaborative project focused on language
technology development. After an initial overview of
possible application scenarios we move on to describing
the two categories of software programs that currently
support the WOZ method with respect to language
technologies. Looking at the wizard task and its interplay
with technology components we then analyse possible
improvements in terms of tool support. In the second
half of the paper we present WebWOZ - a web-based
open-source WOZ prototyping platform, and empirically
explore the viability of generic support through a series of
evaluations involving both the construction and execution
of experiments.

It should be noted that even though the following
analysis focuses mainly on WOZ prototyping for language
technology applications, we believe that most, if not all, of
the identified aspects generalise to other technologies and
related studies, and therefore should be seen as relevant
to the broader domain of prototyping Human-Computer
Interactions. As an important goal of our own research was
to support exploration of multilingual scenarios, we focus
on systems that may be capable of integrating machine
translation, although from the literature we can clearly see
that WOZ is predominantly used in monolingual settings.

2. WIZARD OF OZ AND ITS
APPLICATIONS

Human simulation as a prototyping method was first
applied more than 40 years ago when Erdmann and
Neal (1971) tested their concept of a self-service airline
ticket kiosk and then later when Gould et al. (1983)
explored the possibilities of the ‘Listening Typewriter’.
The name ‘Wizard of Oz’ or ‘OZ Paradigm’, respectively,
was given to the method by Kelley (1983) who used it
to simulate a calendar application that could be operated
via natural language input. Thereafter several researchers
employed this new technique for prototyping natural
language based interaction (Good et al., 1984; Gould
et al., 1987; Carroll and Aaronson, 1988; Hill and Miller,
1988; Jönsson and Dahlbäck, 1988), which sometimes
was also referred to as PNAMBIC (Pay No Attention
to the Man BehInd the Curtain) (Fraser and Gilbert,
1991), before first Hauptmann (1989) and then later
De Marconnay et al. (1993) extended its application area
from testing purely text- and speech-based interaction to
evaluating gestures and face recognition.

This expansion in scope continued with Salber and
Coutaz (1993b) who looked at multi-modal interaction,

leading to the introduction of multiple wizards. In
more recent years WOZ experiments have been used
for a variety of purposes, including prototyping multi-
modal information retrieval (Rajman et al., 2006), testing
speech-based flight booking systems (Karpov et al., 2008)
and simulating a virtual doorman (Mäkelä et al., 2001).
Exploring relatively open interaction spaces, Bradley
et al. (2009) used WOZ to evaluate users’ experiences
when interacting with a web-based social companion,
Goldstein et al. (1999) employed it to investigate
navigation in voice-controlled dialogues, and Davis (1998)
tested the advantages of active help when using an
unfamiliar software application. Further examples of WOZ
experimentation and how they are used can be found
in Dahlbäck et al. (1993).

While these examples illustrate a variety of use cases for
the method, the vast majority of them fit the categories
described in the preceding section, namely: exploring
interaction strategies (Okamoto et al., 2001) and designing
dialogues (Howell et al., 2005), collecting text and
speech corpora (Benzmüller et al., 2003), and evaluating
components (Skantze and Hjalmarsson, 2010). In terms
of its use in interaction design, as with low-fidelity
prototyping methods for software based on GUIs, WOZ
can play a role in shaping an application structure and
improving the ‘naturalness’ of an interaction. The method
supports designers in producing appropriate dialogue
models and allows them to improve their understanding
of a domain.

Although user behaviour is usually the focus of WOZ
studies, analyses of wizard behaviour have also been
conducted, for example in a study by Rieser and Lemon
(2010), who used a WOZ setting to gather data on
whether to present visual information or to use only
speech in clarification requests. A final area in which WOZ
was found to be helpful is the exploration of emotions
(Scherer and Schwenker, 2008) and social aspects of
human-machine interactions (Deruyter et al., 2005).

3. WIZARDS AS USERS AND THEIR
INTEREST IN THE METHOD

From a system design perspective, WOZ is unusual
in that two distinct groups could be regarded as its
potential users. On the one hand, we may identify the
prospective end-user of the prototyped system as the main
party involved in the method. However, as the WOZ
technique mainly enables a designer to explore a variety
of application areas, designers and researchers themselves
can be seen as the more central user group for a tool. Their
task (to design and run WOZ experiments) is complex
and their general requirements poorly understood. In this
paper we therefore focus on the person(s) who design and

Interacting with Computers, 2014



4

run WOZ experiments as the immediate user group rather
than the potential end-users of a prototyped system.

From a design perspective, students studying Human-
Computer Interaction and Interaction Design will gener-
ally be introduced to WOZ, yet only a small proportion
of these will actually experience the method when com-
pared to exercises based on the use of paper prototypes.
One reason for this lack of practical usage might be that
in order to be applicable in an HCI teaching context, any
approach would have to have a low logistical and technical
overhead to enable students to quickly design and carry
out evaluations.

Experienced interaction designers are another obvious
user group. Our own interviews with developers of systems
based on Interactive Voice Response (IVR) suggest that
WOZ is used sporadically within product development.
However, the opinion was expressed that the limited time-
scale typically available for interaction design activities,
especially within smaller projects, often impedes the
application of the method. Hence, it seems that more
exploratory uses, such as those represented by the HCI
research literature, may be a more sensible starting point,
when it comes to understanding users coming from the
area of voice-interface design and development.

Another distinct category of users are people working
in computational linguistics as they usually have a strong
interest in gathering language corpora. Such corpora
are vital resources both for scholarly work and for the
development of Language Technology Components. For
example, the WOZ method can be used to collect an initial
language corpus upon which components are trained
and improved (Lamel, 1998). Collecting context-specific
and language-specific corpora helps to expand the reach
of existing technologies. The desired output from an
experiment in this setting is typically the input supplied
by the non-wizard user, whether it is typed text, speech,
or multi-modal input (for example speech and gestures).

Those involved in the development of these technology
components may also be interested in WOZ as it allows
them to evaluate the performance of their products in a
real-world setting, for example within a specific applica-
tion context. Using WOZ these technologies can be tested
in more realistic, task-focussed evaluations (many existing
language technology component evaluations are otherwise
based on context-free standardised benchmarks), with-
out the need to construct a fully working system around
them (which is usually not the focus of their work). The
usual benchmark of such an experiment might be the word
error rate for the recognition of application-specific utter-
ances, rather than the design of the dialogue itself or other
aspects of task performance.

Finally, while we do not focus on it in this paper,
WOZ has also been used in psycho-linguistic research into
how human-human dialogues differ from human-computer

dialogues. In particular the area of syntactic and lexical
alignment has been the focus of recent work (Branigan
et al., 2003, 2011; Cowan et al., 2012).

Looking at these different user groups and their interest
in employing the method one can find again the three
main application areas for WOZ experimentation: Firstly,
interaction design, where the flexibility to explore a
range of different types of scenario is key, but which
might make use of language technology components as
part of delivering an authentic experience. Secondly,
component evaluation, testing the quality of existing
technology, which requires that (at least partially)
working components be integrated, and finally corpus
gathering, which may or may not require the integration
of working components.

4. LEARNING FROM EXPERIENCES WITH
WIZARD OF OZ

In order to further increase our understanding of the
different user groups and their distinct usage scenarios for
WOZ we conducted an interview study with researchers
from industry and academia. In total five professional
voice interface designers and 25 academics who had
recently published relevant work in the area (i.e. mostly
within the last five years) were approached via email and
asked for a phone interview. Positive responses from three
of the designers and 17 researchers (seven of them working
in NLP, five in HCI, and five in the area of multi-modal
interaction) led to a total of 20 interviews, each of which
lasted between 17 and 30 minutes. All of the interviewees
were actively involved in at least one WOZ study, and
13 of them indicated that they had used WOZ in a
variety of experiments. Interviews were semi-structured
and participants were asked about their motivation for
using the method, the challenges they had to overcome
when doing so, and the tools they had employed. The
recordings were fully transcribed and analysed through
an open coding process before grouping them inclusively
in the sections highlighted below (results are summarised
in Table 1). The coding and thematic analysis was carried
out by one of the authors and subsequently cross-checked
by another member of the team.

4.1. Reasons for using WOZ

Exploring new design ideas before they are implemented
was cited as a reason for using WOZ by the majority (13)
of interviewees. This rationale is expressed in the following
statement:

So we had this idea of building this multi-lingual translation
system but we were not very sure, so we wanted to do a

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 5

Table 1. Summarised results of 20 phone interviews conducted with researchers from industry and academia who have experience
with WOZ experimentation.

Reason for using WOZ

Explore new design ideas
Collect an initial dataset
Compare specific design solutions
Evaluate technology

Challenges to overcome

Delays caused by aspects of the wizard task
Make participants believe that they are interacting with a system
Simulate consistent system behaviour
Simulate erroneous or suboptimal system performance
Recruit participants
High experiment costs
Ethical issue of deceiving participants

Tools employed Self-developed programs supporting a very specific experiment setting

WOZ simulation in which we placed a tri-lingual person in
the middle. (Participant S10)

The method was found to be especially useful as a means
of obtaining early feedback on a proposed design direction
(S03: “So whenever you already have you know a draft
design and you want to show it to customers or you just
want to show it to an initial set of users in order to design
it in the right direction.”) or employ it as a low-fidelity
proof of concept study (S10: “Yeah this is what, this was
just a proof of concept”).

In addition interviewees, especially from the NLP
domain, stressed the value of WOZ for collecting data
(stated by 8 interviewees):

You generate data without having a dialogue system and
you create from this small dataset, you create simulated
environments, and in that simulated environments you can
train dialogue strategies.(Participant S12)

This was typically done in order to explore dialogue
strategies (S09: “Yes the research was focused on the
dialog between the participants, the communication, what
they would say.”). Two researchers specifically highlighted
its qualities for comparing specific design solutions (S14:
“The biggest point is to save time in developing the actual
technology, to allow you to test out alternatives without
over-committing to one of them early on.”), in which case
the possibility for quickly putting together different design
proposals is a key property of the method:

Like if you were thinking about a A or B design you can
quickly put both together and then ride through you know
half a dozen people and see which of the two designs seems
to work better.(Participant S03).

Finally, two others mentioned that they had used it to
evaluate some of their technology components (S15: “We

performed WoZ experiments three times to evaluate our
dialogue system.”).

4.2. Challenges to overcome

In terms of problems researchers were facing it seems
that delays coming from the wizard constitute the
biggest challenge, specifically mentioned by 9 of the 20
interviewees (S07: “The delay seemed to be the biggest
problem.”). These delays were attributed to a number
of different aspects of the wizard task (S09: “All they
needed to do is type in a message and type enter.”),
information overload (S04: “Moreover the problem was
that theoretically I should only look at the non-verbal
behaviour and the acoustic information.”) or simply rooted
in a lack of wizard training (S19: “No, no specific
training at all, we made some pilots.”). Another particular
challenge was found in ‘hiding the wizard’ (mentioned by
7 interviewees) so that people would believe that they
are in fact interacting with a piece of technology rather
than a human being (S11: “You have to make sure that
users really don’t feel that there is someone staying in
the other room.”). This requirement for realism of the
simulated functionality is not restricted to giving the
user the impression that they are interacting with a real
system but it also involves reflecting the complexity of
the underlying technology in a way that conforms to
the designer’s expectations (S20: “The more complicated
the technology the bigger the challenge of making the
simulation reflect what might really happen.”).

Also in connection with this issue, some interviewees
highlighted the challenge of maintaining consistent wizard
behaviour (mentioned by 7 interviewees) and remarked on
how inconsistencies can influence evaluation results (S16:
“I mean it has to be consistent. It has to give the same

Interacting with Computers, 2014



6

answer all the time.”). This seems especially true for the
quality and validity of the responses given to users, as
variable wizard actions can lead to confusion for a test
participant:

If you are not consistent then the user will be very confused
by what they are seeing and they might give you feedback
on something, on, well they will give you feedback and you,
it will be hard for you to know whether or not they are
responding or I should say which version of the interface
they are responding to. (Participant S18)

Finally, the simulation of errors or suboptimal system
performance was found to be important (mentioned by
2 interviewees), both for testing error-recovery routines
as well as for conveying realistic system behaviour:

So you start becoming better at mimicking a real system
so from time to time you would throw in an error or a
misrecognition or something that would basically make the
participant to try to recover. (Participant S03).

