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This work is focused on enhancing highly interactive text-editing applications with
gestures. Concretely, we study CATTI, a handwriting transcription system that
follows a corrective feedback paradigm, where both the user and the system
collaborate efficiently to produce a high-quality text transcription. CATTI-like
applications demand fast and accurate gesture recognition, for which we observed
that current gesture recognizers are not adequate enough. In response to this need
we developed MinGestures, a parametric context-aware gesture recognizer. Our
contributions include a number of stroke features for disambiguating copy-mark
gestures from handwritten text, plus the integration of these gestures in a CATTI
application. It becomes finally possible to create highly interactive stroke-based text-
editing interfaces, without worrying to verify the user intent onscreen.

We performed a formal evaluation with 22 e-pen users and 32 mouse users using a
gesture vocabulary of 10 symbols. MinGestures achieved an outstanding accuracy (less
than 1% error rate) with very high performance (less than 1 ms of recognition times).
We then integrated MinGestures in a CATTI prototype and tested the performance
of the interactive handwriting system when it is driven by gestures. Our results show
that using gestures in interactive handwriting applications is both advantageous and
convenient when gestures are simple but context-aware. Taken together, this work
suggests that text-editing interfaces not only can be easily augmented with simple
gestures, but also may substantially improve user productivity.
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1. INTRODUCTION

For many of us, editing text on a computer has become a
part of our daily lives; e.g., answering e-mails, blogging,
chatting, filling web forms, or reviewing and proofreading
documents. Text editors are thus central to everyday
tasks in large or small measure, but unfortunately the
foundations they are based on have barely improved over
the last decade. The creation of text has traditionally been
the user’s exclusive responsibility, but now people often
create text in collaboration with machines (MacKenzie
and Tanaka-Ishii, 2007).

Interestingly, some text-editing applications have
shifted from the above-mentioned traditional approach to
a mixed-initiative user interface (MIUI) paradigm, where
the user is not the only responsible of all decisions. Indeed,
interactive-predictive techniques involved in MIUIs allow
both the user and the system to collaborate efficiently
and seamlessly. Within this paradigm, text editing goes
well beyond basic text typing or correcting. The feedback
provided by the user is leveraged by the system to
immediately improve its current outcome and to retrain
itself to further improve future results (Horvitz, 1999;
Culotta et al., 2006; Toselli et al., 2010).
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2 L. A. Leiva et al.

Text-editing applications that are being studied under
the MIUI framework include computer-assisted machine
translation (Vidal et al., 2008; Ortiz-Martínez et al.,
2010, 2011), interactive transcription of handwritten
texts (Shilman et al., 2006; Romero et al., 2009a) or
spoken documents (Rodríguez et al., 2010b; Revuelta-
Martínez et al., 2012), and interactive text genera-
tion (Rodríguez et al., 2010a; Revuelta-Martínez et al.,
2013). In these applications, a system is trained with
examples of the type of text to be produced and the user
interactively guides the system to produce the desired out-
put, often with a significant reduction in typing and think-
ing effort.

Toselli et al. (2011) found that non-deterministic
feedback interfaces—i.e., those that do not rely on
traditional keyboard or point-and-click actions—provide
a unique opportunity for improving the user experience
in MIUI-driven applications. Clearly, this also raises a
number of challenges because non-deterministic feedback
requires pattern recognition decoding procedures, which
can be as complex as those needed to process other data
signals considered in the application; e.g. the input image.
Therefore, decoding this feedback is error-prone and
typically will require further corrective user interactions.

Of course, advanced text-editing applications can rely
on more deterministic feedback, based on keyboard input.
However, under the MIUI framework, other modalities
may be considered, potentially noisy but definitely more
comfortable such as voice, touch, or e-pen (Alabau et al.,
2014; Martín-Albo et al., 2012; Alabau et al., 2011a,b;
Castro-Bleda et al., 2011). In addition to their potential
for increased ergonomics, the interest in these interfaces is
nowadays quickly increasing because of the recent growth
in the use of mobile and handheld devices for an ever
increasing number of both consumer and professional
applications.

Of particular relevance here are stroke-based interfaces,
where feedback, commands, and text-corrections are all
entered by means of a tablet, a touchscreen, or any
other input device that can produce a temporal sequence
of spatial coordinates representing general text and/or
specific commands. These emerging interfaces provide
immediate electronic ink feedback of the digitized writing
and mimic the familiar pen-and-paper paradigm to
provide a paper-like experience (Tappert and Mosley,
2001). Suitable prototyping tools and techniques are thus
essential for such emerging interfaces. Furthermore, with
the increasing popularity of stroke-based applications,
fast and accurate gesture recognition is becoming a
critical part in the lifecycle of such systems. As compared
to interacting with traditional devices, stroke-based
applications provide the user with an easier and more
comfortable interaction style, at the expense of the
submitted feedback being less explicit for the system.

1.1. Contributions

In this paper, we contribute with the integration of a set
of copy-mark gestures that are specifically adequate for
interactive applications involving text editing with an e-
pen. In the context of this paper, by e-pen we will refer to
a stylus-like device that captures the handwriting or brush
strokes of a user; i.e., a physical ink pen with electronic
capabilities such as a digitizer tablet or a digitizer screen.
However, we must remark that our approach is general
enough as to be implemented in other stroke-based devices
such as mice, tablets, or touchscreens.

We also contribute with a number of stroke features
for disambiguating gestures from handwritten text. It is
important to emphasize that disambiguation is tightly
coupled to the recognition process itself, since the user
can submit either a gesture, a handwritten word, or a
combination of both, all at a time. This way, our work
makes it finally possible to create highly interactive text-
editing stroke-based interfaces, without worrying to verify
the user’s intent onscreen.

Finally, we should also mention that most of the ideas
presented in this paper are a revisitation of previous
concepts that have been thriving for decades but have had
little success outside academia. In contrast, our results
are of immediate application to all of the interactive
applications mentioned previously and, to some extent,
to non-interactive post-editing applications. Among these
applications, for the sake of conciseness, we will focus
on text-editing MIUIs as applied to the output of an
interactive handwritten text image transcription system,
also known as “Computer Assisted Transcription of Text
Images” (CATTI) (Toselli et al., 2010; Romero et al.,
2012).

1.2. Organization

The rest of the paper is structured as follows. In
Section 2 we describe the background of this work
and introduce the CATTI framework. In Section 3 we
discuss the challenges of designing gestures for interactive
text edition. Then, we define in Section 4 a set of
marking gestures to enable natural interaction in CATTI
applications, and the features that allow a computer to
tell gestures and handwritten text apart. A number of
user studies are performed in Section 5. Next, we integrate
gestures in a CATTI prototype, as described in Section 6.
Recapitulations of our general findings and comments on
their implications for designing interactive text-editing
interfaces are drawn in Section 7, followed by a brief
discussion about the limitations of our approach. We then
relate to previous work in Section 8. Finally, we end the
paper in Section 9 with the main conclusions and provide
directions for future work.
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2. BACKGROUND

Handwritten text image transcription, mostly known as
“off-line” handwriting text recognition (HTR), is the
task of converting handwritten text images into an
electronic text format. HTR refers to recognizing cursive
handwriting (Figure 1), and is thus a task quite apart
from Optical Character Recognition (OCR). In fact, there
is no OCR system that supports cursive handwriting
recognition as of today (Alabau and Leiva, 2012).

Figure 1: OCR deals with documents presenting predictable
inter-word and inter-character spaces, consistent typesetting,
etc. (top). On the contrary, HTR is suited to recognizing
cursive, continuous handwriting, presenting skewed/slanted
words, irregular calligraphy, and so on (bottom).

For some time in the past decades, the interest in
HTR was diminishing, under the assumption that modern
computer technologies would soon make paper-based text
documents useless. However, more recently, the task has
become an important research topic, especially because
of the increasing number of online archives and digital
libraries publishing huge quantities of digitized legacy
documents. This fact has fostered the creation of digital
libraries by public institutions1,2,3,4 not only to preserve
the cultural heritage, but also to make it possible to index,
copy, edit, or translate the texts, search for words, etc.

Although many manuscripts have been transcribed
as of today, most of the digital libraries host only
scanned pages of the original books.5 The vast majority
of these documents, hundreds of terabytes worth of
digital image data, remain waiting to be transcribed
into an electronic format that would provide publishers,
historians, demographers, and other researchers with new
ways of typesetting, indexing, querying, and circulating
these documents.

While the state of the art in HTR has dramatically
advanced in the last few years, current technology is still
far from providing sufficiently accurate transcripts for
typical applications in a fully automated way. Therefore,
rather than relying on inefficient manual procedures,
interactive-predictive techniques such as CATTI are ideal
candidates to achieve the required quality in a user-
friendly way.

1http://www.bl.uk
2http://www.wdl.org
3http://www.europeana.eu
4http://www.cervantesvirtual.com
5http://www.cic.net/Home/Projects/Library/BookSearch/

2.1. The CATTI Framework

CATTI aims at assisting the user in the image
transcription process; that is, the system eases and at
the same time speeds up the task of transcribing text.
CATTI presents automatic transcriptions of text images
to the user, and progressively allows her to refine such
transcriptions by performing a series of predefined editing
actions; e.g., word substitution, insertion, validation of
transcription parts, etc. When the user performs an
editing action over a decoded text segment, the system
immediately reacts and applies the corresponding editing
operation along with other potentially useful changes,
anticipating itself to future interactions. These changes
are tailored to the text modified or revised so far by the
user. Hence, this can be seen as an intelligent multi-word
autocompletion procedure.

