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ABSTRACT

Objective: The n2c2/UMass Lowell spin-off shared task focused on medical concept normalization (MCN) in clin-

ical records. This task aimed to assess state-of-the-art methods for matching salient medical concepts from clin-

ical records to a controlled vocabulary. We describe the task and the dataset used, compare the participating

systems, and identify the strengths and limitations of the current approaches and directions for future research.

Materials and Methods: Participating teams were asked to link preselected text spans in discharge summaries

(henceforth referred to as concept mentions) to the corresponding concepts in the SNOMED CT (Systematized

Nomenclature of Medicine Clinical Terms) and RxNorm vocabularies from the Unified Medical Language Sys-

tem. The shared task used the MCN corpus created by the organizers, which maps all mentions of problems,

treatments, and tests in the 2010 i2b2/VA challenge data to the Unified Medical Language System concepts.

Submitted systems represented 4 broad categories of approaches: cascading dictionary matching, cosine dis-

tance, deep learning, and retrieve-and-rank systems. Disambiguation modules were common across all

approaches.

Results: A total of 33 teams participated in the shared task. The best-performing team achieved an accuracy of

0.8526. The median and mean performances among all teams were 0.7733 and 0.7426, respectively.

Conclusions: Overall performance among the top 10 teams was high. However, particularly challenging for all

teams were mentions requiring disambiguation of misspelled words, acronyms, abbreviations, and mentions

with more than 1 possible semantic type. Complex mentions of long, multiword terms were also challenging

and, in the future, will require better methods for learning contextualized representations of concept mentions

and better use of domain knowledge.

Key words: Natural language processing, clinical narratives, machine learning, concept normalization

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

1529

Journal of the American Medical Informatics Association, 27(10), 2021, 1529–e1

doi: 10.1093/jamia/ocaa106

Advance Access Publication Date: 24 September 2020

Research and Applications

https://orcid.org/0000-0002-7246-1151
https://orcid.org/0000-0001-8011-9850
https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

Secondary use of electronic health records for observational medical

research has seen a dramatic rise in recent years, fueled by the im-

provement of predictive modeling techniques using machine learning

(ML) methods.1–5 Such retrospective research has had a transforma-

tive effect on a number of clinical applications, from disease pheno-

typing and mapping disease trajectories, to identifying high-risk

patients and predictive modeling of patient outcomes, and informing

practice.6–10 Predictive models developed for such tasks often use a

combination of structured and unstructured data, in which the latter

includes narrative provider notes (discharge summaries, nursing

notes, pathology reports, etc .).

It is widely acknowledged that clinical narrative from provider

notes often contain information uniquely suited to improve predic-

tive modeling for clinical research.11–14 However, the use of such

models that utilize clinical narrative features is often hampered by

high variability of linguistic expressions for the same concept. For

example, “myocardial infarction,” “heart attack,” and “MI” may

refer to the same concept; indeed, in the Unified Medical Language

System (UMLS),15 they all map to the same concept unique identi-

fier (CUI) C0027051. At the same time, ambiguity poses additional

problems, as identical surface expressions are commonly used to re-

fer to completely different concepts. For example, “transport” may

be used to refer to a cell function (UMLS CUI C0005528) or to an

activity (C0206243).

A common consequence of this is that models fail to generalize

across different patient records, which ultimately prevents their deploy-

ment and integration into practice. Modern data-hungry natural lan-

guage processing methods that use deep learning techniques to

overcome this obstacle, learning generalizable representations from

large quantities of text, such as the popular BERT model,16 which

learns contextualized term-level embedding, are often not applicable in

the clinical domain, as clinical records are Health Insurance Portability

and Accountability Act–regulated and cannot be easily shared. Recent

attempts to leverage such methods by combining publicly available de-

identified clinical narratives with other biomedical text17,18 continue to

suffer from insufficient access to the necessary quantities of clinical text.

The task of medical concept normalization (MCN) attempts to

solve this problem more directly by linking or associating all men-

tions of medical concepts in clinical narrative to a standardized vo-

cabulary of concepts using manually constructed in-domain

knowledge sources. The goal of such normalization is to enable pre-

dictive models that rely on clinical text to generalize better across

different patient records. MCN is also often a component of infor-

mation retrieval (IR) and information extraction systems. Such sys-

tems perform named entity recognition to identify mentions of

interest, followed by MCN to normalize the identified mentions.

This article describes the shared task challenge on normalization

of medical concepts in clinical records organized by UMass Lowell

as a community-led spin-off of the National NLP Clinical Chal-

lenges (n2c2). The challenge used the MCN corpus19 created by the

organizers using discharge summaries from the 2010 i2b2/VA clini-

cal concept data,20 in which all mentions of problems, treatments,

and tests were normalized to the corresponding concepts (CUIs) in a

subset of the UMLS comprising SNOMED CT (Systematized No-

menclature of Medicine Clinical Terms)21 and RxNorm.22

Until recently, ML approaches to medical concept normalization

for clinical records have been limited, with rare exceptions,23 and

dictionary lookup almost universally selected as the best method.24–

26 Given that ML approaches have been pushing forward state-of-

the-art performance on many clinical informatics tasks, one of the

goals of the challenge was to determine whether effective ML

approaches could be developed for this task that would improve

upon dictionary lookup. Thirty-three teams from around the world

participated in the challenge, using UMLS-normalized data from the

MCN corpus to develop and evaluate automated systems.