It can be seen as a way to reduce a wizard’s workload while
at the same time increasing the validity of the simulated
system:

So I think that idea of we are going to just have the wizard
do a very well defined task, so that they can focus on just
doing that right and let the system simulate the errors and
simulate the delays and simulate all that stuff. (Participant
S20)

However, support for this sort of functionality is not
generally available. Other challenges that were mentioned
include the recruitment of participants (S09: “And it took
quite a long time to find participants, because it was
very important that the participants, that both participants
come.”), the high cost of experimentation (S15: “No special
challenges, but, WoZ experiments cost too much. It is
a big problem for us.”) as well as the ethical issue of
deceiving participants (S19: “Yeah. You have to, you have
to handle that with care. So there is some ethical, ethical
considerations also to be made.”).

While recruitment is a common experimental problem,
it can be argued that web-based approaches (such as those
employed in remote usability testing) have the advantage
of widening the potential pool of participants. With regard
to cost, reducing the amount of technical effort required
for constructing experiments, and reducing the logistical
overhead of running and analysing experiments would
be separate dimensions. Ethics is an important issue for
WOZ as a methodology, as many experiments will involve
deceiving participants, and as such it is vital to ensure
that participants are debriefed appropriately.

4.3. Tools employed

When asked about the tools they used to conduct
their WOZ experiments, all of the researchers stated

that they had employed self-developed programs and
even though they mostly found that the implementation
time for those solutions was feasible, the effort often
appeared disproportionately high given that WOZ is
usually regarded as being a low-fidelity prototyping
method (S12: “I think to develop a stable version of that,
took us one person month at least.”). Likewise, several
interviewees expressed an interest in a more general WOZ
prototyping tool, that could be adapted to their research
interest in a flexible manner:

Yeah, yeah it is very cool this idea, if it is researchers like
myself ... that we can just manipulate, make it our own ... fit
it to our own research ... and not having to develop a system
on our own every time (Participant S09).

Similar demands have emerged from within our own
research environment. As part of an extensive research
program on development and application of language
technologies, we were increasingly facing the problem
of how to test technology components with real
users, without the overhead of creating an application
environment for each case. Examples to that effect include
the exploration of how MT technologies may be used in
the work place (Doherty et al., 2012; Karamanis et al.,
2011), how combining MT with other components such
as TTS may influence the perceived user experience of
products (Schneider and Luz, 2011), or how ASR might
be used to help language learners better pronounce foreign
words (Cabral et al., 2012).

These practical examples combined with the previously
analysed literature and complemented by the interview
study described above, supports the conclusion that there
is a need for more generic tool support which to date
has not been addressed or explored sufficiently, and
that such tool support should pay particular attention
to experimentation involving real or simulated language
technology components.

5. REQUIREMENTS FOR WIZARD OF OZ
TOOL SUPPORT

Having started with the different groups of users possibly
interested in employing the WOZ method, and their
distinct application scenarios, we can now move on and
look more closely at the requirements for tool support,
what existing tools offer and where support should be
improved. We can start by categorizing requirements for
WOZ experiments into features and qualities (summarised
in Table 2).

Firstly, from a functional point of view a WOZ
tool would need to provide support for running tightly
controlled experiments as well as more exploratory
studies. Even within tightly controlled experiments some
flexibility for dealing with the unexpected may be

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 7

Table 2. General requirements for supporting WOZ experimentation.

Features
Support both structured and flexible interactions
Support integration of (unreliable) components with human intervention
Support experimental data capture and export for analysis

Qualities
Reduce overhead in experiment construction and software installation
Reduce cognitive burden on Wizard during experimentation

useful. Features that would allow for highly structured
interactions include the possibility for creating, selecting
and grouping responses, and the availability of filters and
similar aids that help a wizard retrieve information.

Secondly, when we consider scenarios where different
existing technologies are combined, there is a potential for
this interconnection to increase failure. A representative
example would be the analysis of speech-to-speech
translation where the output of an ASR component is
often used as input for MT and its output then fed to
the text-to-speech synthesiser. Whereas humans might
very well tolerate small mistakes coming from single
components, technology is less forgiving. That is, while
humans may use contextual information to handle small
speech recognition errors, they can easily lead to problems
when forwarded to a translation service. Supporting
the function of a human in the loop who acts as an
enhancement rather than a replacement for the technology
would allow exploration of these kinds of dependency
problems in more detail.

Thirdly, tracking mechanisms and data exports would
need to be available in order to analyse user behaviour.
In addition, being able to gather data on wizard task
performance and how it changes depending on the
experiment setting, and over the course of an experiment,
can be seen as a feature that could make this prototyping
method more robust. Existing problems with this sort of
data logging were explicitly mentioned in our interview
study (S12: “Actually the logging is another challenge
which ... what happened to us is that we lost data”), and
therefore clearly highlight its importance and the need for
improvement.

On the other hand, from a more qualitative point
of view we see that currently the requirements for
installing multiple software components and configuring
the network (to support the connection between the user
and the wizard) quickly increases the amount of time
and resources needed for running WOZ, and therefore
diminishes its value as a low-fidelity prototyping method.
A further complication is that technology components are
often platform-specific. Hence, reducing this cost of setting
up, designing and running experiments would make the
method more attractive and accessible to researchers and
designers of all fields.

Finally, another qualitative aspect that currently
poses significant challenges for WOZ experiments, is
the workload of the human wizard while running
evaluations (Salber and Coutaz, 1993b). Correct timing,
consistency and general machine-like behaviour directly
influences the validity and representativeness of an
experiment, and therefore, if not controlled, can influence
evaluation results. Support could come from visible
instructions and reminders that might help the wizard
achieve consistency, or from highly customizable wizard
interfaces. Furthermore, if we consider changing the
wizard’s role from replacing to enhancing technology, as
outlined above, additional support for that role might also
be required.

6. EXISTING WIZARD OF OZ TOOL
SUPPORT

Even though there seems to be a clear demand for
integrating WOZ support into language technology
frameworks, only a limited range of applications offer
adequate functionalities to do so. From the literature,
the software tools and frameworks that have been
used for prototyping language-based interaction scenarios
differ greatly between the different application scenarios.
Furthermore, many of those referred to require a
considerable amount of set-up time and often depend
on obsolete technology. Many also do not appear to be
publicly available.

Generally applications and frameworks that may
support WOZ exploration can be separated into two
categories. In the first category we find Dialogue
Management (DM) tools which focus on the evaluation
of language technology components and whose primary
application lies in the area of Natural Language
Processing (NLP) and machine learning. Tools from the
second category, herein referred to as pure WOZ tools,
instead rely completely on human simulation, which
makes them more suitable for exploratory analyses.

6.1. Dialogue Management Tools

Two of the better known examples for DM tools are the
CSLU toolkit (Sutton et al., 1998) and the Olympus

Interacting with Computers, 2014



8

dialogue framework (Bohus et al., 2007). Others include
the Jaspis dialogue management system (Turunen and
Hakulinen, 2000) and the EPFL dialogue platform
(Cenek et al., 2005). DM tools explore the language-
based interaction between a human and a system and
aim at improving this dialogue. They usually provide
an application development interface which is used by
a programmer to specify the dialogue flow and its
integration of different language technology components
like ASR and TTS. Once designed the dialogue is tested
using human participants. In doing so the main focus lies
on testing and improving the quality of the technology
components used. Typically, these tools depend on the
language technology components that are integrated
which means that test results will depend heavily on the
quality of the existing technology.

The CSLU toolkit for example, offers speech-
recognition, natural language understanding, speech syn-
thesis as well as a talking head. Modules are integrated
into a stand-alone graphical authoring environment, which
allows dialogue flows to be specified. Dialogue elements
are dragged onto a canvas where they can be arranged
and linked using a flow chart-like notation that also sup-
ports decisions, random generators and loop backs. Input
and output can be defined separately for each element so
that it is possible to integrate and combine text, spoken
and touch-tone based interaction. Even though an inte-
gration of WOZ support was planned, to our knowledge
the functionality never made it into any of the final prod-
uct releases. In general, however, the CSLU toolkit can be
seen as a straight-forward prototyping tool that requires
little experience, which makes it suitable for both design-
ers as well as NLP researchers. Providing a simple graph-
ical interface increases accessiblity for people without a
technical background.

In contrast, the Olympus dialogue framework consti-
tutes a powerful client-server environment for implement-
ing and running spoken dialogue systems. The goal of the
framework is to provide a highly scalable platform for lan-
guage technology research, yet its support for quick pro-
totyping is low. Composed of several different components
(i.e. an audio server, the Apollo interaction manager, the
Phoenix grammar parser, the RavenClaw dialogue man-
ager (Bohus and Rudnicky, 2003), the Rosetta language
generator, and the Kalliope speech synthesiser), none of
which provides a graphical interface, it requires a high
level of technical know-how to set-up and use. Also, while
WOZ experimentation is certainly possible (Bohus and
Rudnicky, 2005) it requires the relevant component to be
built on a one-off basis and integrated with the rest of
the framework. A ready-made WOZ client is not avail-
able. Nevertheless, this loose coupling of different tech-
nology components allows for a high degree of flexibility,

which makes the framework suitable for evaluating new
technologies.

Similarly, the the Jaspis dialogue manager provides
high adaptability. While predominantly aimed at build-
ing working systems, it puts a strong emphasis on infor-
mation representation. The XML-based output allows for
integrating natural language into applications that run on
different devices, representing a range of form factors (e.g.
Turunen et al., 2005). While here also WOZ experiments
have been conducted (e.g. Mäkelä et al., 2001), the inte-
gration was achieved through building a one-off interface
rather than integrating generic WOZ support.

Finally, the EPFL dialogue platform shows some more
general support for WOZ integration with language
technology. Based on the Rapid Dialogue Prototyping
Methodology (RDPM) it automatically creates a graph-
ical wizard interface based on a pre-defined application
model (Rajman et al., 2006). This automatic generation
of interfaces makes the platform interesting for researchers
that have little technical knowledge. In addition it sup-
ports multi-modal as well as vocal designs, extending its
application domain beyond purely language-based inter-
action paradigms.

In summary, existing DM tools highlight several
important requirements for supporting the prototyping
of language-based applications. Graphical, stand-alone
tools like the CSLU toolkit provide a low entry barrier
for non-experts. On the other hand we see that a high
degree of component flexibility, as demonstrated by the
Olympus dialogue framework, opens up a wider range
of possibilities, especially when it comes to evaluating
different technological solutions. Also, support for new
form factors, as can be found with the XML-based
architecture of the Jaspis dialogue manager, seems
crucial, particularly when we think about mobile phones,
tablet computers and their potential successors. Finally,
the dynamic generation of interfaces, whether for wizard
or for tested client interfaces, is a feature that helps to
significantly reduce the prototyping time.

While the described examples might not cover the
totality of DM tools that have been used in the past, they
all show that WOZ prototyping has its place in dialogue
design - although generally additional development work
to produce the relevant interfaces is required.

6.2. Pure WOZ Tools

Unlike DM tools, pure WOZ tools try to more fully
support low-fidelity prototyping. While these applications
offer more flexibility than DM tools, they usually
do not integrate actual working language technology
components. Instead a human mimics the functions of the
system, which allows for a less restrictive dialogue design.
In addition it facilitates the testing of user experiences

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 9

that are not yet supported by existing technologies.
Pure WOZ tools are, however, scarce and tend to be
only suitable for the one experiment for which they
were constructed. Hence, they are often categorized
as throwaway applications i.e. they are built for one
scenario and only rarely re-used in other settings. Two
publicly available tools that allow for more generic
experimentation include SUEDE (Klemmer et al., 2000)
and Richard Breuer’s WOZ tool5. An alternative, yet not
publicly available, solution may be found in the NEIMO
platform (Coutaz et al., 1996).

SUEDE allows a designer to rapidly create prompts and
supports the graphical design of a dialogue flow. It lets the
researcher record those prompts, arrange them, and play
them back to a test participant. During experimentation a
participant’s responses can be captured and the collected
data be made accessible in form of a browsable HTML
document, which can be used as a reference for future
design improvements. The advantage of this type of
evaluation is that a designer can focus entirely on the
interaction, while keeping the quality of the speech output
(i.e. the pre-recorded prompts) consistent; something that
might vary if actual technology components are used.
The exclusion of third party components further reduces
the complexity of a test set-up which ultimately leads
to less time spent on the configuration of experiments.
Two main features of general interest in SUEDE are first
the provision of a simple way of recording, organising
and playing back potential system prompts, and second
structured access to participants’ responses, which is
crucial for understanding and consequently improving the
overall interaction.

Following a similar goal, namely supporting simple,
generic WOZ experimentation, Richard Breuer’s WOZ
tool puts a stronger focus on more complex dialogue
designs. It does not offer a dedicated function to record
prompts, however, one can link dialogue elements to
stored audio files or make use of an integrated text-to-
speech function. Furthermore, the tool allows dialogue
flows to be exported as VoiceXML6 or RTF, so that they
can be re-used in third party products. This support of
XML standards is an important feature that helps to
integrate WOZ experimentation as a fundamental part
within the development cycle of new dialogue systems.