The basic protocol that rules this process can be
formulated in the following steps, which are iterated until
a high-quality transcription is obtained; see Figure 2:

(i) The system proposes a full transcription hypothesis ŝ

of an input handwritten text line image l, represented
as a feature vector sequence.

(ii) The user amends the first error in such hypothesis,
implicitly validating an error-free prefix p′.

(iii) A consolidated prefix p is thus produced, based
on the previously validated prefix p′ and the
corrections v submitted by the user.

(iv) Using this new prefix p, the system suggests the most
suitable continuation ŝ of it, from a probabilistic point
of view.

It is important to remark that the handwritten pen-stroke
corrections v in Figure 2 are non-deterministic and so
they could be misrecognized by an on-line HTR engine.
However, for illustration purposes, in the figure we assume
that these are correctly decoded.

As observed, a key point of this iterative process is
that, within each user interaction, the system can take
advantage of the consolidated prefix to produce improved
text predictions. Formally, at each step of this process,
both the line image representation l, and a corrected
transcription prefix p are available, so the system can
autocomplete the full transcription by searching for the
most likely suffix ŝ, according to:

ŝ = arg max
s

Pr(s | l, p) = arg max
s

Pr(l | p, s) · Pr(s | p)

(1)

Since the concatenation of p and s constitutes a full
transcription hypothesis, the term Pr(l | p, s) can be
approximated by concatenated character-based Hidden
Markov Models (Jelinek, 1998) as in conventional HTR.
On the other hand, Pr(s | p) is approximated by
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l

ITER-0
p

-
ø

ŝ ≡ ŵ opposite       this       Comment           Bill     in that      thought      

ITER-1
p′

, v opposite       this       Comment           Bill     in that      thought    

p opposed       this       Comment           Bill     in that      thought      

ŝ opposed       the       Government       Bill     in that      thought      

ITER-2
p′

, v opposed       the       Government       Bill     in that      thought      

p opposed       the       Government       Bill     which      brought      

ŝ opposed       the       Government       Bill     which      brought    

FINAL
p′

, v opposed       the       Government       Bill     which      brought      

opposed       the       Government       Bill     which      brought    

Figure 2: CATTI session example. The system proposes a
complete transcription ŝ ≡ ŵ of the input image l, so the
user prefix p is initially empty. In each interaction step the
user implicitly validates the longest well-recognized prefix p′

by correcting an erroneous word v, thereby generating a new
prefix p (p′ plus the word v). As a result, the system suggests a
suitable continuation ŝ of this prefix p. The process is iterated
until a correct transcription p ≡ ŵ is reached, which can be
signaled by a special gesture. In this example, the estimated
effort to post-edit the first hypothesis ŵ would be 5/7 words
(71%), while the corresponding interactive estimate is 2/7 =
29%. This results in an estimated effort reduction of 59%.

modifying an n-gram language model at runtime, in order
to cope with the increasingly consolidated prefixes. In a
nutshell, by allowing users to dynamically be in command
and use the preferred feedback modality, CATTI holds
promise to be more acceptable to professional transcribers
than manual transcription or plain post-editing, while
improving transcriber productivity.

In early CATTI systems, only word substitution
was considered as an allowed editing operation (Toselli
et al., 2010). Later on, Romero et al. (2009b)
incorporated “pointer actions”, allowing the user to
indicate that a word was erroneous. This improved the
expected user productivity under user-simulated studies.
Then, for the sake of completeness, the other two
classical editing operations—deletion and insertion—were
introduced (Romero et al., 2009a). This way, the user
could perform different types of error correction. Recently,
with the goal of making the interaction process more
productive, Romero et al. (2011) considered a new set
of editing operations, such as word concatenation and
word splitting, to be incorporated to CATTI systems.
This new set was expected to contribute to a reduction
of the number of user interactions with respect to using
conventional CATTI operations.

Note that each interactive editing operation generates
a different prefix for the system. Therefore, the suffix
proposed by the system is tightly coupled to the previous
editing operation. The following list enumerates the

different actions that may be carried out in a CATTI
system, together with a brief description of the prefix that
is generated. We remark that such a prefix is implicitly
validated at each interaction step, until the user decides
to explicitly validate the full text transcription.

• Substitute: The first erroneous word is replaced with
the correct word. The validated prefix consists of all
words preceding the wrong word plus the corrected
word.

• Reject: The user indicates an erroneous word in the
proposed transcription and the system automatically
proposes a new suffix, in which the first word is
different from the erroneous word. All words that
precede the incorrect word constitute the validated
prefix.

• Insert: A new word is inserted between two words that
are both assumed to be correct. The validated prefix
is composed of all words preceding the inserted word,
the inserted word itself, and the word that follows
such a newly inserted word.

• Delete: An incorrect word between two correct words
is removed. The validated prefix consists of all words
preceding the deleted word, plus the word that follows
such a deleted word.

• Merge: Two consecutive words are concatenated to
generate a correct word. The validated prefix is
composed of all the words that precede the merged
words, plus the newly generated word.

• Split: A word is divided into two different (correct)
words. The validated prefix consists of all words until
the splitted word, followed by the new two words.

• Validate: The full transcription is accepted. The
validated prefix contains all words in the current
transcription.

As we have discussed in Section 1, these operations
can be unambiguously provided by using a traditional
keyboard-based UI by means of predefined shortcuts.
Alternatively, all of these operations can be issued by
means of stroke-based specialized gestures. A stroke-based
UI is often preferred by users because, if adequately
designed, gestures can be far more natural and easier to
remember than keyboard shortcuts, and they can also be
fast enough to produce (Anthony et al., 2013; Cao and
Zhai, 2007; Long et al., 2000). Nevertheless, stroke-based
UIs must deal with the challenge of recognizing hand-
made input. This in turn challenges the design of the
stroke-based text-editing UI and of course the underlying
gesture recognizer.

Interacting with Computers, 2014
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3. DESIGNING GESTURES FOR

INTERACTIVE TEXT EDITING

A pointer-based device operating a CATTI application
should issue text-editing commands by means of
gestures. In general, gestures can provide the user
with a natural and engaging way of interacting
with applications, whenever the underlying system can
accurately understand the actions envisioned by the user.
This section is devoted to solving the following three open
problems that arise from editing text on MIUIs in general,
and CATTI applications in particular.

First, gestures and handwritten text must be unambigu-
ously differentiated (Huerst et al., 2010; Leiva et al., 2013).
Otherwise, if a gesture is misrecognized as text or vice
versa, cascading errors (Karat et al., 1999) are likely to
happen. So a) the actual user intention would be wrongly
captured by the application, therefore b) it would not be
possible for the system to derive a correct response, which
c) would cause frustration, as d) the user would need to
amend the erroneous response, possibly issuing an Undo
operation, and e) resubmit the previously intended ges-
ture or text correction again. More specifically, the stream
of cursor coordinates that is generated by the input device
on the UI must be differentiated into: 1) gesture strokes
aimed at triggering editing actions, and 2) strokes cor-
responding to handwritten text introduced by the user
either to correct misrecognized words/characters or to
enter unconstrained, raw text. In any case, strokes need
to be decoded, thereby entailing a risk for the system to
commit errors.

Second, it is notably important to ensure both low
recognition errors and low recognition times, since pro-
ductivity is extremely mandatory when operating a text-
editing MIUI. In this regard, users are typically willing to
accept error rates up to about 3% or less, before deeming
the technology as “too encumbering” (LaLomia, 1994).
Moreover, users tend to trust systems less if they appear
to work mysteriously or behave unpredictably (Kristens-
son and Denby, 2011; Tseng and Fogg, 1999). Add to that
the above-mentioned cascading errors, and the user almost
surely will reject any interactive text-editing system that
does not meet these strict requirements. In addition, ges-
ture decoding must be fast enough to meet the real-time
constraints entailed by interactive operations. MIUIs are
very often implemented following a client-server architec-
ture, where the user interface itself is generally devel-
oped as a light client, typically a mobile or web-based
application (Ortiz-Martínez et al., 2010; Romero et al.,
2009a; Sánchez-Sáez et al., 2010). In this kind of applica-
tions, time-response constraints often dictate that gesture
decoding must be carried out on the client side. Corre-
spondingly, gestures must allow for simple decoding with
limited amount of computational resources.

The MIUI paradigm offers the possibility to adequately
deal with the two above problems by taking advantage
of the context of each issued gesture. To this end, the
system needs information from the text itself which the
user is interacting with, at the word (or even character)
level, in order to provide the user with suitable corrections.
This is the third open problem addressed in this paper.
As discussed later, on a text-editing MIUI, this can be
successfully approached by letting gestures be performed
over the text being edited. This way, the context—
which mainly consists of the chunks of text interactively
processed so far—may help predicting what text or
gesture is most probably expected at each interaction step.
In addition, the word the user is interacting with allows
the system to establish spatial and temporal constraints,
which helps disambiguating whether a stroke is aimed at
specifying a command or at providing textual data.

The above-mentioned open problems constrain the
design of the gesture vocabulary. Moreover, each type of
application has unique operations and therefore requires
specialized gestures. Further, gestures are limited by
user skill, in terms of both memory and performance,
and hence they must remain simple. The process
of designing gestures is therefore challenging. Ideally,
gestures should be as distinct, usable, and quick to make
as possible. Because MIUI-driven applications demand
frequent interaction, applications should allow the user to
do so with minimum effort. Alas, it is difficult to design
gestures that are easy for computers to recognize and for
humans to learn and remember (Long et al., 1999, 2000).

Inspired in part by the Marking Menus tech-
nique (Hardock et al., 1993; Kurtenbach and Buxton,
1994) and similar derivatives (Balakrishnan and Patel,
1998; Bailly et al., 2008; Moyle and Cockburn, 2002), our
approach is based on the fact that drawing lines with a
pointer device is a very simple task and really easy for
users to perform, and it is also very efficient for comput-
ers to recognize, since the proposed gestures are linearly
separable; see Figure 3. In general, stroke shortcuts can be
as efficient as or more advantageous than keyboard short-
cuts (Appert and Zhai, 2009) and may have a cognitive
advantage because they are easy to memorize.

Marking Menus have been proved to be an extremely
efficient menu selection technique (Kurtenbach and
Buxton, 1991; Zhao and Balakrishnan, 2004; Delaye et al.,
2011). They were designed to allow such selection by either
popping-up a radial (or pie) menu, or by making a straight
mark in the direction of the desired menu item without
having to wait for the menu to pop up. That way, marks
can be executed very quickly. In fact, the usage of this
“mark mode” is very similar to flick-style finger motions
that have become quite natural on touch-based devices for
navigation (Raab, 2009). This should allow CATTI users
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to be more productive, since gestures could be invoked
faster and with little effort.

To summarize, the driving idea here is that there
is an opportunity to efficiently integrate a series of
text editing actions using simple copy-mark gestures
and taking advantage of the full application context.
It seems intuitive that enhancing gestures with the
application context would lead to better recognition
outcomes. Hopefully, this would also lead to improvements
in terms of system usability, effort reduction, and user
acceptability. In the remainder of this paper, we will
refer to our approach as MinGestures, a minimal and
context-aware recognizer for interactive text editing.

4. IMPLEMENTATION

We tried a baseline set of eight gestures (Figure 3) using
simple but reasonably accurate recognizers in the HCI
literature, among which we chose the “$ family” for
being easily customizable: $1 (Wobbrock et al., 2007),
Protractor (Li, 2010), $P (Vatavu et al., 2012), and
$N (Anthony and Wobbrock, 2010). Concretely, only
$1 would partially fit our needs. On the one hand,
Protractor rotates gesture samples to their optimal
indicative angle prior and during recognition, therefore
it is not appropriate to deal with the set of gestures
we were testing, since all lines are misrecognized as
horizontal lines. On the other hand, $P completely ignores
stroke sequentiality, since gestures are treated as clouds of
points, so it cannot differentiate gestures on the basis of
direction. Finally, $N is the extension of $1 to multistroke
gestures, where all possible stroke orders and directions
are considered for each stored template. Therefore, it
achieves exactly the same recognition error as $1 with our
proposed gesture set.

Figure 3: Minimal unistroke gesture vocabulary.

After incorporating some tweaks to $1, overall
recognition error was between 16% in training and 7%
in test (Section 5), which was definitely insufficient for
editing text on MIUIs. We also tested the original Marking
Menus algorithm (Kurtenbach, 1991) and the Rubine
recognizer (Rubine, 1991b), and found that they both were
still insufficient (Section 5.2.2). Therefore, considering the
simplicity of the gestures we are targeting, we opted
for implementing a customized parametric recognizer,
since gestures must fit an assumed model (straight lines).

Otherwise, the submitted strokes should be identified as
regular text.

On the other hand, given that we are dealing with
text-editing tasks, it would be interesting to incorporate
contextual information, namely the words themselves the
user is interacting with. This way, we could design a
non-overlapped set of gestures with better disambiguation
capabilities. In the following we briefly describe our
approach, which is specifically tailored to interactive
text-editing MIUIs in general and CATTI systems in
particular.

4.1. Overview

MinGestures operates on a featurized representation of
gestures and assume a parametric model that the target
gestures have to fit. One of the appealing factors of this
approach is that it is scale and position invariant, but
also angular-tolerant. What is more, it does not need
resampling stroke points, and does not require gesture
templates. Our hypothesis is that this approach should
achieve very low error rates, since handwriting can be
rarely confused with straight lines, and gestures based on
a set of straight lines can be easily differentiated according
to their slope.

In this context, MinGestures could be defined as a
line-fitting algorithm, but it certainly goes beyond this.
First, it is able to disambiguate between gestures and
handwritten text, by means of the unsupervised analysis
of the user-submitted strokes. Second, MinGestures is
context-aware, which implies that it “understands” the
text the user is editing. This provides valuable information
to build text-editing MIUIs. Finally, given the simplicity
of copy-mark gestures, they are extremely fast in terms of
both entry speed and recognition. These qualities clearly
meet our strict requirements for highly interactive text-
editing applications.

4.2. Gesture-based Commands

Figure 4 shows a graphical overview of the gesture set for
the editing operations presented in Section 2.1, together
with 3 additional operations that are worth including in
every interactive application:

• Undo: The previous application state is restored; i.e.,
the previous command is undone.

• Redo: The last application state is restored, if
available.

• Help: A contextual help (or another kind of resource)
should be displayed to the user, if available.

Notice that these additional operations do not generate
a prefix for a CATTI system, as they are solely
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ACTION RESULT ACTION RESULTLABEL LABEL

<help event>Help Lorem Ipsum

Undo Lorem Lorem Ipsum

Redo Lorem Ipsum Lorem

Validate Lorem Ipsum Lorem Ipsum

Split Lorem Lor em

Lorem ...Reject Lorem Ipsum

Merge Lorem Ipsum LoremIpsum

Delete Lorem Ipsum Lorem

Lorem et IpsumInsert Lorem Ipsum

Lorem IpsanSubstitute Lorem Ipsum

Figure 4: Set of interactive text-editing actions for MIUIs. The recognizer uses information from bounding boxes to construct the
corrected prefix and disambiguate gestures; see, e.g., Insert and Split. The Reject gesture is performed as a single click. Undo, Redo

and Help do not depend on the position of the bounding boxes, as these operations do not generate a prefix for a CATTI system.

introduced to ease user interaction within the application.
Additionally, notice as well that Insert and Substitute
gestures both comprise decoding either a word or a
character from the submitted strokes. In these cases, the
strokes belonging to handwriting are separated from the
gesture stroke, and so they are sent to an underlying
handwriting recognition system for decoding, as will be
illustrated in Section 6. Finally, an important design
decision was to implement the Reject operation as a single
click, since this is the action that a user would perform
before start correcting a word. In general, clicks are well
understood by computer users and require little effort
to be executed. However, while mouse clicks are really
deterministic, composed of exactly one single-point stroke,
e-pen clicks might comprise multiple points and thus may
lead to an ambiguous recognition—although if points are
very close to each other they can be easily told apart from
other gestures.

4.3. Disambiguating Gestures and Text

Disambiguation is one of the fundamental capabilities of
MinGestures, for which we first considered approaches
based on properties of classical linear fitting. To begin,
the least square error (LSE) is a measure of the “entropy”
of a sequence of stroke points (Li and Hammond, 2012).
However, LSE is not normalized by the number of points
and it is thus very sensitive to the length of the strokes.
To address this shortcoming, we decided to use the root
mean square error (RMSE), which is a normalized version
of LSE. This feature, albeit performing reasonably well
for this task, did not completely meet our expectations.
Therefore, we decided to use a couple of additional stroke

features to improve the accuracy for this task. These
features rely on the analysis of point sequences lying on
the x-axis, for which the strokes must be rotated by its
indicative angle, as described by Wobbrock et al. (2007);
Li (2010); Vatavu et al. (2012). Actually, in our approach
the original strokes are left untouched, in order to classify
later each gesture on the basis of the 8 octant angles.

For disambiguating gestures and handwritten text we
are only concerned about the first stroke submitted by
the user; see Figure 4. Thus, let denote it as t =
{(x1, y1) · · · (xj , yj) · · · (xN , yN )}, with N = |t|. First, the
cumulative horizontal negative derivative for t

∆−

x =

N∑

j=2

max(xj−1 − xj , 0) (2)

informs about points being drawn backwards; therefore
if a stroke yields ∆−

x ≈ 0, then it is monotonous in the
(rotated) x-axis and thus is likely to be a line. Second, the
aspect ratio of the stroke’s bounding box

ϕ =
max(x) − min(x)

max(y) − min(y)
(3)

where the point sequences x = {x1 · · · xj · · · xN } and
y = {y1 · · · yj · · · yN } inform about the shape of a stroke.
Hence, “thin” strokes are likely to be lines.

Using RMSE along with the additional two stroke
features, we found out that gestures can be successfully
disambiguated from handwritten text. Concretely, we
assume that a stroke is handwritten text when at least
one of these 3 features is above its respective threshold.
Because only the first stroke must be featurized, this
disambiguating operation requires minimal computation
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time. Then, together with the taxonomy shown in
Table 1, gestures can be properly contextualized so
that potential collisions can be successfully solved. For
instance, the character "|", a comma, or a dash,
could all be misrecognized as lines, however the context
provided by the bounding boxes adequately solves these
ambiguities; since, in our implementation, for character-
level interactions the user must perform an insertion mark
prior to entering the new character. Below we describe
how context is used by MinGestures.

4.4. Contextualizing Gestures

For each text segment being edited, words’ bounding
boxes are normalized in height (Figure 5). These “virtual”
bounding boxes will be used to accurately detect the
word(s) the user is interacting with.

Lorem Ipsum dolor sit amet

Lorem Ipsum dolor sit amet

Figure 5: Words’ bounding boxes are normalized in height.
This allows the user to easily select (or draw over) them, but
also to find the interaction context. In the bottom row, central
dots represent word centroids.

On the one hand, the centroid c1 of the first stroke
informs about the word being edited (Figure 5), according
to the distance to the word centroid, i.e., the closest k-th
bounding box: k∗ = arg min

k

d(c1, ck).