Finally, a third application, the NEIMO platform, was
mainly used in the 1990’s to study the potential of multi-
modal user interfaces (Balbo et al., 1993). The demand
for evaluating this sort of interaction has significantly
increased since then, and so it is clearly useful to consider

5http://www.softdoc.de/woz/index.html [Accessed: 4th Sept.
2013]

6http://www.w3.org/TR/voicexml21/ [Accessed: 23rd Dec.
2013]

support for multi-modal interaction when developing
prototyping tools. One important finding with respect
to WOZ prototyping gained from these studies was that
additional modalities also significantly increase a wizard’s
workload. Hence, NEIMO was one of the first tools to
support multiple wizards. Roles could either be split up
between the different modalities or were dedicated to the
input/output interpretation/generation on the one hand
and task level processing on the other.

The feature set of the pure WOZ tools discussed above
ranges from simple graphical interfaces for designing a
potentially multi-modal interaction, to powerful logging
and export functionalities that make use of industry
standards such as VoiceXML and therefore smooth the
path to a possible integration with external systems.
Combining these features seems to be the logical next step
towards better WOZ support.

However, if we look at more recently created WOZ
tools (also outside the area of language technology
applications), we find less generic support but rather
a focus on very specific application scenarios. Hence,
a high level of the development effort is required to
adapt the tools to different domains. Examples include
MDWOZ (Munteanu and Boldea, 2000) for dialogue
systems, QuickWoZ (Smeddinck et al., 2010) to study
embodied conversational agents, WOZ Pro (Hundhausen
et al., 2007) and SketchWizard (Davis et al., 2007)
for simulating pen-based interaction, and Polonius (Lu
et al., 2011) and DOMER (Villano et al., 2011) to control
a robot. WOZ functionality can also be found in Topiary
(Li et al., 2004) and BrickRoad (Liu and Li, 2007),
tools for prototyping location-enhanced applications.
Finally, Liu et al. (2009) describe a WOZ interface to
support the study of information presentation strategies
for spoken dialogue systems and, Otto et al. (2011)
developed a tool based on the SEMAINE framework7,
a multi-modal dialogue system that aims at sustaining
conversations with human users.

An exception to these rather specialised tools can be
found in Ozlab (Pettersson and Siponen, 2002), a multi-
functional prototyping tool for multiple forms of WOZ
experimentation. Here the authors explicitly highlight the
re-usability of their tool. However, we were unfortunately
not able to evaluate the application in more detail, as it
is not publicly available. Finally, focusing on information
retrieval tasks, Scherer and Strauß (2008) present a
flexible WOZ environment for spoken dialogue systems
that makes use of other parallel output modalities (e.g.
a talking head). But again, an in-depth analysis was not
possible due to the lack of availability.

7http://semaine.opendfki.de/wiki/SEMAINE-2.0 [Accessed:
23rd Dec. 2013]

Interacting with Computers, 2014



10

In summary, the majority of existing pure WOZ tools
either suffer from dependencies on obsolete software
components and accompanying compatibility problems or
pose considerable challenges when there is a need to adapt
them to new application scenarios. Also, they are rarely
publicly available, which restricts their re-use by other
researchers. In addition, a potentially problematic issue
with most of the tools is their shift from relying completely
on technology to relying completely on the actions of a
human. These are both extremes on what we can see
as a continuum, where the intervening points represent
a mixed-fidelity approach in which imperfect components
can be incorporated along with human intervention.

6.3. Challenges of Generic Tool Support

While the above analysis discussed the two different forms
of WOZ support that may be available for language
technology applications (i.e. support through existing
wizard functionalities in dialogue management tools and
also support through dedicated WOZ applications) one
may also conclude that their efficient integration in the
product development cycle is difficult. Support for this
argument can be found in the fact that applications that
support the simulation of an interaction are commonly
seen as throwaway tools which are only used for a
certain number of experimentation rounds. While efforts
have been undertaken to increase the re-usability of
applications with some researchers going as far as aiming
for providing a generic evaluation platform, the distinct
requirements of different test scenarios often require
significant changes to be implemented. Within the same
research team these changes are usually implemented,
which leads to tools that try to be generic, but to some
extent include features that are very specific to a certain
application area.

When it comes to using the tools of third party
providers, adoption can be inhibited by a lack of technical
documentation or simply because of the amount of time
that is needed to become accustomed with the relevant
code base, which may be comparable to what it would cost
to build a separate tool. We mainly see this when looking
at the variation of pure WOZ applications presented in
the literature. For example, Polonius (Lu et al., 2011)
and DOMER (Villano et al., 2011) are both wizard tools
that are used to control a robot. While the underlying
research interest for which they were built might differ,
they share the same core functionality, namely sending
essentially pre-defined commands to a remote system.

One can also see similarities with QuickWoZ (Smed-
dinck et al., 2010); although the focus of QuickWoZ
lies on avatar-based interaction, the underlying concept
remains the same. From an application point of view,
the difference between sending commands to a robot

and controlling the feedback given through an animated
character on a screen is relatively small. Similarities can
also be found between MDWOZ (Munteanu and Boldea,
2000) and DiaWoZ (Fiedler and Gabsdil, 2002) as well
as between WOZ Pro (Hundhausen et al., 2007) and
SketchWizard (Davis et al., 2007). An obstacle for re-
using a tool may, however, be found in the programming
framework that is used to build it, although in this case a
possible solution can be the provision of appropriate soft-
ware interfaces.

If we look at dialogue management tools, generic
support seems more complicated. In this case, as WOZ
is often treated as an integrated function rather than
being a separate external tool environment, the potential
re-usability is limited to the re-usability of the entire
dialogue framework. Here WOZ changes from being
an evaluation method informing the design to being
an integral part of the final product. Nevertheless, by
focusing on a modular composition as demonstrated by
Olympus (Bohus et al., 2007), the WOZ function could be
liberated and consequently re-used with other comparable
frameworks. An advantage of this separation process is not
only that a dedicated WOZ module could be integrated
with other dialogue environments, but it would also allow
WOZ to be treated as as an independent component whose
further development could be influenced by multiple
parties inside as well as outside a given research team.
External feedback would also make it easier to improve
and fine-tune existing functionalities as well as allow for
gradually integrating novel use cases inspired by new
application scenarios.

While interoperability between WOZ tools seems
desirable both to save resources spent on building
proprietary solutions and to expand rather than re-build
already existing functionality, the applications that have
been published in the literature show that the exchange
between research teams is rather limited. Despite the fact
that numerous examples advertise their high flexibility
and easy reconfigurability so that in theory re-use of
applications would be possible, researchers solve their
specific problems by creating new tools rather than
improving existing ones. One reason for this is surely
to be found in the varying research interests and their
very distinct requirements when it comes to tool support.
Another aspect is that for applications outside the NLP
domain WOZ often plays a minor role for which a quick-
and-dirty solution is usually sufficient and building re-
usable components might seem unreasonable.

Furthermore many tools described in the literature
are not freely available, or suffer from dependencies on
obsolete software components. Insufficient documentation
is a further barrier to adoption and reuse. SUEDE and
Richard Breuer’s WOZ tool are the only pure WOZ
tools which we were able to download. With dialogue

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 11

Meaning

Text Translation

Speech Speech

Automatic Speech
 Recognition (ASR)

Text-to-Speech 
Synthesis (TTS)

Natural Language
Understanding (NLU)

Natural Language
Generation (NLG)

Translation

Machine
Translation (MT)

Text

Machine
Translation (MT)

INPUT OUTPUT

Figure 1. The Interaction Pipeline of Language Technology.

management tools we were restricted to the CSLU toolkit
and the Olympus dialogue framework. Finally, little effort
has been put into understanding and improving WOZ
prototyping to the point where it can be treated as a
separate area of competence. After all, for most research
teams WOZ is not an end itself, but rather a method to
evaluate and improve the design of an envisioned future
product. To do so, they come up with solutions that
mainly serve their very specific requirements. Tools whose
goal is to provide improved generic support for the WOZ
method are, however, missing.

7. THE TASK OF THE WIZARD AND ITS
DESIGN SPACE

While DM tools and pure WOZ tools both incorporate
useful features, neither type of tool provides a full
range of support for the use of WOZ as a low-fidelity
prototyping method. In order to build more appropriate
and potentially generic instruments we need to better
understand the task of the wizard as well as the design
space for WOZ.

We start our exploration of this domain with a consid-
eration of available language technology components and
how they might be integrated. Researchers have reported

on WOZ evaluations in the area of Human-Machine dia-
logue as well as computer supported Human-Human dia-
logue. The latter is especially relevant to machine trans-
lation where technology aims to build a bridge between
people who do not share a common language (Bederson
et al., 2010). From a more component-based view, WOZ
has been used to simulate ASR, MT, Natural Language
Understanding, and Natural Language Generation as well
as TTS. Only rarely has it been used to enhance exist-
ing technology (i.e. to correct or over-write what a semi-
working technology component might output). Examples
include the adaption of a storyline (Dow et al., 2010),
the mimicking of social behaviour (Deruyter et al., 2005),
or the annotation of language (Janarthanam and Lemon,
2009).

From a Natural Language Processing (NLP) point of
view, one can envisage a generic pipeline architecture
that starts on the input side with Automatic Speech
Recognition (ASR) and ends on the output side with
Text-to-Speech Synthesis (TTS). In between we might
further find Machine Translation (MT) on either side of
the dialogue management component (see Fig. 1). In non-
speech scenarios ASR and speech output can be replaced
by other, text-based, input and output modalities. These 4
dimensions of input modality, input MT, output MT, and

Interacting with Computers, 2014



12

Table 3. Design Space for WOZ scenarios with language technolog components and associated application
examples.

Input Processing Output
Case Text ASR MT DM MT TTS Text Example

1 x - - x - - x Natural-Language Interfaces
2 - x - x - - x Speech Recognition
3 - x x x - - x Text-based Feedback
4 x - x x - - x Text-to-Text Translation
5 x - - x x - x Text-to-Text Translation
6 x - - x - x - Speech-output
7 x - x x - x - Multi-lingual Text-to-Speech
8 x - - x x x - Multi-lingual Text-to-Speech
9 - x x x x x - Less common
10 x - x x x - x Less common
11 - x x x x - x Less common
12 x - x x x x - Less common
13 - x x x - x - Speech-to-Speech Translation
14 - x - x x x - Speech-to-Speech Translation
15 - x - x - x - In-Car Voice Control
16 - x - x x - x Multi-lingual Inf. Retrieval

output modality lead to a total of 16 different possible task
settings a wizard might have to deal with when running
WOZ experiments (see Table 3).

Usually the task of the wizard is to replace a single
component or a combination of several. In most cases
the language understanding and the generation of an
appropriate response are simulated, supplemented by
one or more additional components (e.g. ASR or MT).
Therefore we may conclude that Dialogue Management
(DM), Natural Language Understanding (NLU) and
Natural Language Generation (NLG), are the main tasks a
wizard needs to deal with. While often these three aspects
are integrated into a single task in which the wizard
extracts the meaning from an input and subsequently
initiates the appropriate output, it should be noted that
there are a number of test settings where NLU and NLG
are broken down into separate components. Consequently
the wizard may simulate only one of the two or simply act
as a link between them.

In some cases the resulting dialogue management task
will be trivial (as in some real-time translation scenarios),
in other cases complex ‘form-filling’ steps may be required
in order to progress. While in the following discussion we
focus on cases where the dialog management is performed
by the wizard, other scenarios might involve a (partially)
working DM component. Looking at the combinations
of technology components (working, partially working, or
simulated) that might be combined in different scenarios,
we obtain the design space shown in table 3 (Note:
[x] signifies that for the given use case the component

(working, partially working/corrected, or simulated) is
present ; [-] signifies that it is not).

In the most basic form the interaction on both sides
is based on text (Case 1) and the wizard’s potential task
is limited to managing the dialogue (i.e. interpreting text
input, dialog management, and generating text output).
An application scenario for this pure form of WOZ can be
found in prototyping a chatbot or a natural language user
interface (Kelley, 1984). Replacing text input with speech
input by adding a (potentially simulated) ASR component
may change the task of the wizard from interpreting text
to interpreting speech (if not correcting output from a
speech recogniser) (Case 2). Even though the difference
may seem small it can lead to an increase in cognitive
load for the wizard as spoken text cannot be revisited later
on, which might lead to performance problems especially
when dialogue partners use long sentences. An example
for this form of interaction can be found in prototyping
dictation software (Gould et al., 1983).