On the other hand, if the first of the submitted strokes
turns out to be a line, the angle of the fitted line a = ŷ−b

x
measures the slope of such stroke, where b is the intercept
of the fit. In the past we tried the naïve approach to
compute the angle using the starting and ending points
of the stroke, i.e., θ = tan−1 yN −y1

xN −x1

as in the original
Marking Menus algorithm (Kurtenbach, 1991), but it did
not yield robust results, specially when using an e-pen, as
this device usually leads to substantial jittering effects; see
Figure 6. Therefore, we found that computing the angle
from the fit results in a stronger approach.

As shown in Figure 7, MinGestures uses an angular
tolerance of a ± ǫ1 for diagonal strokes and a slightly
smaller tolerance a ± ǫ2 for horizontal/vertical strokes,
since diagonal lines are relatively harder to be accurately
drawn. By default, ǫ1 = 35◦ and ǫ2 = 10◦. Nevertheless,
both tolerances are user-customizable.

0

2π

−
π

4
rad

±ǫ2

π

2

π±ǫ1

π rad

−

π

2
3π

2

(a)

Validate

Delete

Undo

(b)

Figure 7: Accommodating gesture variability. The angular
tolerances ǫ1, ǫ2 are user-customizable (7a). Gestures are drawn
on non-overlapping areas, so they can be robustly distinguished
(7b). See also Figure 10.

4.5. Recognizer Workflow

Whenever the user stops writing on the UI (e.g., when
lifting the e-pen or after some milliseconds of inactivity),
the submitted strokes are inspected according to RMSE
and Equations (2) and (3). In case of gesture ambiguities,
the following taxonomy is queried to solve them.

Table 1. Taxonomy of implemented gestures (Figure 4), based
on the position of the first and last stroke points with respect
to a word bounding box.

First Last Gesture labels

in in Substitute, Merge, Reject
in out Substitute

out in [unassigned]
out out Delete, Insert, Split, Validate, Undo, Redo, Help

Then, if the first stroke is considered to be a line, the
stroke angle of the fitted line is computed to classify
the corresponding operation. Otherwise, the user would
be substituting (handwriting) a word, in which case the
strokes must be decoded by a handwriting recognition
engine; see Section 6.1.

In CATTI, the user may submit an arbitrary number of
strokes. Typically, this happens when handwriting words;
i.e., when performing Substitute or Insert operations.
On the contrary, when a single stroke is submitted, the
system must decode the intention of such stroke, which
can be either a gesture for a given editing operation or a
(partially) handwritten word. In any case, being context-
aware, each operation is assigned an operation code.
Therefore, only when no operation code is detected, either
because no label is assigned to the submitted gesture
or because such gesture was not performed as it was
designed, no CATTI prefix is generated.
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Figure 6: E-pen samples of the Help gesture. It can be observed that the pressure sensitivity of the e-pen may lead to substantial
jittering effects, which might cause misrecognition results if stroke features are not computed robustly enough.

5. USER EVALUATION

We conducted a formal field study that was two-fold:
to test MinGestures in a live setting and evaluate its
performance as well as its acceptability by end users.
Some of the questions we address in the following section
are: Does MinGestures achieve its intended goals?
Do users feel comfortable using this set of gestures? Is
MinGestures easy to learn and remember? Is this set
of gestures suitable enough for text-editing UIs? How
well does it perform? Does the recognizer have strong
limitations? If so, how can we deal with them? To our
knowledge, this is the most comprehensive user study of
a gesture-driven transcription application to date.

5.1. Methodology

We experimented with two input devices: a regular
computer mouse and an e-pen on a digitizing tablet, both
being used as blind-typing devices. Two groups of users
were involved in the study, and each group tested only one
device (between-subjects design). We gathered qualitative
data in terms of subjective user ratings and think-aloud
comments. Finally, performance was measured in terms
of number of points per gesture, the time users needed to
draw each gesture, and the time needed by the system to
recognize them.

5.1.1. Subjects
On the one hand, 32 right-handed participants (8 females)
aged 27–38 that could use the computer mouse were
recruited via email, as they would participate remotely.
On the other hand, 22 participants (5 females) aged 29–34
were personally recruited from our University’s mailing
lists. These participants would test the e-pen in the lab,
and most of them were not accustomed to using this
device. (This would allow us to compare best and worst
case scenarios for recognizing gestures.) Only one user in
the in-lab group was left-handed. In both groups, most
of the users had technical degrees in Physics, Computer
Science, or Engineering. All participants were given a gift
voucher at the end of the study.

5.1.2. Apparatus
A web-based application was developed to capture gesture
samples (Figure 8). This allowed us the flexibility to
decentralize the remote (mouse) acquisitions and, at the
same time, being able to run the application in a dedicated
machine for acquiring the e-pen samples. The application
was developed with the sole purpose of verifying if
MinGestures could accomplish our research goals.
Therefore, no handwriting text recognizer was behind the
web UI. Similar to Balakrishnan and Patel (1998), in order
to elicit expert behavior, we simply displayed the required
gesture marks for the user to emulate, thus completely
eliminating any need for familiarity with the gesture set
or the web interface to begin with.

A series of traditional computers were used for mouse
acquisitions, since users collaborated at their own working
environments. For e-pen acquisitions, a Wacom Bamboo
‘Pen & Touch’ digitized tablet was used as input device
in a regular PC (2 GHz CPU, 1 GB RAM) equipped with
Linux Ubuntu 10.04. In all cases, gesture samples were
registered at 30 fps and logged in XML format.

Figure 8: Screenshot of the acquisition application. The
drawing area (top) was designed to resemble a real CATTI
application; see Figure 12. During the evaluation, the opacity
of each gesture image decreased by 20% every time it was
performed, so that users would need to recall how gestures
should be performed toward the end of the experiment.
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5.1.3. Procedure
Before logging gesture samples, participants entered the
application in ‘test mode’ and were told to get familiar
with the set of gestures for about 5 minutes. Next, all
subjects accessed the application in ‘acquisition mode’ and
were asked to perform each operation up to 10 times—
each user submitted 100 gesture samples. In each trial, a
mock-up sentence was always presented to the user. The
purpose of this choice was to keep participants focused on
the gestures and not in the text. Gestures were presented
randomly, in order to avoid possible biases in learnability.
At the end of the evaluation 3,200 samples were collected
from mouse users (32 users × 10 gestures × 10 attempts
per user) and 2,200 samples from e-pen users.

We provided a feedforward mechanism in the form of
cheat sheet, including a sample image of each gesture
below the acquisition UI. We also were interested in
testing whether users would be able to remember the
proposed gesture set easily in the short term. To achieve
this goal, every time an action was issued, the opacity
of the corresponding gesture image decreased by 20%, so
that, for each user, the second half of the trials (50 in
total) were performed without visual help.

Figure 9: Screenshot of the application to visualize gesture
samples, in this case for the Validate gesture. When possible,
we corrected the labels of those gestures that were patently
wrong (in squares) and kept all the rest, even if they were
wrongly articulated (in circle).

Finally, we collected qualitative data about usage
experience by means of a small survey. Users were asked to
state how much they agreed with the following statements:

(i) Gestures are easy to perform.

(ii) Gestures are easy to remember.

(iii) These gestures are enough for text-editing purposes.

(iv) I am satisfied with this gesture recognizer.

Questions were scored in a 1-5 Likert scale (1: strongly
disagree, 5: strongly agree). Users were also encouraged
to provide free comments and suggestions via an online
survey at the end of the test.

5.1.4. Design
Experiments were performed by using a between-subjects
design. Among the relevant outcomes, the main one
was mean error rate. As with other accurate gesture
recognizers, errors were rare and hence data were skewed
toward zero. This fact violated the normality assumption,
even under usual transformations. Therefore, we used
the non-parametric Kolmogorov-Smirnov (K-S) test to
assess statistical significance of error rates. Unlike other
non-parametric two-sample tests like Mann-Whitney’s
U or Wilcoxon’s rank sum, Kolmogorov-Smirnov’s D

statistic is sensitive to differences in the general shapes
of the distributions in the two samples; i.e., differences in
dispersion, skewness, etc. For the rest of outcomes (e.g.
gesture articulation time or recognition speed) we did not
observe significant departures from normality (verified by
Shapiro-Wilk tests, n.s.), so in those cases we used the
Welch’s Two Sample t-test to assess statistical significance
between groups. Welch’s t-test is similar to Student’s
t-test, but more apt for unpaired data groups, having
possibly unequal variances. An alpha level of .05 was used
for all statistical tests.

5.2. Results and Discussion

Since some samples would be submitted without visual
help, we suspected that not all gesture acquisitions would
be error-free. Therefore, we developed an application to
visualize all samples for a given gesture that would allow
us to adequately assign the right gesture label (Figure 9).

5.2.1. Gesture Recall
We used the aforementioned visualization application to
analyze the mnemonic effect of gestures in the short term.
We looked at 4 subsets: {mouse, e-pen} × {first half,
second half} of the trials. Table 2 reports the results of
this experiment. Recall errors were computed according
to the output of MinGestures, so they include both
user and system errors, i.e., in some cases users performed
either a different gesture than the one the application was
requesting, or the action was not performed as it was
actually designed; e.g., stroke exceed angular restriction.

Table 2. Gesture recall results.

Device Trial Recall error (%) 95% CIa

mouse 1st half 1.65 [1.10 – 2.43]
e-pen 1st half 1.25 [0.71 – 2.13]

mouse 2nd half 1.20 [0.74 – 1.89]
e-pen 2nd half 0.53 [0.21 – 1.19]

aWilson interval estimation for binomial distributions.
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mouse samples e-pen samples

Help Validate

Redo, Merge

Delete

Insert, Split

Undo

Help Validate

Redo, Merge

Delete

Insert, Split

Undo

Figure 10: All samples of 6 octant-based gestures; see Figure 4. It can be observed that some gestures were executed very
differently, mostly due to the application context; e.g. the Delete gesture required to cross over a word’s bounding box, therefore
these strokes are typically longer than, say, the Insert gesture.

Surprisingly, we observed that when gesture images
were available as visual help (the first 50 trials out of
100 for each participant), mouse users executed the wrong
gesture 1.6% of the time, while e-pen users did it 1.2%
of the time. Then, for the last 50 trials, which were
performed without visual help, recall error rates improved
up to 1.2% for mouse users and 0.5% for e-pen users.
These results reveal that people were able to learn the
proposed gesture set successfully during the evaluation. In
both cases, the K-S test revealed that differences between
groups were not statistically significant [D = 0.123 for
the first half and D = 0.890 for the second half, two-
tailed hypotheses, p > .05 in both cases]. Overall, it can
be said that MinGestures behaves almost as an error-
free interface to issuing gestures. It remains unexplored,
however, if gestures are equally memorable after days or
weeks, though we suspect it may be the case.

5.2.2. Recognition Errors
We conducted a series of experiments to assess how
MinGestures as well as the other recognizers performed
in terms of accuracy and efficiency. The goal was to
classify a given stroke into one of the gestures depicted
in Figure 4, including handwritten text. A fundamental
problem is thus how to tell gestures and non-gestures
apart. Then, in case of a stroke being a gesture, we should
exactly identify what is the gesture given. Ultimately,
these steps must be performed into a single procedure,
since it is the most intuitive way of interaction, i.e., the

user does not need to explicitly state whether a gesture or
a word correction is being submitted.

In Section 4.3 we have discussed some stroke features
that can be used to detect pseudo-straight lines.
Nevertheless, we need to establish the thresholds after
which gestures and non-gestures can be discriminated.
In order to identify such thresholds without a bias, we
decided to split the original corpus into two datasets of
two subsets each. The training subsets consisted of 1,032
e-pen samples plus 1,497 mouse samples. These samples
were used to obtain the thresholds that minimized the
recognition error rate. Conversely, the testing subsets were
composed of the remaining samples (1,136 e-pen samples
and 1,613 mouse samples). The proportion of gesture
samples was balanced with the exception of some samples
that were removed as a result of a bad acquisition (32
e-pen samples and 90 mouse samples). The thresholds
used for the testing subsets were the ones selected in the
training phase.

These experiments were user-independent, meaning
that users in the testing subsets were different from those
in the training subsets, for the thresholds estimation to
be more generalizable. In addition, it is important to note
that some of the gesture samples can only be differentiated
when put into context. In particular, Merge and Redo
are both straight lines that go in east direction, whereas
Insert and Split both go south. Hence, these gestures were
considered equivalent in the experiments where gestures
were not contextualized. As a result, apparently counter-
intuitive, it is possible for contextualized experiments
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to achieve less accuracy than the non-contextualized
experiments, because the gesture vocabulary is bigger.

Our initial approach was to use $1 out-of-the-box.
Since this recognizer needs templates to operate, it was
fed with a set of “perfect” line samples in each of the
eight directions—each template had exactly 2 points, so
that $1 could perfectly interpolate intermediate points.
However, as this recognizer rotates all the gestures to its
indicative angle, all lines were rotated to the vertical line.
Moreover, $1 scales gestures to a 1:1 aspect ratio, so lines
became almost dots. Thus, results turned out to be quite
random, above 40%. Therefore, we decided to remove
these limitations from $1. The recognizer performance
improved substantially, but still the error rates were not
satisfactory, with values around 7–15%.

Then, we experimented with Marking Menus (Kurten-
bach, 1991), which obtained an error rate above 10% for
mouse and near 20% for e-pen. There are two main reasons
for such high error rates. First, Marking Menus cannot dis-
tinguish straight lines from regular handwriting. Second,
when the user operates over words’ bounding boxes, diag-
onal gestures such as Delete or Validate tend to be less
slanted, since bounding boxes are usually bigger in width
than in height; see e.g. Figure 10. This leads to a number
of misclassification errors due to angular restrictions.

Next, we used the Rubine recognizer (Rubine, 1991a),
which is a parametric multi-class linear classifier.
However, the computation of the classifier weights relies
on stroke features for training that made it impossible
to use the perfect templates we used in the previously
tested $1 versions. Thus, in this case we used the gesture
samples from the training set. The initial results showed
error rates around 15%. As these results seemed still
high, we manually revised the results. We observed that
some training samples were not good templates for this
recognizer. By removing the training samples that caused
low accuracy, the results could be improved to 7% for e-
pen and 3% for mouse. However, this way of selecting
templates is biased and, still, the accuracy was not
sufficient enough according to our needs.

In consequence, we decided to experiment with
MinGestures. Our first approach was to use the RMSE
feature alone. Unexpectedly, RMSE proved to be not very
robust for identifying lines, with error rates around 2%
with gestures being recognized as such if RMSE < 1.5
(Figure 11a).

Using Equation 2 resulted in a much better approach,
with an error rate between 0.68% and 1.76%, considering
as non-gestures more than 2 pixels being drawn backwards
(Figure 11b). Also, using the bounding box aspect ratio
(Equation 3) achieved very good results, with error rates
between 0.62% and 1.58% with lines having an aspect
ratio ≥ 6; see Figure 11c. Finally, aiming at an error-free
recognizer, we combined the three features. Indeed, we
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Figure 11: Threshold estimations in the training set for
different features.

were able to further reduce the recognition error to 0.43%
and 1.32% when a gesture is at least 5:1 with no more
than 6 pixels drawn backwards and RMSE lesser than 3.

A summary of the results for both training and test
is shown in Table 3 and Table 4. Differences between
mouse and e-pen groups were not statistically significant
[D = 0.2834, p = .656, n.s., two-tailed hypothesis]. For
most of the participants (44 out of 52) MinGestures
achieved error rates ≤ 1% or, equivalently, accuracy rates
ranged from 99% to 100%. The worst case was observed for
one mouse user that failed to perform the Insert gesture
50% of the time, which could be considered an outlier
given how well the other users did perform.

In light of these results, we conclude that our recognizer
is suitable for text-editing applications that incorporate
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Table 3. Summary of recognition error rates (in %) without context. Recognizer thresholds were optimized for training and used
in test. Confidence Intervals are calculated according to the Wilson Method for binomial distributions.

E-pen Mouse

Systema training 95% CI test 95% CI training 95% CI test 95% CI

$1 recognizer 41.2 [40.3 – 42.2] 40.5 [39.6 – 41.4] 45.0 [44.3 – 45.6] 46.6 [46.0 – 47.2]
Marking Menus 18.5 [16.2 – 21.0] 19.5 [17.2 – 21.9] 12.8 [11.2 – 14.6] 13.1 [11.5 – 14.8]
Modified $1 16.0 [15.3 – 16.7] 15.6 [15.0 – 16.3] 7.48 [7.14 – 7.84] 7.56 [7.25 – 7.89]
Rubine 14.6 [14.0 – 15.3] 14.1 [13.5 – 14.7] 15.4 [14.9 – 15.9] 15.7 [15.2 – 16.1]
MG w/ RMSE 1.94 [1.22 – 3.01] 2.02 [1.79 – 2.29] 1.67 [1.11 – 2.48] 2.48 [2.30 – 2.68]
MG w/ ∆−

x
2.13 [1.37 – 3.25] 1.76 [1.54 – 2.01] 0.53 [0.24 – 1.07] 0.68 [0.58 – 0.79]

MG w/ ϕ 1.26 [0.70 – 2.18] 1.58 [1.38 – 1.82] 0.40 [0.16 – 0.89] 0.62 [0.52 – 0.72]
MG w/ ∆−

x
+ ϕ + RMSE 0.77 [0.36 – 1.55] 1.32 [0.76 – 2.20] 0.26 [0.08 – 0.70] 0.43 [0.19 – 0.91]

aSince no context is considered in this experiment, the gesture vocabulary is composed of 8 symbols.

Table 4. Summary of recognition error rates for contextualized MinGestures (in %). Recognizer thresholds were optimized for
training and used in test. Confidence Intervals are calculated according to the Wilson method for binomial distributions.

E-pen Mouse

Contextualized MGa training 95% CI test 95% CI training 95% CI test 95% CI

w/ RMSE 0.87 [0.42 – 1.68] 1.67 [1.04 – 2.63] 1.27 [0.78 – 2.00] 1.67 [1.13 – 2.45]
w/ ∆−

x
1.84 [1.14 – 2.90] 1.67 [1.04 – 2.63] 1.07 [0.63 – 1.75] 1.24 [0.78 – 1.93]

w/ ϕ 0.775 [0.36 – 1.55] 1.41 [0.83 – 2.31] 1.00 [0.58 – 1.67] 1.12 [0.68 – 1.78]
w/ RMSE + ∆−

x
+ ϕ 0.67 [0.29 – 1.42] 1.23 [0.70 – 2.09] 1.00 [0.58 – 1.67] 0.93 [0.54 – 1.55]

aUsing the full gesture vocabulary (10 symbols, see Figure 4).

gestures performed either by an e-pen or a computer
mouse. What is more, regarding the type of input device,
this study corroborates the findings drawn in earlier
works (Kurtenbach et al., 1993; Zhao and Balakrishnan,
2004), showing that 1) simple copy-mark gestures perform
exceptionally well on different devices; and 2) users
quickly learn the associations between the gesture and
its associated command. Therefore, we hypothesize that
MinGestures should also be suitable for use in other
kind of stroke-based devices, such as tabletops or
touchscreens.