The complexity of the wizard’s task increases even
more in cases where an additional translation component
is involved. The simulation here could happen from
speech input, which needs to be first processed and then
translated (Case 3). In this case the task of the wizard
can be compared to somebody simultaneously translating
from one language into another (Stüker et al., 2006).

If the scenario requires text-based input only, the task
of the wizard may be reduced from translating from
speech to translating from text (Note: from a wizard
perspective the same reduction in task difficulty may

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 13

apply if a working ASR component is available and the
wizard can rely on its output), either on the input (Case
4) or on the output side (Case 5). Application examples
for this type of setting include a multi-lingual chat (Chen
and Raman, 2008) or a text-to-text translation system
(Bederson et al., 2010). Looking at the output side we see a
similar combination of possible components. For example,
prototyping a text-to-speech function of a tour guide
would require a wizard to operate TTS from input text
(Case 6) (Okamoto et al., 2001), and in cases where the
system needs to be multi-lingual an additional translation
task can be found either on the input (Case 7) or on the
output side (Case 8).

Here we also find different task settings depending on
whether the wizard simulates both ASR and MT, or one
or both components are available. Even with working
components the Wizard task may be quite different in
these cases, as in Case 7 the wizard would see machine
translated input and possibly correct it, whereas in Case
8 the wizard would see (and possibly correct) or interpret
human input which afterwards is translated.

The highest degree of complexity exists in situations
where the application scenario comprises the complete
interaction pipeline as highlighted in Case 9. Even though
this is possible (as illustrated later in this paper), it seems
less likely that a WOZ setting would make use of (or
simulate) MT on both the input as well as the output side.
For the same reason Cases 10, 11 and 12 have been less
explored. However, if an interlingua or an intermediary
natural language is employed in an interactive situation,
such as speech-to-speech multilingual dialogue (Levin
et al., 1998), it is entirely possible that a wizard might
be required to affect both sides of the MT process. This
sort of intervention could take the form of correction
from source language to interlingua and simulation from
interlingua to target language, for instance, or simply
involve simulation of the translation process through
mediation between speakers without actual translation,
as done by Luperfoy and Miller (1997).

A more likely case, however, would be simulation or
correction of a speech-to-speech translation system in
which MT is used only on one side of the pipeline
(Cases 13 and 14) (Krause, 1996; Kikui et al., 2003).
Taking away the multi-lingual aspect, the setting of
an IVR system would reduce the wizard’s task to
understanding or correcting speech input and producing
appropriate speech output, either directly (perhaps
using some sort of distortion device) or indirectly by
choosing from a set of pre-recorded utterances (Case
15). Application areas for this sort of WOZ prototype
include in-car navigation (Geutner et al., 2002) as well
as transactions such as booking tickets (Lamel, 1998;
Karpov et al., 2008). Finally, multi-lingual information
retrieval using speech (Case 16) would require the wizard

to first process a spoken request in one language and
then provide appropriate information from multi-lingual
sources (Schneider et al., 2010).

The configurations detailed above provide a broad
coverage of WOZ scenarios involving language technology
components. However, we note that using WOZ for
simulating multi-modal interaction dramatically increases
its application area and at the same time places even
higher demands on the wizard (Salber and Coutaz, 1993a).
Here the aspect of processing information coming from
different input channels and aligning the respective output
has been the focus of recent research (Melichar and Cenek,
2006; Lee and Billinghurst, 2008; Serrano and Nigay,
2010).

In addition to the variety of tasks a wizard may
potentially be confronted with along the language
technology pipeline, it is also worth looking at the
different ways language technology output might be
simulated or corrected. In the literature we find a number
of experimental differences. One commonly used set-
up places the wizard consecutively after an existing
component where he/she is used to selectively correct or
overwrite component output (Karpov et al., 2008). This
solution is particularly used in cases where a technological
solution is available but error prone and hence the
research team may be interested in determining the level
of accuracy needed to meet existing user demands. An
alternative type of WOZ prototyping may use a wizard in
parallel to a technology component in order to produce
improved language technology components output. For
ASR this type of setting could be implemented using
an N-best list where the wizard is confronted with a
number of possible recognition results to choose from, or
has to enhance the scoring of correct or partly correct
recognitions (McInnes et al., 1999). A similar set-up is
possible for MT components. The data generated can
then be used to tune the machine learning algorithms the
language technology component is based on.

A setting could also use a language technology
component to ‘overwrite’ a wizard response. The main
reason for this type of application is the introduction
of errors so as to produce a more realistic component
performance (Gould et al., 1983; Foster et al., 1998).
Finally, one may also define different constraints for
the wizard so that experimental designs can reach from
using a wizard that is able to freely generate responses,
either typed or spoken (using some sort of distortion
device) (Stenton and Whittaker, 1989), to cases where
the wizard is restricted to a pre-defined set of possible
utterances (Bradley et al., 2009; Schneider et al., 2010).

Another possibility is to combine pre-defined utter-
ances, concatenating them and filling in missing pieces
manually (Cabral et al., 2012). At this point it should also
be noted that even though we generally use the acronym

Interacting with Computers, 2014



14

Table 4. Some examples from the literature showing possible component/state combinations.

Input Processing Output
Example Text ASR MT DM MT TTS Text

(Kelley, 1984) ON OFF OFF ON OFF OFF Correcting
(Bederson et al., 2010) ON OFF OFF Simulating Simulating OFF Simulating
(Gould et al., 1983) OFF Simulating OFF Simulating OFF OFF Simulating
(Geutner et al., 2002) OFF Simulating OFF Simulating OFF ON OFF
(Schneider et al., 2010) OFF Simulating OFF Simulating ON ON OFF
(Karpov et al., 2008) OFF Correcting OFF ON ON ON OFF

TTS to refer to the production of spoken system out-
put, the term ‘speech generation’ may be more suitable
as this would also cover the use of recorded utterances as
well as include specific markup language which might be
employed to emphasise certain speech characteristics (i.e.
pitch, prosody, etc.).

8. A COMPREHENSIVE TOOL
ARCHITECTURE

Looking at the design space outlined above it appears
that combining technologies (a) is already best practice
in language technology systems design, (b) would allow
WOZ to be used in multiple stages of an application’s
processing, and (c) is necessary to allow WOZ to be used
throughout the entire application lifecycle. Consequently
a tool that aims to more comprehensively support the
application of the WOZ method would need to offer
a way of combining existing technologies in a more
flexible manner. Some of those technologies might be fully
working; others might still be in an early development
stage, and would rely on a wizard to raise their
quality to an acceptable level. To allow this, a software
architecture is required which supports a flexible use
of technology. Ideally, this would provide a modular,
‘pluggable’ framework that allows components to be
integrated or replaced easily. From an architectural point
of view, we need to define each of the components, the
different stages of development they can be in, and their
relationships to each other.

As regards the different task variations a wizard can
take on within the interaction pipeline, one can define
several different modes technology components can be in
(Schlögl et al., 2010). A component can be relevant for a
given setting, that is, it is needed and therefore needs to be
represented in some form (e.g. ASR in a hands-busy-eyes-
busy situation), or it is irrelevant, in which case it must be
possible to turn it off (e.g. MT in a monolingual setting).
In the case where a technology is needed, one can further
distinguish between three different states. Under the best

circumstances the technology is of production quality and
therefore can be used in a black-box manner producing
results either for the wizard or a test participant. On
the other hand, if the performance of a component is not
sufficient, a wizard’s task could be to enhance the quality
of the component. This type of scenario is particularly
useful when the goal of an experiment is to investigate the
improvement in quality that is needed for a technology
to be acceptable, and therefore requires some sort of
correction mode. Finally, in a setting where a component
is needed but not available, it is usually the task of the
wizard to completely simulate the missing functionality.

In summary, a comprehensive WOZ tool should enable a
wizard to complement existing technology on a continuum
by allowing her to simulate and correct technology, before
finally using it as a black-box. Likewise Dow et al.
(2005b) argue that a wizard might first take on the role
of a ‘controller’ who simulates technology. Then, in a
second stage act as a ‘moderator’ who approves technology
output, before finally moving on to being a ‘supervisor’
who only overrides output in cases where it is really
needed.

By looking at these different modes and carrying them
on to the language technology level it is possible to further
deduce a set of rules that handle the relationship between
consecutive technology components. The first rule defines
a fully working component as a black-box for which it
can be preceded as well as followed by components in
any state. If a component is simulated by the wizard,
however, it needs to be followed by a working component.
In cases where two or more consecutive components need
to be simulated, they merge into a single task for the
wizard (e.g. simulated ASR followed by simulated MT).
When one or more simulations follow a correction, they all
merge into an integrated simulation. Finally, a component
can only be in correction mode when either its preceding
component is fully working or when it receives its input
directly from a test participant. Table 4 illustrates some
examples of possible component-state combinations and
the related task of the wizard. It should be noted that
the focus here lies on single wizard scenarios. Introducing

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 15

several wizards would relax some of these constraints
so that consecutive components could be simulated or
corrected separately by different wizards. Integrating this
set of rules into a software architecture should allow for
a more flexible use of technology when running WOZ
experiments.

9. WIZARD OF OZ AND THE WEB

An increasing number of traditional software applications
are now offered in a web-based form, and the applications
available are becoming more complex. The almost
ubiquitous availability of high-speed internet has been
an important factor, but also recent advances in
web technologies have been critical in supporting this
transition from locally installed software to cloud-based
web applications. While some of the WOZ experiment
environments presented in the literature (e.g. Turunen
and Hakulinen, 2000) were built to some extent using
web technologies, the majority are based on conventional
software tools. The lack of simple support for web-based
speech input and output has been a major obstacle,
leading to the use of locally installed software, with
associated installation effort, software dependencies and
compatibility problems.

Recent advances in web technologies, however, provide
better support for dealing with speech. Modern web
browsers are able to process audio and video data in
real time and without the need for additional plug-ins.
Upcoming web standards (i.e. the forthcoming HTML5
standard8) go further by allowing access to computer
hardware through the browser. These standards open
up new possibilities for WOZ experimentation. It is
now possible to integrate speech input and output
into a web-based platform, which significantly reduces
the setup requirements for an experiment environment.
Furthermore, by using web services it is possible to build
flexible tool architectures, such as the one presented
above, in a way which allows components to be integrated
and replaced easily and on-the-fly.

As well as removing problems associated with instal-
lation, there is also a benefit in terms of interoperabil-
ity with other platforms i.e. it is easy to integrate WOZ
experiments into existing web-based software environ-
ments. For example, if a new interaction modality for a
web-based help system needs to be tested, a WOZ client
can quickly be added to an already existing interface.
From the point of view of the wizard, it is further pos-
sible to add additional information channels such as video
of the user or location data, which allows the evalua-
tion of not only speech but also multi-modal interaction.
Finally, the possibility of running WOZ experiments on

8http://www.w3.org/TR/html5/ [Accessed: 23rd Dec. 2013]

different platforms with different form factors (e.g. smart-
phones, tablets, media centres) represents another signifi-
cant advantage that web-based solutions have over tradi-
tional software.

10. INVESTIGATING TOOL SUPPORT

If we look at the previously outlined design space for WOZ
it seems that, (a) including the different configurations
described in Table 3, (b) allowing for a flexible integration
of technology components as shown in Table 4, and (c)
offering all interactions via web interfaces as discussed in
Section 9, constitute the main features of an advanced
WOZ tool, where a human wizard can work together
with (imperfect) technologies. In order to evaluate this
assumption and furthermore explore additional aspects of
wizard support we have undertaken a series of evaluations,
whose results were used to inform the design of a generic
WOZ prototyping platform for language technology
applications. First a simple web-based prototype was used
as a technology probe, allowing us to explore the context
of use and its distinct requirements.

The goal was to identify those parts of the wizard task
that are challenging, independent of the specific exper-
imental setting, and therefore might require additional
generic support. Informed by the results of this first evalu-
ation a more generic WOZ prototyping platform was built
and employed to more thoroughly explore the challenges
of constructing WOZ experiments. An evaluation compar-
ing the experiments constructed by more advanced users
with those built by students showed that users from both
groups were able to produce viable WOZ experiments.
The following sections will describe these two rounds of
evaluation in more detail and highlight some of their
results.