5.2.3. Performance Evaluation
We computed the average time required to recognize
each gesture. Since mouse users performed the evaluation
remotely, we reproduced the working settings in a
traditional PC (2.8 GHz CPU, 2 GB RAM) running Linux
Ubuntu 11.10. We ran our recognizer 10 times over all
gesture samples, and the PC needed less than 0.5 ms on
average to recognize each gesture. Table 6 summarizes
these results, as well as the rest of evaluation metrics.

To better understand the impact of time performance,
we repeated the experiment on an HTC Nexus One
(1 GHz CPU and 512 MB RAM) running Android 2.2.
The mobile device needed on average 1.14 ms (SD = 0.71)
to recognize each submitted gesture. If compared to

the performance of the PC, this difference of 0.5 ms is
statistically significant [t(62.97) = −5.64, p < .001, two-
tailed hypothesis]. Nonetheless, in practice, users would
not complain regarding the use of MinGestures on
a mobile device or on a traditional PC, given such
an extremely narrow actual difference. These results
concluded that MinGestures is a really fast recognizer,
specifically one order of magnitude faster than other
comparable recognizers.

In addition, we analyzed the time users invested to
draw gestures, including also time spent in handwriting
words. Mouse users needed 800 ms on average (SD = 610),
while e-pen users took 970 ms (SD = 740). Differences
were not found to be statistically significant [t(46.90) =
−0.33, p = .740, n.s., two-tailed hypothesis]. As noticed, a
high variability was introduced due to the fact that each
participant submitted a very different number of strokes
when handwriting words; i.e., the Substitute and Insert
operations. If we consider just the time drawing gestures
alone, then it is around 500 ms on average with standard
errors below 100 ms in all cases.

5.2.4. Qualitative Study
Regarding the four qualitative statements asked at the
end of the acquisition tests, we observed that people liked
MinGestures in general terms; see Table 5.
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Table 6. Average (and SD) performance metrics per gesture for each user group.

Mouse users E-pen users

Label # Points Draw time (s) Recog. time (ms) # Points Draw time (s) Recog. time (ms)

Substitute 55 (25) 1.80 (0.84) 0.73 (0.35) 64 (26) 2.10 (0.87) 0.83 (0.19)
Delete 34 (15) 1.80 (0.52) 0.44 (0.21) 37 (13) 1.20 (0.45) 0.62 (0.52)
Insert 31 (12) 1.00 (0.41) 0.41 (0.13) 48 (26) 1.60 (0.85) 0.56 (0.15)
Reject 1.1 (1.4) 0.03 (0.01) 0.00 (0.00) 1.9 (1.3) 0.06 (0.01) 0.19 (0.28)
Validate 18 (9.5) 0.59 (0.32) 0.29 (0.07) 14 (4.7) 0.48 (0.16) 0.26 (0.06)
Merge 25 (9.7) 0.84 (0.32) 0.36 (0.15) 27 (9.2) 0.91 (0.31) 0.47 (0.17)
Split 22 (10) 0.75 (0.34) 0.28 (0.11) 29 (13) 0.97 (0.42) 0.44 (0.12)
Undo 19 (9.8) 0.64 (0.33) 0.27 (0.08) 31 (16) 1.01 (0.52) 0.50 (0.28)
Redo 17 (7.4) 0.57 (0.25) 0.28 (0.08) 23 (11) 0.76 (0.38) 0.45 (0.32)
Help 18 (7.6) 0.59 (0.25) 0.32 (0.15) 20 (7.6) 0.66 (0.25) 0.32 (0.09)

Avg. Total 24 (18) 0.86 (0.61) 0.36 (0.21) 29 (22) 0.97 (0.74) 0.46 (0.30)

Table 5. Mean (and SD) scores for the qualitative study,
in a 1–5 Likert scale (5 is best). No statistically significant
differences were found between both groups.

Statement Mouse users E-pen users

1: Easy to perform 4.69 (0.77) 4.81 (0.38)
2: Easy to remember 4.45 (0.81) 4.81 (0.38)
3: Enough gestures 4.42 (1.04) 4.59 (0.83)
4: Satisfaction 4.66 (0.87) 4.90 (0.28)

Regarding the comments submitted by the participants,
people were satisfied with MinGestures overall:

• “I liked the system. I’m amazed how well it works. I
think it’s excellent for using with a drawing tablet.”

• “Some actions like Merge, Undo, or Redo were easy
to remember because they are quite intuitive.”

• “I believe this recognizer can solve most of the
necessities of today’s pen UIs.”

Of course, some users also remarked a few drawbacks:

• “I needed to consult the gesture images often”.

• “There are gestures that are very dependent of the
word boxes... It may be disturbing for the user having
to find white spaces.”

• “Although it performs quite well, I think there would
be an inevitable learning curve before using this
recognizer on a daily basis.”

To conclude this study, we are aware that our approach
is not exempt of limitations, which are discussed later on
in Section 7.2.

6. INTEGRATING GESTURES IN CATTI

In order to assess the utility of MinGestures in an
interactive HTR scenario, we implemented the recognizer

in an actual CATTI prototype; see Figure 12. This
prototype has been used in a number of previous
studies, including both researchers and professional
paleographers (Leiva et al., 2011; Bosch et al., 2014).
However, this time we aimed for a completely automated
study; see Section 6.2. In the literature, other authors
have conducted a similar setup with real users using the
same CATTI prototype and a comparable dataset (Leiva
et al., 2011), but no gestures were considered and only two
handwritten pages were evaluated. In contrast, through
user simulations, we can acquire a substantial number
of observations. In sum, this study evaluated six of the
operations implemented in MinGestures using a CATTI
prototype through user simulations.

6.1. Prototype Overview

As introduced in Section 2.1, a CATTI system uses as
input a handwritten text image and leverages a series of
partially user-validated transcription (prefixes) to propose
suitable continuations of the full sentence (suffixes), until
a high-quality error-free output is achieved. Since the
user iteratively and repeatedly interacts with the CATTI
system, ensuring an accurate, fast, and easy-to-use process
is a crucial endeavor for the success of the handwriting
transcription tasks.

The aforementioned CATTI prototype follows a client-
server communication model. The web interface (the
client) is responsible for rendering the application and
capturing user actions, which are performed by means
of stroke-based gestures. A built-in CATTI engine (the
server) loads language models of the text images and
builds intelligent autocompletions.

The user transcribes the handwritten text images line
by line, making corrections with some pointer-based input
device, e.g., a stylus or a touchscreen. When strokes
that represent words or characters are submitted for
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Figure 12: Screenshot of the CATTI prototype. On each page,
users could select one line at a time. Once an image line is
clicked, the main application loads the editing area. In the
left margin of each page, lines are marked as validated (the
full text segment has been reviewed), pending (only a fraction
of the current text segment has been transcribed), or locked
(someone else is working on the same text segment). More
details about the UI or the application workflow can be found
in (Romero et al., 2009a; Leiva et al., 2011).

(a) the foot rope, and presumably and of its

(b) the foot rope, and presumably and of its

(c) the footrope, and presumably and of thig

(d) the footrope, and presumably out of thig

(e) the footrope, and presumably out of this

Figure 13: An example of MinGestures integrated in a
CATTI system. An initial hypothesis for an input image (13a)
is presented to the user. By merging words #2 and #3 (13b),
a consolidated prefix (highlighted in black) is sent to the
CATTI server with the associated operation code. The system
generates a second alternative (13c), which still contains some
errors. The user then rejects the first erroneous word in
the received suffix (thereby implicitly consolidating a longer
prefix), and the system provides a new text completion. The
user still finds and corrects an error (13d), and the system
finally provides a correct transcription, which is accepted by
the user (13e).

decoding (i.e., with the Insert and Substitute gestures),
the server uses an on-line HTR feedback subsystem.
This on-line subsystem is based on Hidden Markov
Models (HMMs) and n-gram language models, where on-
line strokes are represented as temporal sequences of 6-
dimensional feature vectors. These time-domain features

are: stroke point coordinates, first and second derivatives
of these coordinates, and stroke curvature.

The on-line subsystem acts in synergy with an off-
line HTR subsystem, in order to improve the recognition
of the (off-line) handwritten text image. Like the on-
line subsystem, the off-line subsystem is based on HMMs
and n-grams, although in this case off-line information is
represented as spatial sequences of 60-dimensional feature
vectors. These feature vectors account for sequential
information about the amount of gray level and its
distribution along the handwritten text in the input
image.

For both on-line and off-line HTR subsystems, the
decoding of their respective feature vectors is efficiently
performed by the Viterbi algorithm (Jelinek, 1998).
Further information about this built-in recognizer can be
found in (Toselli et al., 2011), which is a very complete
HTR guide in this regard.

Figure 13 shows a CATTI session example using
MinGestures. For the sake of simplicity, let us assume
that the time required to draw a gesture is the same as
drawing one character with a pen-like device. Then, in
Figure 13 the user would save 1 − 4

44 = 90% of writing
effort compared to manual transcription (44 characters
would have been manually entered vs. just 4 gestures in
a CATTI system) and 1 − 4

12 = 66% compared to post-
editing (12 characters would have been post-edited vs. just
4 gestures in a CATTI system). As observed, an important
amount of effort can be saved when CATTI is driven by
gestures.

6.2. Apparatus and Procedure

MinGestures was embedded in the application UI,
and each gesture was associated to an operation code
which unequivocally identified its corresponding editing
operation. The operation code, together with the user-
validated prefix—and optionally pen-based strokes to be
decoded into words, if available—would be sent to the
CATTI engine.