10.1. An Initial Prototype and Requirements
Study

First, inspired by the literature (Stüker et al., 2006;
Chen and Raman, 2008; Geutner et al., 2002), different
experimental scenarios for WOZ were explored. The goal
was to find realistic settings in which a combination
of various language technology components (ASR, MT,
TTS) would be required. By doing so we were able to
obtain a more applied view on the design space and
could further refine the initial set of requirements. Paper
sketches were then used to design a wizard interface
that, although initially hard-coded for one specific WOZ
experiment, would be applicable to a variety of scenarios.
A prototype for such an interface was built using basic
web technologies (i.e. HTML, PHP and CSS).

Interacting with Computers, 2014



16

The wizard interface was split into two areas; one
showed the dialogue flow holding the defined dialogue
utterances, the other displayed domain data i.e. data
relevant to an implemented scenario. The dialogue flow
was subdivided into different stages in order to decrease
the amount of visible utterances at a time. It was
possible to manually switch between dialogue stages by
clicking on the respective links. The utterances to be
used in a particular stage were highlighted on the screen.
By using the appropriate utterances the wizard was
automatically led through the dialogue. For dealing with
misunderstandings recovery utterances could be chosen
from a separate area of the interface. In order to help
the wizard choose suitable utterances, a set of filters were
automatically applied based on the utterances that were
previously sent. In cases where a test participant would
change her mind, a wizard could manually update those
filters without going back in the dialogue.

Having designed this initial wizard interface, a specific
WOZ experiment was implemented simulating the speech-
based interaction between a German speaking customer
and a system recommending products (in our case
products were different types of Internet connection
bundles). An initial set of dialogue utterances for this
customer-machine interaction was defined and tested for
accuracy and completeness using a chat tool. After that a
set of realistic WOZ experiments were conducted.

Setting
In order to have a realistic setting for our wizard
evaluation, we chose an in-house study related to machine
translation that was conducted by a researcher in a
computational linguistics laboratory. She was observed
acting as a wizard over 11 sessions with different test
customers. Test customers were international students
who were told that they would be interacting with a
prototype of a new adviser system that would understand
spoken input. They were asked to complete two tasks with
the system. First they needed to obtain information on an
offer for pre-paid Internet, and after that they were asked
to inquire about a land-line contract. They were told that
the system could understand spoken input but would reply
via text output on the screen. None of the test customers
knew that they were interacting with a human until after
the test was completed. Participation in the study was
voluntary and compensated with a e10 book voucher.

Wizard Observations
Detailed logs of all user and Wizard actions were
recorded automatically, together with screen capture and
audio, and an interview carried out immediately after
the experiment. With respect to the wizard task, our
evaluation identified two general aspects which were

challenging for our wizard and therefore would require
additional tool support.

Firstly, it was difficult for her to find the right
utterances and deal with domain data, i.e. she had
problems finding the information demanded by customers.
Influenced by the general layout of our interface, she had
difficulties switching her attention from one area of the
screen to the other. The problem was observed mainly
at the end of an experiment when she needed to select
responses from the main dialogue flow as well as from
the domain data area (i.e. the area that was holding the
offers for different Internet connection bundles), which
led to confusion and delays. Furthermore the dialogue
flow itself caused some difficulties. Even though our
wizard was involved in the experiment construction and
therefore familiar with all the utterances, she sometimes
had problems finding the appropriate response.

This specific problem of information retrieval under
time pressure was foreseeable and so our prototype design
tried to offer support by providing a filter function
and automatically adapting those filters based on the
dialogue progress. However, the latter seemed to confuse
the wizard, as it was observed several times that she
manually changed filter values even though there was no
need for doing so. A post-test interview conducted after
the first experiment run indicated that she felt lost and
that by manually adapting the filters she tried to regain
control. Hence, one could argue that a wizard interface,
despite leading the interaction, needs to leave the wizard
in control as any automatic support functionality (such
as the filter mechanism) may lead to confusion and
consequently further increase the already high cognitive
demand for this task. This, however, also raises an
interesting question with respect to methodology, namely
who should act as the wizard. From the literature, it
seems that the experiment designer will generally act as
the wizard. While this could potentially be a source of
bias, the experience of the evaluations would suggest that
using other, more domain experienced, people as wizards
is a strategy which will encounter difficulty in practice
without considerable familiarisation and training.

The second interesting aspect of the wizard task we
observed was an issue our wizard had with the timing.
Since the simulated interaction was in a speech-in-text-
out format (i.e. a test customer was able to talk to the
system, the system response was, however, text-based),
it was difficult for our wizard to estimate the time a
customer would need to read a response utterance. This
problem was observed several times, when she assumed
a problem with a sent response and therefore sent an
additional utterance in order to ‘check’ on a customer’s
status. Usually, however, there was no problem with the
sent utterance, but the customer was simply not finished
reading.

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 17

An analogous problem would be knowing when a pre-
recorded or synthesised speech utterance has finished
output. This shows that a lack of status information
can influence the interaction and therefore reduce the
reliability of the produced experiment result. The problem
of these acknowledgement tokens or back-channels has
also been discussed by Jurafsky and Martin (Jurafsky and
Martin, 2008). We may therefore argue that additional
status information, either visual or acoustic, can be seen
as an important feature a WOZ tool should offer.

10.2. WebWOZ – A Generic Platform for WOZ

Informed by these evaluation results, a first version
of the WebWOZ Wizard of Oz Prototyping Platform
was built. The goal of this platform is not only
to tackle the discovered problems with our previous
prototype, but also to move away from a tool that
supports a single WOZ setting to something that
would more broadly support the application of WOZ
with respect to language technologies. The software
architecture described in Section 8 was implemented and
several language technology components, i.e. one ASR
component, one TTS component and two different MT
components, were integrated using web services.

Similar to the wizard interface used with our initial
prototype, this new platform is based on a staged dialogue
structure (Fig. 2). However, several additional features
were integrated in order to address some of the problems
identified. First, the dialogue structure was implemented
using a tab layout, to make it easier to distinguish the
different dialogue stages and track dialogue progress.
Second, the area for recovery utterances was converted
into a more general place-holder for frequently used
utterances. Third, editing functions were implemented
to allow the wizard to add, edit and delete utterances
as well as move them between different dialogue stages
or mark them as frequently used. Furthermore, in order
to provide more freedom when interacting with a test
participant, the new interface offers the possibility of
including a chat-style text input field. Whereas in most
WOZ experiments this kind of free interaction should be
avoided, in some situations the experimenter may wish to
explore the design space more freely.

With a fourth feature, we tried to tackle the problem
of retrieving domain specific information. A configurable
filter mechanism for domain-data-based utterances was
implemented that enables wizards to specify filters as
well as filter values themselves, giving them better control
over the domain data. Furthermore, a history element was
introduced which holds all of the utterances sent to a test
participant. Utterances are listed in chronological order
and preceded by an arrow to the left, marking them as
outgoing; the most recent sentence being highlighted in

a different colour. In cases where the ASR component
is used, its output is also displayed in the history,
preceded by an arrow to the right, marking it as
incoming. Finally, in order to alleviate timing problems,
a notification system was implemented to inform the
wizard that a test participant is ready to begin. Areas for
taking time-stamped notes and fields for reminders and
instructions were also added, with the aim of facilitating
experimental analysis and improving the consistency of
wizard behaviour.

Our new platform also allows a wizard to choose from a
set of pre-configured language components to be used in
an experiment. It is possible to choose which components
to turn on and which to turn off. Additional component
settings that are currently supported include the language
for ASR and TTS as well as the language pair, i.e. the
source and the target language, for an MT component. If
an experiment setting requires a more controlled set-up in
which MT or TTS (or both) need to be consistent, pre-
defined translations and pre-recorded audio can be added.

In cases where the wizard is to play an augmentation
role, they can choose whether component output is
immediately sent to a test participant, or whether
it is post-edited first (supporting the integration of
unreliable components). Two modes of augmentation are
supported. In N-best list mode the wizard can choose
from a list of possible outputs. This mode is particularly
useful in situations where a component does produce
understandable results, but the output is ambiguous. In
cases where the component quality is considerably flawed,
we also provide a correction mode in which a wizard is
able to fully edit the output before it is sent. Both modes
are supported for ASR as well as MT components.

Having built a more generic WOZ prototyping platform
for language technology applications our next goal was
to test whether potential wizards were able to design
experiments and if so, whether they would make use of
some of the features we had integrated with this tool.
The next sections of this paper therefore report on two
rounds of evaluations where experts and non-experts were
asked to use the platform to implement two different WOZ
experiments.

11. SUPPORTING EXPERIMENT
CONSTRUCTION

Using this generic WOZ prototyping platform a new set
of evaluations was conducted. The goal was to explore
the feasibility of constructing experiments. Having a low
overhead on experiment construction was earlier identified
as an important requirement (cf. Section 5). Therefore
our WOZ prototyping platform introduced the possibility
to quickly create and configure a new experiment as well

Interacting with Computers, 2014



18

Figure 2. A wizard interface based on the generic framework.

as add, edit and delete dialogue utterances. Unrestricted
interaction (if desired) is supported by the use of
a chat-box, and generic filtering allows for quickly
browsing different sorts of domain data. The purpose
of integrating these features was to allow wizards to
design WOZ experiments themselves without the need
for any programming experience; comparable to a website
Content Management System (CMS).

11.1. Evaluation Method

The first stage of evaluation was a proof of concept
activity that looked at the coverage of the given design
space. The goal was to test whether each of the plausible
configurations identified earlier (cf. Table 3) could be
supported without adapting the platform. Instances
integrating various different component set-ups could be
realized, achieving our goal for comprehensive WOZ tool
support. While it was not our goal to actually run
experiments with all of these instances (i.e. we were
mainly interested in whether we could build them), it
provided validation of the range of possible use cases
the prototyping platform would be able to support. The
published literature was used as a source for realistic
product ideas. Elaborating on these ideas we built a total
of 8 different WOZ experiments, all of which were using a
combination of at least two different language technologies
(i.e. ASR, MT, TTS), along with variants of these
to cover all plausible language technology component
configurations. Both the experiment structures as well as
the relevant text utterances were created.

In a next step we wanted to test whether also other
people (i.e. potential wizards) would be able to design

experiments. To do so we conducted two sets of user
studies. First we recruited researchers from the NLP area
(expert users) and asked them to design two different
WOZ experiments. Second, in order to test whether
our tool would also enable non-experts to create WOZ
experiments, we ran another study with participants from
outside the NLP domain. The following sections report on
the results of these two evaluations.

11.2. Construction Study 1 - Use by Expert
Users

In order to validate the experiment creation process of our
WOZ platform we conducted a study with 10 researchers
working with language technologies. None of them was
familiar with our tool; five of them had experience with
WOZ. They were given a short introduction to the
prototyping platform and a written manual they could
refer to. Following registration with the platform they
were asked to carry out two design tasks. For the first task
they were given the exact wording of 16 different response
utterances for a potential phone banking application.
They had to add these utterances to a new experiment,
arrange them in a useful way, and add any utterances
they thought might be missing. The second task was to
design a pizza ordering system. This time participants
were not given any utterances and therefore had to come
up with their own designs. The tasks were intended to
be progressive - the first was relatively closed, the second
open ended and allowing for more creativity. Descriptive
statistics are provided for each task, but are not intended
for comparison purposes.

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 19

Success Rate and Complexity of Designs
Overall participants did not experience any particular
difficulties in achieving the given tasks. All were able
to complete the first task within the given time frame
of 30 minutes and could present their design for the
second another 30 minutes later. Looking at the produced
dialogues in more detail we could see that for the first task
two participants did not create all of the 16 utterances
they were given (i.e. P02 missed one utterance and P08
left out four) and one participant added to them (i.e.
P07 created 22 instead of 16 utterances). The additions
were caused by three given utterances that were each
split into two separate ones, one additional question,
one additional confirmation utterance and one additional
advice utterance.

For the second task we could see that participants used
the previous example as a guideline. They produced on
average 16.20 (SD=6.97) utterances where each of the
utterances consisted of on average 11.51 (SD=3.64)words.
The solutions produced were reasonable in the sense of
allowing the task to be completed. A more complex task
would likely result in more utterances.

This suggests that the produced dialogues exhibit
approximately the same level of complexity. However,
as one would expect from the more individualistic task
setting, participants produced more varied designs in Task
2. In Task 1, the standard deviation (SD) of the number
of utterances was 2.60 (mean=17.10), while in Task 2 SD
was 6.97 (mean=16.20). As regards number of words per
utterance, for Task 1 we have SD=1.12 (mean=10.47),
and for Task 2: SD=3.64 (mean=11.51). As they were
allowed to create their own designs, some participants
showed better performance and more creativity than
others. Overall, however, the results of this study show
that expert participants were capable of handling both
tasks successfully without additional upfront training.

Task and Usability Feedback
In order to obtain additional feedback with respect to the
task we used post-task questionnaires to measure task
difficulty as well as task satisfaction (cf. Table 5). For
the first a single 7 point Likert item running from 1
very difficult to 7 very easy was employed. The results
show that the tasks were perceived as easy to complete
leading to means of 6.2 for both the first (SD=0.4) as
well as for the second task (SD=0.9). To measure task
satisfaction we used three questions (i.e. 1. I am satisfied
with ease of completion, 2. I am satisfied with the amount
of time it took, and 3. I am satisfied with the supporting
information) and again employed a 7 point Likert scale,
this time running from 1 strongly agree to 7 strongly
disagree. Also here the feedback was overall positive with
means of 2.3 (SD 0.8), 2.5 (SD 1.0) and 2.3 (SD 1.5) for

the three questions for the first task and 1.8(SD 0.4), 2.1
(SD 0.9) and 2.1 (SD 1.1) for the second task.

In addition we asked participants about their interac-
tions with the system and what types of features were
missing. Looking at these results we see that at least some
of them (2 out of 10) would have liked a more direct way to
connect utterances and hence enforce a sequential order.
Most of them, however, liked the freedom of independent
utterances. Additional features that were recommended
include drag-and-drop support to arrange utterances as
well as instant feedback on when utterances are success-
fully stored in the system. Finally, an import function to
add utterances from third party applications and more
intuitive labels to reduce ambiguity were requested. Over-
all, however, the results of the evaluation indicate that
participants liked the platform and that they were able to
use it easily without having received extensive preceding
training.

In order to compare these results to an industry
standard we calculated the respective System Usability
Scale (SUS) score. This was done by first normalizing the
scales of our SUS questionnaire i.e. points from positive
statements (questions 1, 3, 5, 7 and 9) were reduced by
1 and points from negative statements (questions 2, 4,
6, 8 and 10) were subtracted from 7. Next, the resulting
numbers were summed up and multiplied by 5/3 (Note:
this converts a 0-60 points scale to a 0-100 points scale).
Taking the average score across our 10 experts this led to
a value of 77/100 (95% confidence interval ranging from
68.75 to 85.25), corresponding to “good” on an adjectival
scale (Bangor et al., 2009). For further information on how
to compute SUS scores the reader is referred to Brooke
(1996).

Use of Features
In addition to obtaining feedback about the usability
of the platform we were also interested in whether
participants would use the range of features available.
One aspect here was the possibility to create a structured
dialogue, i.e. using tabs to organize a dialogue in different
stages. Looking at the log-files we found rather strong
differences in people’s preferences on that matter. While
on average a participant created 3.71 (median=4) tabs
per task the results highlight a spread going from 1 tab
only to creating 8 (SD=2.63). However, it seemed that
people structured the dialogue more in the second task
(median=3 for the first task vs. median=4 for the second
task) when they had to produce their own selection of
utterances, i.e. when they had more freedom to design
the interaction.

A second aspect we were interested in was the
use of frequently used utterances. The use of this
feature shows whether participants actually differentiated
between utterances that can be dedicated to a specific

Interacting with Computers, 2014



20

Table 5. Questions used to evaluate the construction of WOZ experiments by expert users and learners.

Post-task questionnaire difficulty
[7 point Likert item running from
1 very difficult to 7 very easy ]

Overall, this task was?

Post-task questionnaire satisfaction
[7 point Likert item running from 1
strongly agree to 7 strongly
disagree]

Overall, I am satisfied with the ease of completing this task.
Overall, I am satisfied with the amount of time it took to complete this task.
Overall, I am satisfied with the provided support information when completing this task.

Post-test questionnaire usability
(i.e. SUS) [7 point Likert item
running from 1 strongly agree to 7
strongly disagree]

I think that I would like to use this system frequently.
I found the system unnecessarily complex.
I thought the system was easy to use.
I think that I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well integrated.
I thought there was too much inconsistency in this system.
I would imagine that most people would learn to use this system very quickly.
I found the system very cumbersome to use.
I felt very confident using the system.
I needed to learn a lot of things before I could get going with this system.

Additional open questions
These are problems I had using WebWOZ:
These are features I would like to have added to WebWOZ:
Here are some final recommendations:

dialogue stage and those that could be used several times
throughout an interaction. Also here the log-file revealed a
rather varied behaviour. On average participants defined
4.86 utterances as frequently used (median=3, SD=6.21)
but with an overall range of up to 28 frequently used
utterances. When asked about their understanding of the
concept participants were in favour of the idea. However,
we believe that without actually running experiments
it was difficult for them to identify those utterances
that are unlikely to be associated with only a single
dialogue stage, which probably influenced the use of this
feature. Furthermore, it needs to be highlighted that the
limited amount of time (i.e. 30 minutes for designing
a complete dialogue) most likely reduced the total
number of utterances created. A more intense engagement
with the design process might have resulted in more
complex solutions, and consequently led to the inclusion
of utterances that may be less obvious. Figure 3 shows the
experts’ use of tabs and frequently used utterances.

In summary this first round of exploring the creation
process showed that potential wizard users were able to
successfully design experiments with our WOZ platform.
They used different dialogue steps and understood the
concept of frequently used utterances.

11.3. Construction Study 2 - Use by Learners

While at least some researchers in NLP and HCI might
be familiar with WOZ prototyping (cf. Section 3),
people working in other fields are rarely exposed to the
method. However, as described earlier, various application
areas can benefit from human simulation. In particular,
as language technologies are increasingly used in a
variety of devices in combination with other input and
output modalities, distinct contributions from different
disciplines are required to offer intuitive and novel design
solutions. Hence, one goal of the platform is to reduce
this entry barrier and make WOZ prototyping accessible
to people outside the field of NLP research.

In order to test whether our approach of integrating
CMS-like features into a WOZ platform makes it easy
enough to be used by novices, we conducted tests with
51 student participants. Students’ backgrounds included
Computer Science, Information Systems as well as HCI.
While the tests were conducted during class, participation
was entirely voluntary and did not involve any actual
course credit or other type of compensation. As HCI
teaching is one of the purposes envisaged by the tool, this
sample is seen as a reasonable starting point. However it
would be desirable to consider other learner demographics
in future work. Participants were asked to perform the
same two tasks as their predecessors.

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 21

Number of tabs

A
bs

ol
ut

e 
fr

eq
ue

nc
y

1 2 3 4 5 6 7 8

0
2

4
6

8
10

12

Number of frequently used utterances

A
bs

ol
ut

e 
fr

eq
ue

nc
y

0 5 10 15 20 25 30

0
2

4
6

8

Figure 3. Use of tabs and frequently used utterances by expert users.

Success Rate and Complexity of Results
12 of the 51 participants were excluded as they either
did not give us the necessary consent to use their data
or did not submit any designs. From the remaining 39
participants, 28 worked on both design tasks.

In the first task our 39 students produced on average
12.36 utterances (median=15.00, SD=6.47) with an
average words/utterance rate of 10.36 (median=10.80,
SD=2.78). With respect to completeness, 14 participants
created all the utterances requested in task 1, 21
created fewer utterances, and 3 created more. The 28

students who moved on to the second task additionally
created on average 14.39 utterances (median=12.50,
SD=7.93) with an average words/utterance rate of
10.85 (median=10.33, SD=3.42). While the sample sizes
preclude any comparative analysis, these figures appear
broadly in line with those of expert users. Also the use of
tabs was approximately the same, so that only the number
of frequently used utterances suggests a clear difference
between expert users and learners (cf. Figure 4).

Interacting with Computers, 2014



22

Figure 4. Use of tabs and frequently used utterances by learners.

Task and Usability Feedback
Looking at the subjective task and usability feedback
we received from the student participants via post-task
and post-test questionnaires (cf. Section 11.2 ) we see
an increase in perceived task difficulty for the first
(mean=4.3, SD=1.7) as well as for the second task
(mean=4.8, SD=1.6). Also, people were less satisfied with
ease of completion (Task 1: mean=3.5, SD=1.7; Task 2:
mean=2.8, SD=1.6), the time it took them to do so (Task
1: mean=3.1, SD=1.7; Task 2: mean=3.1, SD=1.8) as well
as the support information they were provided with (Task
1: mean=4, SD=1.9; Task 2: mean=3.6, SD=1.7). The
same result is reflected by the questionnaire assessing the
overall tool usability which showed an average SUS score
of 58/100 (95% confidence interval ranging from 51.64

to 64.38) - substantially lower than the expert group. In
summary the results of this evaluation show that while
the design of WOZ experiments does require a certain
amount of knowledge and understanding of the method
(with learners perceiving the tasks as more difficult to
carry out with the tool), even without dedicated training
students were able to produce workable solutions. Easy
access to relevant tools such as our WOZ platform may
therefore be seen as an enabler which can open up the
design space of WOZ prototyping to people outside the
field of language technologies.

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 23

12. SUPPORTING WOZ EXPERIMENTS

One goal of our prototyping platform is to reduce the effort
needed to design and conduct a WOZ experiment. We
have shown how both expert and novice users were able to
design and build realistic experiments with the WebWOZ
tool. In order to evaluate whether such a tool can also be
used for real experimentation, two WOZ studies, both of
which employed a single wizard interaction with various
test subjects, were conducted. Each study provides an
initial point of validation for the approach, corresponding
to a particular part of the design space.

12.1. Experiment Support Study 1 - Translated
Speech Synthesis

The first study built upon the results provided by
our initial prototype study (cf. Sections 10) and aimed
at extending them into the spoken language domain.
That is, this time it employed German text as well
as synthesised speech output. The technical set-up was
similar to the one described in Section 10.1 using our WOZ
platform alongside an active Skype9 session to transfer
speech to the wizard from her test-participants. From
an experimental point of view the person who acted as
the wizard was interested in understanding the influence
machine translated utterances have on synthesised speech
output and how this changes the user experience when
interacting with a system i.e. to what degree are flawed
translations acceptable in an interactive speech-to-speech
dialog setting. This is an instance of Case 9 of our analysis
of the WOZ design space for Language Technology
applications (Speech input, input MT, DM, output MT,
speech output, cf. Table 3). Our German speaking wizard
replaced the ASR and input MT and then chose an
appropriate response from a list of possible response
utterances.

For this very specific experiment setting it was also
important to control quality for both output MT and
TTS. Hence, possible response utterances were pre-
translated from English into German using two different
online translation systems (i.e. Google Translate10 vs.
Systran11), synthesised and stored in the system. The
wizard was then restricted to choosing these utterances
based on the dialog progress (Note: in the wizard interface
the utterances were still displayed in English, on the client
side, however, the corresponding German utterances were
displayed and spoken out). Unrestricted, free-form text
was not available for the wizard. The 17 test participants
who took on the role of test customers were all native

9http://www.skype.com/ [Accessed: 23rd Dec. 2013]
10http://translate.google.com/ [Accessed: 23rd Dec. 2013]
11http://www.systranet.com/translate/ [Accessed: 23rd Dec.

2013]

speakers of German. They were told that they would
be interacting with a system that understands spoken
input in German and asked to solve two information
retrieval tasks similar to those used in the previous study
(cf. Sections 10). In one of the tasks the system would
communicate with them via German speech output, in
the second, it would produce German text on a screen.

After the experiment participants were informed that
a human wizard operated the system. Additional details
and results of this study exploring the influence MT has
on TTS can be found in (Schneider, 2013).

12.2. Experiment Support Study 2 -
Pronunciation Trainer

The second study employed WOZ to collect a corpus
of realistic dialogue utterances for an online language
pronunciation trainer. For this purpose we were working
with researchers from a different institution who had
already developed a working prototype of a system that
could analyse a test-participant’s pronunciation of an
English sentence and highlight which words or parts of
a sentence were mispronounced. Linking this analysis to
actual textual feedback was, however, not supported at
the time. The study therefore used a human wizard to
produce real-time textual feedback based on the results
of the pronunciation analysis. Feedback was provided in
English and aimed at pointing language learners at the
words or parts of words that were mispronounced. All
language learners were able to understand English. The
envisioned tool should simply be used to improve their
pronunciation and not to teach them new vocabulary.

With respect to the design space for WOZ in language
technology applications such a setup closely resembles
the simulation of a dialog system which accepts spoken
input and provides text-based feedback (Case 2: speech
input, no MT, text output, cf. Table 3). Our WOZ
tool was used to implement the study. Different text
elements were prepared so that they could be assembled to
flexibly form a feedback sentence. The wizard was able to
compose the sentence and fill in the details or alternatively
create a response completely from scratch. On the client
side the pronunciation system was integrated with the
WOZ client interface (i.e. it was running in a separated
frame integrated in the web-based pronunciation training
system). Again, Skype was used to transfer the spoken
input from a test-participant to the wizard. Feedback sent
from the wizard was then displayed in a text box situated
in the bottom of the screen. A member of the other
research team, who was also involved the development
of the pronunciation analysis system, acted as a wizard.
One trial run was conducted to test the set-up after
which 12 test-participants were recruited to train their

Interacting with Computers, 2014



24

pronunciation. Additional details and results of this study
can be found in (Cabral et al., 2012).