The interactive editing operations that we evaluated
in this study were those that generate a different prefix
for the system; i.e., Substitute, Reject, Merge, Delete,
Insert, and Split. For instance, the Validate gesture
normally issues an operation code to re-train language
models, and therefore it does not take part in the
interactive transcription process itself. The remaining
gestures (Undo, Redo, and Help), as previously pointed
out in Section 4.2, are completely managed by the
application UI and hence are never sent to the CATTI
engine. This way, we could automatically simulate user
interactions under controlled conditions.

On the other hand, given the scope of this paper, we are
interested in evaluating the effect of gesture interaction.
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Therefore, we assumed that on-line handwriting recogni-
tion would work without errors.6 As a result, for the pur-
pose of this study, substitutions and insertions were both
considered as a regular gesture.

6.3. Corpus

We used the IAM handwriting database (Marti and
Bunke, 2002) for the experimentation. This corpus
features gray-level images of unconstrained handwritten
English texts, and is publicly available.7 Such text images
in turn correspond to handwritten sentences from the
LOB corpus (Johansson et al., 1996), which encompasses
around 500 printed electronic English texts of about 2K
words each and about 1M total running words.

The IAMDB dataset is provided at different levels:
sentences, lines, and isolated words. Here, in order to
obtain comparable results with previous work, we used the
sentence-level partition (Marti and Bunke, 2001; Toselli
et al., 2010). This partition was split into a training set
composed of 2,124 sentences handwritten by 448 different
writers, and a user-independent test set composed of 200
sentences handwritten by 100 different writers. Table 7
summarizes this information.

Table 7. Basic statistics of the IAM database.

Training Test Total Lexicon

Writers 448 100 548 –
Sentences 2,124 200 2,324 –
Words 42,832 3,957 46,789 8,017
Characters 216,774 20,726 237,500 78

As stated in Equation 1, CATTI relies on linguistic and
morphological information. We used a 2-gram language
model for the former, trained with the whole LOB corpus
(excepting the test sentences) and a HMM for the latter,
using the handwritten text images in the training set.

6.4. Evaluation Metrics

Three evaluation measures were adopted to assess
performance: word error rate (WER), word stroke ratio
(WSR), and estimated effort reduction (EFR).

On the one hand, WER is the number of editing
operations needed to correct an automatically generated
transcription, normalized by the number of words in
the reference transcription. As such, WER estimates the
post-editing effort that a user would need to amend
the errors produced by a (non-interactive) HTR system.

6Decoding accuracy is typically around 97% (Toselli et al., 2010).
7Available at http://iamwww.unibe.ch/~fki/iamDB/

On the other hand, WSR is the number of words that
must be interactively corrected to achieve a perfect
transcription, normalized by the number of words in the
reference transcription. Hence, WSR estimates the effort
that a user would need to produce completely correct
transcriptions using a CATTI system. Finally, EFR is the
relative difference between WER and WSR, and provides
an estimate of the reduction—in terms of words to be
corrected—that can be achieved by using CATTI with
respect to using regular HTR post-editing.

Since WER and WSR are relative to the number of
words in the reference transcription, the lower the better.
On the contrary, the higher the EFR the better. It is worth
pointing out that EFR may have negative values, i.e.,
when the effort required to obtain perfect transcriptions
with a CATTI system is higher than the effort required
with a regular post-editing HTR system.

6.5. Results and Discussion

State-of-the-art results reported an estimated perfor-
mance of a post-editing HTR system (assessed by WER)
of 25.8% and the performance of a baseline CATTI sys-
tem8 (assessed by WSR) of 21.8%. These account for an
EFR of 15.5% (Toselli et al., 2010).

Table 8 depicts the results of incorporating the editing
operations of MinGestures to CATTI. We considered
that a single operation would be performed at a time
to amend the system hypotheses. We also considered
the simplified but reasonable assumption that the cost
of performing each editing operation is the same; with
the notable exception of the Reject operation, which is
considered to have no cost. The reason is that the Reject
operation is performed implicitly when positioning the
cursor to introduce the corrected word in a baseline
(keyboard-based) CATTI system. Then, WSR results
for stroke-based devices such as mouse or e-pen were
computed by counting each gesture error twice: one due
to the failed gesture recognition and another due to the
required error correction, similar to what the user would
perform in a real setting.

According to the results, the number of user interactions
needed to achieve perfect transcriptions by using a stroke-
based device is comparable to using a deterministic
input device (the keyboard), as differences in WSR and
EFR are approximately equal; see Table 8. Nevertheless,
stroke-based devices enable a more comfortable human-
computer interaction, and therefore result in an easier
and more effective transcription process. In addition, by
using the different editing operations of MinGestures,
user effort is substantially reduced with respect to using a
baseline CATTI system. For example, using an e-pen the

8Considering only the Substitute operation at the word level.
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human effort needed to produce an error-free transcription
is reduced by as much as 27.5%, whereas using a
baseline CATTI the observed human effort reduction was
15.5%. This means that, from every 100 words that are
misrecognized by a post-editing HTR system, a baseline
CATTI user will have to correct 85 word-errors, while a
CATTI user using gestures will have to correct only 72
words—the other 28 words will be automatically corrected
by the CATTI system.

Table 8. Performance of gesture-driven CATTI, measured by
the word stroke ratio (WSR) and the estimated effort reduction
(EFR) regarding to using a non-interactive approach.

Device WSR (%) EFR (%)

keyboard 18.5 28.3
mouse 18.6 27.9
e-pen 18.7 27.5

A more detailed analysis of the contribution of each
gesture to this experiment revealed that the Merge
operation only proved to be helpful in one case for the
IAM corpus. Further, we observed that the Split operation
did not help to improve the proposed transcriptions in
these experiments. On the other hand, Insert and Delete
operations were the most frequent ones, and consequently
they contributed with the most significant improvement
with respect to the baseline case.

By way of conclusion, as reported in Section 5.2.1,
gesture integration has been shown to be positively
received by users. Taken together, our experiments
suggest that incorporating gestures to interactive text-
editing applications is an advantageous approach worth
considering.

7. GENERAL DISCUSSION

The appealing feature of MinGestures as a straightfor-
ward and context-aware interface seems clear, although it
goes beyond the reported evaluation results. Besides its
demonstrated performance and accuracy, there are other
interesting advantages in associating short straight marks
as gestures. For instance, being so simple to perform, the
frequent use of these gestures may reinforce the mapping
to their corresponding commands. Also, as a consequence
of its simplicity as well, the entry speed of gestures is
extremely low. These attributes are expected to increase
the productivity of regular CATTI users.

On the other hand, it has been shown that MinGes-
tures can be conveniently integrated to command stroke-
based text-editing UIs, since it takes advantage of the
application context to disambiguate interaction intent; see

Section 4.5. From above, it is clear that, in the design pro-
cess of text-editing applications intended to be used with
this kind of gestures, a series of opportunities are identified
to enhance these applications further. We briefly discuss
some of these opportunities below.

7.1. Design Implications

First and foremost, we found a number of stroke features
that, when combined, enable a clear disambiguation
between gestures and handwritten text. This allows MIUI
developers and designers to implement a simple approach
to deal with the uncertainty of 2D stroke sequences. Then,
the proposed gesture set could serve as a design guide to
determine an adequate number of parameterizable user
commands. This way, applications could take the most
advantage of gestures while reducing user’s cognitive load.
Second, MinGestures could help to develop similar-
purpose pen-based UIs, for instance, facilitating the
review of automatically generated translations. It also
could be used to augment other modalities (e.g., speech-
based) in interactive applications, as other authors have
suggested in previous work; see Section 8. Finally, in the
context of CATTI systems, it would be possible to delimit
the set of gesture candidates to be performed according
to the context of the words. For instance, the system
could suggest to the user a list of suitable operations to
be performed when positioning the pointer over a certain
word, similar to a Marking Menu for novice users, where
non-available options would be disabled.

7.2. Limitations

The simplicity of our approach leads to a few inevitable
drawbacks. Firstly, MinGestures is suited to maximize
accuracy and runtime efficiency. For that reason, this
recognizer is domain-specific and could not fit a
researcher’s needs in other applications. Thus, text
processing applications, such as post-editing interfaces, or
transcription and translation systems, are our main and
only (although relatively wide) target.

Secondly, MinGestures provides at most 8 × 2 × 4 =
64 gestures [directions × (un)touching a word × inside
or outside words’ bounding boxes], a set of actions
that, however, should be enough for text-editing MIUIs.
Some guidance to implement more gestures could be
differentiating them on the basis of time or speed. If
needed, multistrokes gestures could be implemented by
combining the core gesture set with finite state automata.

In any case, there is an inherent limitation of all
user-independent systems: creating custom gestures is
restricted to the set of primitives used in MinGestures.
This issue can be avoided by using a more complex
recognizer, probably at the expense of recognition
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accuracy or real-time performance, or by resorting to more
advanced pattern recognition techniques. However, it is
currently outside the scope of this work.

All in all, although a concise recognizer like ours
may not rival other systems in terms of flexibility or
complexity, it is our belief that it may be well suited
for a wide range of devices such as tablets, surfaces, or
handhelds computers.

8. RELATED WORK

Of all applications, perhaps the human factors of text
editing have been the most studied (Buxton, 1988). In
addition to CATTI, there is a substantial body of research
in which stroke-based gestures are used for text-editing
tasks. In the context of this paper, it is worth mentioning
off-line techniques for editing text documents (Goldberg
and Goodisman, 1991) and annotation (Hardock, 1991).