12.3. Remarks on the use of WebWOZ in live
experiments

These two studies provide initial validation of the
suitability of the WebWOZ prototyping platform for
real experimentation, and of this overall approach to
supporting WOZ. They also provide evidence that the
built-in customization mechanisms (i.e. integration of
CMS-like features for the selection of specific language
technology settings), and adaptability (i.e. its use of
web technologies to permit integration with existing
experiment environments), allow for an employment in a
variety of settings. Additional work that aims at further
improving the broad application of the platform for
language technology research is already in progress. To
do so the system has been installed in other environments
where it will serve as a tool in several research projects
(e.g. Schlögl et al., 2013; Milhorat et al., 2013).

13. FUTURE WORK

Future work will examine in greater depth the consistency
and performance aspects of the wizard’s task and how
these issues can be addressed. Our interviews with wizards
running experiments showed that they are aware of
these aspects but struggle to control them. Investigating
these aspects will require an extensive program of
experimentation with multiple wizards running their own
experiments, and as part of this we plan to make the
system available to the wider HCI community, for both
teaching and research purposes. As a first step the
current version of the platform has been published under
the Apache License (Version 2.0) and is available for
download12. The small interview study conducted as part
of the analysis yielded many interesting insights, and so
a more substantial qualitative research study would be
worth pursuing.

In addition, steps towards the inclusion of multi-modal
aspects have been undertaken by integrating video output.
With some creativity, we believe, the platform could
also be used to explore a number of richer multi-modal
scenarios. Likewise, the advent of mobile web browsers
opens up a number of interesting possibilities, particularly
in the context of speech-to-speech translation (Stüker
et al., 2006) - a domain where the platform, due to its
web-based nature, may easily be deployed. It would also

12https://github.com/stephanschloegl/WebWOZ,
http://www.webwoz.com [Accessed: 23rd Dec. 2013]

be interesting to run comparative experiments between
WebWOZ and other available tools.

With respect to the exploration of the WOZ method,
another interesting direction is the provision of feedback
to wizards on their own consistency, along with metrics
such as response time and spread of utterances used. This
might also play a role in training and piloting, allowing
the wizard to decide at what point she has practised
the dialogue enough and is ready to commence the
full experiment. Also, experiments with multiple wizards
represent an important methodological aspect (one that
was already highlighted numerous times in the literature)
that needs further exploration. Finally, from a language
technology point of view different aspects of dialogue
management (DM) should be investigated. So far we
have treated DM as an integrated wizard task including
language understanding as well as output generation.
However, these are distinct components and research
topics which are worthy of more focussed consideration.

14. CONCLUSION

This paper has examined the Wizard of Oz method
in general and its use for simulating natural language-
based interaction in particular. Drawing on a survey
of the literature and a focused interview study with
people who have used the method, it was highlighted that
existing tools provide insufficient support for this form of
prototyping and that both a better understanding of the
method and more flexible tools are needed.

Following a systematic analysis of the design space
and its influence on the wizard’s task we presented
several requirements which seem crucial to improve future
tool support. The WebWOZ prototyping platform was
presented which integrates different features for dealing
with those requirements. First, to reduce the overhead in
experiment construction and software installation as well
as to increase the flexibility in terms of supporting both
highly structured and more exploratory experimentation,
a web-based CMS-like wizard interface was implemented.
Second, a flexible integration of language technologies
via web-services was demonstrated and it was further
outlined how this architecture would support a possible
augmentation role of the wizard.

Evaluations suggest that the approach is workable.
We showed that potential users can construct WOZ
experiments quickly, which is critical if a technique
comparable to ‘sketching’ (cf. Buxton, 2007) is to be
supported, and that a comprehensive coverage of the
design space can be achieved; supporting the complete
list of scenarios outlined in Table 3. It should be noted
that these scenarios also cover potential multilingual
experiments. Thus, machine translation was added as a

Interacting with Computers, 2014

http://www.webwoz.com


Wizard of Oz for Language Technology Applications 25

dedicated component to the natural language interaction
pipeline, setting our WebWOZ prototyping platform apart
from most currently existing WOZ systems.

Focusing more generally on the challenges of WOZ, our
evaluations suggest that wizards require additional sup-
port. One difficulty concerns the selection of appropriate
response utterances where, despite sufficient familiarisa-
tion with a simulated dialogue, a wizard might face the
challenges of consistency and timing. A second source
of potential error arises through insufficient awareness,
which was also identified as a cause for inconsistent wizard
actions.

ACKNOWLEDGEMENTS

This research was supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for
Next Generation Localisation (www.cngl.ie) at Trinity
College Dublin.

REFERENCES

Aleksy, M., Stieger, B., and Fantana, N. (2010). Utilizing
mock-ups in the development of distributed information
systems for semantic data federations. In Proceedings of
CISIS, pages 307–312.

Bailey, B. P., Biehl, J. T., Cook, D. J., and Metcalf, H. E.
(2008). Adapting paper prototyping for designing user
interfaces for multiple display environments. Personal and
Ubiquitous Computing, 12:269–277.

Balbo, S., Coutaz, J., and Salber, D. (1993). Towards
Automatic Evaluation of Multimodal User Interfaces. In
Proceedings of IUI, pages 201–208.

Bangor, A., Kortum, P., and Miller, J. (2009). Determining
what individual SUS scores mean: Adding an adjective rating
scale. Journal of usability studies, 4(3):114–123.

Bederson, B. B., Hu, C., and Resnik, P. (2010). Translation
by iterative collaboration between monolingual users. In
Proceedings of GI, pages 39–46.

Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-
Korbayova, I., Pinka, M., Siekmann, J., Tsovaltzi, D., Vo,
B. Q., and Wolska, M. (2003). A Wizard-of-Oz experiment
for tutorial dialogues in mathematics. In Supplementary
Proceedings of AIED (Vol. VIII: Advanced Technologies for
Mathematics Education), pages 471–481.

Bohus, D., Raux, A., Harris, T. K., Eskenazi, M., and
Rudnicky, A. I. (2007). Olympus: An open-source framework
for conversational spoken language interface research. In
Proceedings of NAACL-HLT, pages 32–39.

Bohus, D. and Rudnicky, A. I. (2003). RavenClaw: Dialog
management using hierarchical task decomposition and an
expectation agenda. In Proceedings of Eurospeech 2003,
Geneva, Switzerland.

Bohus, D. and Rudnicky, A. I. (2005). Sorry, I didn’t catch
that! An investigation of non-understanding errors and
recovery strategies. In Proceedings of 6th SIGdial Workshop
on Discourse and Dialogue, pages 128–143.

Bradley, J., Benyon, D., Mival, O., and Webb, N. (2010).
Wizard of Oz experiments and companion dialogues. In
Proceedings of BCS-HCI, pages 117–123.

Bradley, J., Mival, O., and Benyon, D. (2009). Wizard of Oz
experiments for companions. In Proceedings of BCS-HCI,
pages 313–317.

Branigan, H. P., Pickering, M. J., J., P., McLean, J. F., and A.,
B. (2011). The role of beliefs in lexical alignment: evidence
from dialogs with humans and computers. Cognition,
121(1):41–57.

Branigan, H. P., Pickering, M. J., Pearson, J. M., McLean,
J. F., and Nass, C. I. (2003). Syntactic alignment between
computers and people: the role of belief about mental states.
In Proceedings of the Twenty-fifth Annual Conference of the
Cognitive Science Society, pages 186–191.

Brooke, J. (1996). SUS - a quick and dirty usability scale.
In Jordan, P. W., Thomas, B., Weerdmeester, B. A., and
McClelland, L., editors, Usability Evaluation in Industry.
Taylor and Francis.

Buxton, W. (2007). Sketching user experiences: getting the
design right and the right design. Morgan Kaufmann.

Cabral, J. P., Kane, M., Ahmed, Z., Abou-Zleikha, M., Szekely,
E., Zahra, A., Ogbureke, K., Cahill, P., Carson-Berndsen,
J., and Schlögl, S. (2012). Rapidly testing the interaction
model of a pronunciation training system via Wizard-of-Oz.
In Proceedings of LREC.

Carroll, J. and Aaronson, A. (1988). Learning by doing with
simulated intelligent help. Communications of the ACM,
31(9):1064–1079.

Cenek, P., Melichar, M., and Rajman, M. (2005). A framework
for rapid multimodal application design. In Proceedings of
TSD, pages 393–403.

Chen, C. L. and Raman, T. V. (2008). AxsJAX: A
talking translation bot using Google IM: Bringing web-2.0
applications to life. In Proceedings of W4A, pages 54–56.

Coutaz, J., Salber, D., Carraux, E., and Portolan, N. (1996).
NEIMO, a multiworkstation usability lab for observing
a multiworkstation usability and analyzing multimodal
interaction. In Proceedings of CHI, pages 402–403.

Cowan, B. R., Branigan, H. P., and Beale, R. (2012).
Investigating the impact of interlocutor voice on syntactic
alignment in human-computer dialogue. In Proceedings of
BCS HCI, pages 39–48.

Dahlbäck, N., Jönsson, A., and Ahrenberg, L. (1993). Wizard
of Oz studies - why and how. In Proceedings of IUI, pages
193–200.

Davis, J. (1998). Active help found beneficial in Wizard of Oz
study. Information and Software Technology, 40:93–103.

Davis, R. C., Saponas, S. T., Shilman, M., and Landay, J. A.

Interacting with Computers, 2014



26

(2007). SketchWizard: Wizard of Oz prototyping of pen-
based user interfaces. In Proceedings of UIST, pages 119–
128.

De Marconnay, P., Crowley, J. L., and Salber, D. (1993). Visual
interpretation of faces in the NEIMO multi-modal test-
bed. In Proceedings of IJCAI. Workshop Looking at People:
Recognition and Interpretation of Human Action.

Deruyter, B., Saini, P., Markopoulos, P., and Vanbreemen, A.
(2005). Assessing the effects of building social intelligence in
a robotic interface for the home. Interacting with Computers,
17(5):522–541.

Doherty, G., Karamanis, N., and Luz, S. (2012). Collaboration
in translation: The impact of increased reach on cross-
organisational work. Computer Supported Cooperative Work
(CSCW).

Dow, S., Lee, J., Oezbek, C., Macintyre, B., Bolter, J. D., and
Gandy, M. (2005a). Wizard of Oz interfaces for mixed reality
applications. In Proceedings of ACM CHI, pages 1339–1342.

Dow, S., Macintyre, B., Lee, J., Oezbek, C., Bolter, J. D.,
and Gandy, M. (2005b). Wizard of Oz support throughout
an iterative design process. IEEE Pervasive Computing,
4(4):18–26.

Dow, S., Mehta, M., Macintyre, B., and Mateas, M. (2010).
Eliza meets the Wizard-of-Oz: Blending machine and human
control of embodied characters. In Proceedings of CHI, pages
547–556.

Erdmann, R. L. and Neal, A. S. (1971). Laboratory vs.
field experimentation in human factors: An evaluation of
an experimental self-service airline ticket vendor. Human
Factors, 13:521–531.

Fiedler, A. and Gabsdil, M. (2002). Supporting progressive
refinement of Wizard-of-Oz experiments. In Proceedings of
the ITS, pages 62–69.

Foster, J. C., McInnes, F. R., Jack, M. A., Love, S.,
Dutton, R. T., Nairn, I. A., and White, L. S. (1998). An
experimental evaluation of preferences for data entry method
in automated telephone services. Behaviour & Information
Technology, 17(2):82–92.

Fraser, N. M. and Gilbert, N. G. (1991). Simulating speech
systems. Computer Speech and Language, 5:81–99.

Geutner, P., Steffens, F., and Manstetten, D. (2002). Design
of the VICO spoken dialogue system: evaluation of user
expectations by Wizard-of-Oz experiments. In Proceedings
of LREC.

Goldstein, M., Bretan, I., Sallnas, E.-L., and Bjork, H. (1999).
Navigational abilities in audial voice-controlled dialogue
structures. Behaviour & Information Technology, 18(2):83–
95.

Good, M. D., Whiteside, J. A., Wixon, D. R., and Jones, S. J.
(1984). Building a user-derived interface. Communications
of the ACM, 27(10):1032–1043.

Gould, J. D., Boies, S. J., Levy, S., Richards, J. T.,
and Schoonard, J. (1987). The 1984 Olympic Message

System: a test of behavioral principles of system design.
Communications of the ACM, 30(9):758–769.

Gould, J. D., Conti, J., and Hovanyecz, T. (1983).
Composing letters with a simulated listening typewriter.
Communications of the ACM, 26(4):295–308.

Gould, J. D. and Lewis, C. (1985). Designing for usability: Key
principles and what designers think. Communications of the
ACM, 28(3):300–311.

Hauptmann, A. G. (1989). Speech and gestures for graphic
image manipulation. In Proceedings of CHI, pages 241–245.

Hill, W. C. and Miller, J. R. (1988). Justified advice: a semi-
naturalistic study of advisory strategies. In Proceedings of
CHI, pages 185–190.

Howell, M., Love, S., and Turner, M. (2005). The impact
of interface metaphor and context of use on the usability
of a speech-based mobile city guide service. Behaviour &
Information Technology, 24(1):67–78.

Hundhausen, C., Balkar, A., Nuur, M., and Trent, S. (2007).
WOZ Pro: A pen-based low fidelity prototyping environment
to support Wizard of Oz studies. In Proceedings of CHI,
pages 2453–2458.

Janarthanam, S. and Lemon, O. (2009). A Wizard-of-Oz
environment to study referring expression generation in a
situated spoken dialogue task. In Proceedings of ENLG,
pages 94–97.

Jönsson, A. and Dahlbäck, N. (1988). Talking to a computer is
not like talking to your best friend. In Proceedings of SCAI.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language
Processing. Prentice Hall, second edition.

Karamanis, N., Luz, S., and Doherty, G. (2011). Transla-
tion practice in the workplace: contextual analysis and
implications for machine translation. Machine Translation,
25(1):35–52.

Karpov, A., Ronzhin, A., and Leontyeva, A. (2008). A semi-
automatic Wizard of Oz technique for Let’sFly spoken
dialogue system. In Lecture Notes in Computer Science:
Text, Speech and Dialogue. Springer.

Kelley, J. F. (1983). An empirical methodology for writing
user-friendly natural language computer applications. In
Proceedings of CHI, pages 193–196.

Kelley, J. F. (1984). An iterative design methodology for user-
friendly natural language office information applications.
ACM Transactions on Information Systems, 2(1):26–41.

Kieffer, S., Coyette, A., and Vanderdonckt, J. (2010). User
interface design by sketching: A complexity analysis of
widget representations. In Proceedings of EICS, pages 57–
66.

Kikui, G., Sumita, E., Takezawa, T., and Yamamoto, S.
(2003). Creating corpora for speech-to-speech translation.
In Proceedings of EUROSPEECH, pages 381–384.

Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A.,
Aboobaker, N., and Wang, A. (2000). SUEDE: A Wizard of
Oz prototyping tool for speech user interfaces. In Proceedings

Interacting with Computers, 2014



Wizard of Oz for Language Technology Applications 27

of UIST, pages 1–10.

Krause, D. (1996). Using an interpretation system -
some observations in hidden operator simulations of
VERBMOBIL. In Proceedings of ECAI, pages 41–54.

Lamel, L. (1998). Spoken language dialog system development
and evaluation at LIMSI. In Proceedings of ISSD, pages 9–
17.

Lee, M. and Billinghurst, M. (2008). A Wizard of Oz study for
an ar multimodal interface. In Proceedings of ICMI, pages
249–256.

Levin, L. S., Gates, D., Lavie, A., and Waibel, A. (1998). An
interlingua based on domain actions for machine translation
of task-oriented dialogues. In ICSLP, volume 98, pages 1155–
1158.

Li, Y., Cao, X., Everitt, K., Dixon, M., and Landay, J. A.
(2010). FrameWire: a tool for automatically extracting
interaction logic from paper prototyping tests. In Proceedings
of CHI, pages 503–512.

Li, Y., Hong, J. I., and Landay, J. A. (2004). Topiary: a tool for
prototyping location-enhanced applications. In Proceedings
of UIST, pages 217–226.

Liu, A. L. and Li, Y. (2007). BrickRoad: a light-weight tool
for spontaneous design of location-enhanced applications. In
Proceedings of CHI, pages 295–298.

Liu, X., Rieser, V., and Lemon, O. (2009). A Wizard-of-
Oz interface to study information presentation strategies
for spoken dialogue systems. In Proceedings of the 1st
International Workshop on Spoken Dialogue Systems.

Lu, D. V., Smart, W. D., Park, M., Louis, S., Interfaces, H. I.,
and User, P. (2011). Polonius: A Wizard of Oz interface for
HRI experiments. In Proceedings of HRI, pages 197–198.

Luperfoy, S. and Miller, K. (1997). The use of the
pegs computational discourse framework as an interlingua
representation. In AMTA SIG-IL First Workshop on
Interlinguas (held at MT Summit VI), San Diego,
California.

Mäkelä, K., Salonen, E.-P., Turunen, M., Hakulinen, J., and
Raisamo, R. (2001). Conducting a Wizard of Oz experiment
on a ubiquitous computing system doorman. In Proceedings
of IPNMD, pages 115–119.

McInnes, F. R., Nairn, I. A., Attwater, D. J., and Jack,
M. A. (1999). Effects of prompt style on user responses
to an automated banking service using word-spotting. BT
Technology Journal, 17(1):160–171.

Melichar, M. and Cenek, P. (2006). From vocal to multimodal
dialogue management. In Proceedings of ICMI, pages 59–67.

Milhorat, P., Schlögl, S., Boudy, J., and Chollet, G. (2013).
What if everyone could do it? a framework for easier spoken
dialog system design. In Proceedings of ACM EICS.

Munteanu, C. and Boldea, M. (2000). MDWOZ: A Wizard
of Oz environment for dialog systems development. In
Proceedings of LREC.

Okamoto, M., Yang, Y., and Ishida, T. (2001). Wizard of

oz method for learning dialog agents. In Klusch, M. and
Zambonelli, F., editors, Cooperative Information Agents V,
volume 2182 of Lecture Notes in Computer Science, pages
20–25. Springer Berlin Heidelberg.

Otto, M., Friesen, R., and Rösner, D. (2011). Message oriented
middleware for flexible Wizard of Oz experiments in HCI.
Human-Computer Interaction. Design and Development
Approaches, pages 121–130.

Pettersson, J. S. and Siponen, J. (2002). Ozlab: a simple
demonstration tool for prototyping interactivity. In Proceed-
ings of NordiCHI, pages 295–296.

Rajman, M., Ailomaa, M., Lisowska, A., Melchiar, M.,
and Armstrong, S. (2006). Extending the Wizard of Oz
methodology for language-enabled multimodal systems. In
Proceedings of LREC, pages 2531–2536.

Rieser, V. and Lemon, O. (2010). Learning human multimodal
dialogue strategies. Natural Language Engineering, 16(1):3.

Saint-Aimé, S., Grandgeorge, M., Le-Pévédic, B., and Duhaut,
D. (2011). Evaluation of Emi interaction with non-disabled
children in nursery school using Wizard of Oz technique. In
Proceedings of IEEE Robio, pages 1147–1153.

Salber, D. and Coutaz, J. (1993a). Applying the Wizard of Oz
technique to the study of multimodal systems. In Proceedings
of EWHCI, pages 219–230.

Salber, D. and Coutaz, J. (1993b). A Wizard of Oz platform
for the study of multimodal systems. In Proceedings of
INTERACT and CHI, pages 95–96.

Scherer, S. and Schwenker, F. (2008). Emotion recognition
from speech using multi-classifier systems and RBF-
ensembles. Studies in Computational Intelligence, 83:49–70.

Scherer, S. and Strauß, P.-M. (2008). A flexible Wizard-of-
Oz environment for rapid prototyping. In Proceedings of the
6th International Conference on Language Resources and
Evaluation (LREC), pages 958–961.

Schlögl, S., Chollet, G., Milhorat, P., Deslis, J., Feldmar, J.,
Boudy, J., Garshall, M., and Tscheligi, M. (2013). Using
Wizard of Oz to collect interaction data for voice controlled
home care and communication services. In Proceedings of
IASTED SPPRA, pages 511–518.

Schlögl, S., Doherty, G., Karamanis, N., and Luz, S. (2010).
WebWOZ: a Wizard of Oz prototyping framework. In
Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems (EICS’10), pages
109–114. ACM.

Schneider, A. and Luz, S. (2011). Speaker alignment
in synthesised, machine translated communication. In
International Workshop on Spoken Language Translation,
pages 254–260. ISCA.

Schneider, A. H. (2013). Intrinsic and Extrinsic Component
Evaluation in Interactive Multilingual Speech Applications.
PhD thesis, Trinity College, University of Dublin.

Schneider, A. H., van der Sluis, I., and Luz, S. (2010).
Comparing intrinsic and extrinsic evaluation of MT output

Interacting with Computers, 2014



28

in a dialogue system. In Proceedings of IWSLT, pages 329–
336.

Séquin, C. H. (2005). Rapid prototyping: a 3d visualization
tool takes on sculpture and mathematical forms. Communi-
cations of the ACM, 48(6):66–73.

Serrano, M. and Nigay, L. (2010). A Wizard of Oz
component-based approach for rapidly prototyping and
testing input multimodal interfaces. Journal of Multimodal
User Interfaces, 3(3):215–225.

Skantze, G. and Hjalmarsson, A. (2010). Towards incremental
speech generation in dialogue systems. In Proceedings of
the 11th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, SIGDIAL ’10, pages 1–8,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Smeddinck, J., Wajda, K., Naveed, A., Touma, L., Chen,
Y., Hasan, M. A., Latif, M. W., and Porzel, R. (2010).
QuickWoZ: A multi-purpose Wizard-of-Oz framework for
experiments with embodied conversational agents. In
Proceedings of IUI, pages 427–428.

Stenton, P. and Whittaker, S. (1989). User studies and the
design of Natural Language Systems. In Proceedings of
EACL, pages 116–123.

Stüker, S., Zong, C., Reichert, J., Cao, W., Kolss, M., Xie,
G., Peterson, K., Ding, P., Arranz, V., Yu, J., and Waibel,
A. (2006). Speech-to-speech translation services for the
Olympic Games 2008. In Renals, S., Bengio, S., and Fiscus,
J. G., editors, Proceedings of MLMI, pages 297–308.

Sutton, S., Cole, R., de Vielliers, J., Schalkwyk, J., Vermeulen,
P., Macon, M., Yan, Y., Kaiser, E., Rundle, B., Shobaki, K.,
Hosom, P., Kain, A., Wouters, J., Massaro, D., and Cohen,
M. (1998). Universal speech tools: The CSLU toolkit.

Turunen, M. and Hakulinen, J. (2000). Jaspis - a framework
for multilingual adaptive speech applications. In Proceedings
of Sixth International Conference on Spoken Language
Processing, ICSLP 2000 / INTERSPEECH 2000, pages
719–722.

Turunen, M., Hakulinen, J., Salonen, E.-P., Kainulainen, A.,
and Helin, L. (2005). Spoken and multimodal bus timetable
systems: Design, development and evaluation. In Proceedings
of SPECOM, pages 389–392.

Villano, M., Crowell, C. R., Wier, K., Tang, K., Thomas, B.,
Shea, N., Schmitt, L. M., and Diehl, J. J. (2011). DOMER: A
Wizard of Oz interface for using interactive robots to scaffold
social skills for children with autism spectrum disorders. In
Proceedings of HRI, pages 279–280.

Interacting with Computers, 2014


	Introduction
	Wizard of Oz and its applications
	Wizards as Users and their Interest in the Method
	Learning from experiences with Wizard of Oz
	Reasons for using WOZ
	Challenges to overcome
	Tools employed

	Requirements for Wizard of Oz Tool Support
	Existing Wizard of Oz Tool Support
	Dialogue Management Tools
	Pure WOZ Tools
	Challenges of Generic Tool Support

	The Task of the Wizard and its Design Space
	A Comprehensive Tool Architecture
	Wizard of Oz and the Web
	Investigating Tool Support
	An Initial Prototype and Requirements Study
	WebWOZ – A Generic Platform for WOZ

	Supporting Experiment Construction
	Evaluation Method
	Construction Study 1 - Use by Expert Users
	Construction Study 2 - Use by Learners

	Supporting WOZ Experiments
	Experiment Support Study 1 - Translated Speech Synthesis
	Experiment Support Study 2 - Pronunciation Trainer
	Remarks on the use of WebWOZ in live experiments

	Future work
	Conclusion