Previous work on the use of stroke-based devices has
been most concerned with the capabilities of the pen for
gestural input (MacKenzie and Chang, 1999). One of the
first studies of hand-drawn gestures for simple editing
tasks dates back to 1987, when Wolf and Morrel-Samuels
(1987) reported that “the use of gestures is of particular
interest in an interface which allows the user to write
directly on the surface of a display with a stylus.” Simple
gestures led to good intra-subject consistency and there
was consensus regarding gestures being perceived as easy
to use and remember. Later on, Goldberg and Richardson
(1993) introduced the general philosophy of simplifying
gesture sets, motivated by the fact that simpler is faster
to write, less prone to recognition error, and can be
entered in an “eyes-free” manner, which requires little
space onscreen.

8.1. Recognizing Gestures

Gesture recognition has its own roots in sketching and
handwriting recognition. Classification algorithms for
these topics include template matching (Connell and Jain,
2000; Nakayama, 1993), decision trees (Belaid and Haton,
1984; Kerrick and Bovik, 1988), neural networks (Dimi-
triadis and Coronado, 1995; Marzinkewitsch, 1991), hid-
den Markov models (Koschinski et al., 1995; Kosmala and
Rigoll, 1998), parsing grammars (Costagliola et al., 2004;
Mas et al., 2010), support vector machines (Bahlmann
et al., 2001; El Meseery et al., 2009), or principal com-
ponent analysis (Deepu et al., 2004; Zhang et al., 2010).
Typically, gesture recognition takes place after a “pointer
up” event, although it is possible to perform it continu-
ously, in an incremental fashion (Bau and Mackay, 2008;
Kristensson and Denby, 2011).

The most popular gesture recognizers for prototyping
UIs are often based on the template-matching or
instance-based approach: a query gesture is geometrically
compared to a series of templates in a library of
predefined gestures, using often Euclidean distance
as dissimilarity measure or a Mean Square Error
(MSE) score. Examples of state-of-the-art template-based
recognizers among the HCI literature are $1 (Wobbrock
et al., 2007), $N (Anthony and Wobbrock, 2010), and
their newest versions Protractor (Li, 2010) and $N-
Protractor (Anthony and Wobbrock, 2012), respectively—
the only difference with their previous versions is a closed-
form algorithm to match gesture templates, which, in
addition, provides better performance. More recently,
Vatavu et al. (2012) introduced $P, a sequential-agnostic
recognizer where strokes are treated as a cloud of
2D points. Template matchers are a very viable and
a relatively simple solution for recognizing gestures,
and can be adapted to personalized user gestures.
Nonetheless, they can be both time and space consuming
on the computational side, given the size of the gesture
vocabulary and the number of stored templates to define
each gesture.

One of the first ideas to recognize symbols was
using direction sequences from stroke motion alongside
with lookup tables (Groner, 1968; Powers, 1973). Later,
Rubine (1991a) and Smithies et al. (1999) introduced
a variety of statistical and geometric features (aspect
ratio, stroke length, etc.) as input to a simple linear
classifier. Algorithms based on this parametric fashion
have been implemented in a variety of recognizers, e.g.,
SATIN (Hong and Landay, 2000) and iGesture (Signer
et al., 2007). Other toolkits for developing gestures
are readily available for Java9 or C#.10 Parametric
recognizers have been shown to perform excellently when
the target gestures fit the assumed model (Li, 2010). This
is one of the main reasons for adopting this approach in
MinGestures.

8.2. Gestures for Text-Editing Applications

One of the pioneer products in the market implementing
stroke-based gestures for text editing is the Microsoft
Tablet PC,11 whose handwriting panel provides the user
with basic editing support, by pointing one or more
words (by crossing them out) and then rewriting the
misrecognized text. Nevertheless, in this case editing
operations are limited to the context of the on-line
handwritten text introduced by the user, whereas in
CATTI it is also taken into account the contextual

9http://sourceforge.net/projects/mousegestures
10http://codeproject.com/KB/recipes/cmgblade.aspx
11http://msdn.microsoft.com/en-us/library/ms840465.aspx
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information of the off-line handwritten text as well as the
transcription to be supervised on the UI. Furthermore, in
both cases the set of gestures is very limited, with regard
to text editing, when compared to MinGestures.

On a related research line, Kristensson and Zhai (2004)
described SHARK2, an effective and fast shapewriting
system based on what is known as sokgraphs (shorthand
on keyboard as graphs). This aimed for seamless transition
from visually guided tracing to recall-based gesturing.
However, a shortcoming of this approach is that users
must spend time learning the sokgraph-specific gesture
for each word, which is also highly dependent of the
keyboard layout employed (e.g., QWERTY, AZERTY).
As in MinGestures, this approach may employ copy-
mark gestures for signaling e.g. a word deletion in what
is called a “stream editor”, although SHARK2 does not
make use of contextual information to recognize gestures.

More closely related to the idea described in this paper,
but without fully exploiting contextual information,
Kristensson (2007) illustrated the use of intuitive stroke-
based pen gestures for editing incorrect words outputted
from a continuous shapewriting recognizer in a text-
editing UI. Specifically, any sequence of words could
be deleted by a crossing action, which resembles very
much the MinGestures gesture for deletion. Aside from
that, Kristensson (2007) relied on virtual or phantom
keyboard gestures for text input. Similarly, Wang et al.
(2006) considered gestures for reviewing the output of
a continuous handwriting recognition system through a
multimodal error correction mechanism that allowed the
user to correct handwriting errors by simultaneously using
pen and speech input. Gestures were used to adjust
the segmentation of Chinese characters by splitting and
merging, and to select text to be replaced by means
of speech recognition. Therefore, in this case gesture
recognition was rather simple, as it was not possible to
distinguish between gestures and handwriting.

In a similar vein, several works have also been carried
out in the speech transcription field. For instance, Ogata
and Goto (2005) and Vertanen and Kristensson (2009)
describe speech transcription systems whose UIs display
the recognition results along with other competitive
candidates. This way, the user who finds a word
recognition error can simply select the correct word from
such candidates. There are more elaborated approaches
in this line, such as the one introduced by Suhm et al.
(2001), which uses gestures for non-interactive post-
edition of the output of a speech recognizer, or the
ones presented by Wang et al. (2008) and Liu and
Soong (2006), which are aimed for interactive speech
error correction. As usual, only substitution, deletion, and
insertion operations could be submitted by using stroke-
based gestures. Then, additional information obtained
from pen-based interaction was fed back to the speech

recognizer; for instance, error location, error type, and
so on. Kristensson and Denby (2009) reported on a
longitudinal study of unconstrained handwriting input
that handwriting entry as well as error rates were about
the same as for QWERTY software-based keyboards.
This suggested that handwriting input methods could be
augmented with a complete set of gestures to provide full
text editing, as MinGestures does.

On another line, many solutions have been proposed
to distinguish text (or annotations) and gestures (or
commands) with explicit approaches. For instance,
Zeleznik and Miller (2006) devised a method in which the
computer was able to distinguish gestures from free-form
ink by means of “terminal punctuation”, a tap issued after
each gesture. On the other hand, Hinckley et al. (2005);
Liao et al. (2008) proposed an approach where users could
clearly indicate the current stroke type; e.g. by pressing a
button or a foot pedal. Approaches in which the computer
and the user collaborate to resolve ambiguous input is also
possible (Saund et al., 2003). Among these, we believe that
an implicit approach, as the one we use in MinGestures,
is the most promising direction to tell gestures and text
apart, since it does not place unnecessary burdens on the
user.

9. CONCLUSION

Stroke-based applications devoted to create or modify
text such as CATTI can be easily enhanced with simple
gestures, without resorting to complex techniques or using
recognizers that are too general. We stressed this fact and
developed MinGestures, a context-aware approach that
is able to disambiguate among simple copy-mark gestures
and handwritten text, with runtime efficiency as primary
focus. This paper may thus serve as a reference guide prior
to designing and evaluating CATTI-like applications and
related text-editing MIUIs.

We have tested MinGestures in a series of scenarios
and user studies, including quantitative and qualitative
results, reporting on accuracy, recognition speed, and
drawing performance; using both an e-pen and a
computer mouse as input devices. We should mention
that MinGestures alone is really straightforward but
put in the context of CATTI applications is an intelligent
solution. Ultimately, it can be easily integrated into
prototypes that are written in virtually any programming
language. Nevertheless, it is our belief that MinGestures
may enable a natural and accurate interactive text
edition well beyond stroke-based devices. For instance, we
have already deployed MinGestures in a production-
ready machine translation system. In the context of
the CASMACAT project,12 MinGestures is assisting

12http://www.casmacat.eu
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professional translators to review machine-translated text
interactively. Finally, we want to mention that the reader
can try the standalone version of MinGestures at
http://cat.prhlt.upv.es/mg/, as well as the CATTI
prototype at http://cat.prhlt.upv.es/iht/.

9.1. Future Work

From the user’s perspective, we plan to speed up gesture
learning by incorporating some interactive feedback
mechanism to MinGestures; for instance, providing
incremental information as to the current state of the
recognition algorithm. In this regard, Bau and Mackay
(2008); Kristensson and Denby (2011) have proposed
interesting approaches that are worth pursuing. First-
time users would be the most benefited target of this
enhancement, who could remove the need of having to use
such an interactive mechanism as they continue to work
with the gesture-driven application.

From a technical perspective, we plan to enhance
MinGestures with the possibility of extending its
context-aware capabilities. For instance, a gesture that
is driven by mouse clicks alone could have different
meanings when performed outside word bounding boxes.
This way, the expressiveness of gestures could be further
expanded. In addition, doing so would also enable either
the assignment of different gestures for issuing a given
command or the widening of the gesture vocabulary.
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