Privacy is a concern in the clinical domain and often prevents data

sharing. This makes the availability of annotated clinical corpora

scarce27 and makes direct comparison between MCN methodologies

difficult. For that reason, while there have been a number of efforts to

create annotated data for MCN in the biomedical and consumer

health domains, normalization data for the clinical domain have

remained scarce. Previous clinical MCN shared tasks have focused on

a limited set of concepts and dealt only with the normalization of dis-

eases and disorders.28–30 The 2019 n2c2/UMass Lowell shared task

addresses these problems by making the MCN corpus19 publicly

available, which allows a direct comparison of different approaches

to MCN on clinical narrative from different institutions, using a data

that cover a larger breadth of concepts than previous efforts.19

In this article, we first describe previous MCN efforts. Next, we

describe the 2019 n2c2/UMass Lowell shared task track 3 dataset,

the task, and each of the participating systems. Last, we present the

results, perform an error analysis, and conclude by identifying direc-

tions for future research.

BACKGROUND AND SIGNIFICANCE

Table 1 summarizes the publicly available MCN datasets and shared

tasks in the biomedical, consumer health, and clinical domains. The

vocabulary to which mentions are normalized varies, and includes

EntrezGene42; MeSH (Medical Subject Headings)43; MedDRA

(Medical Dictionary for Regulatory Activities)44,45 MEDIC

(MErged DIsease voCabulary),46 which combines MeSH and the

OMIM (Online Mendelian Inheritance in Man)47 vocabularies;

SNOMED CT21; SIDER (SIDe Effect Resource) 448; Australian

Medicines Terminology49; and RxNorm.22

Within the biomedical domain, there have been several BioCreative

challenges (https://biocreative.bioinformatics.udel.edu/ ) focused on

MCN. BioCreative tasks I,31 II,32 and III33 contained tracks focused on

gene normalization. BioCreative V CDR task34 focused on normalizing

chemicals, diseases, and their interactions. Text Analysis Conference

(TAC) 2017 (https://bionlp.nlm.nih.gov/tac2017adversereactions/)35

presented a track focused on normalizing adverse drug reactions

(ADRs) from drug labels. In addition to these, the National Center for

Biotechnology Information disease corpus (https://www.ncbi.nlm.nih.-

gov/CBBresearch/Dogan/DISEASE/),37 which extends the Arizona Dis-

ease Corpus,36 focused on normalizing disorders in PubMed articles.

The focus within the consumer health domain has been on

ADRs. Datasets for this purpose included SMM4H (Social Media

Mining for Health) Shared Tasks (https://healthlanguageprocessin-

g.org/sharedtask2/)38; the TwADR-S (https://zenodo.org/record/

27354)39 and TwADR-L (https://zenodo.org/record/55013)40 data-

sets, which focus on (text snippets of) tweets; and the CSIRO Ad-

verse Drug Event Corpus (Cadec) (https://data.csiro.au/dap/

landingpage?pid¼csiro%3A10948),41 which studies a wider range

of concept types including ADRs, diseases, drugs, symptoms, and

findings in medical forum posts from Ask a Patient.

The biomedical and consumer health domains share some similar-

ities with the clinical domain. However, clinical data have many

unique characteristics that make annotated clinical data essential. Un-
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fortunately, owing in large part to privacy concerns, there is a scarcity

of publicly available clinical MCN corpora. To the best of our knowl-

edge, only 3 shared tasks, ShARe/CLEF eHealth 2013 (https://sites.-

google.com/site/shareclefehealth/),28 SemEval-2014 Task 7B (http://

alt.qcri.org/semeval2014/task7/),29 and SemEval-2015 Task 14

(http://alt.qcri.org/semeval2015/task14/),30 have focused on clinical

MCN and produced publicly available corpora. These tasks however,

are limited. They focus on just a single concept type, disorders, and

all use a corpus derived from the same institution. Specifically, they

use the ShARe corpus (http://share.healthnlp.org), which originated

from the MIMIC II (Medical Information Mart for Intensive Care II)

database (http://mimic.physionet.org)50 and consists of discharge

summaries, electrocardiogram, echocardiogram, and radiology

reports. While in some respects it is beneficial that these tasks build

on each other by iteratively adding more annotations to a common

dataset, limited institutional coverage of the resulting dataset con-

strains the generalizability of approaches developed on it.

In contrast to these tasks, 2019 n2c2/UMass Lowell shared task

track 3 focused on normalizing a broad set of salient medical concepts,

including medical problems, treatments, and tests. The inclusion of

treatments in the annotation also means that an additional vocabulary,

RxNorm22 is used along with SNOMED CT in this challenge. At the

same time, this shared task expands institutional coverage by using data

from the 2010 i2b2/VA shared task dataset20 which includes records

from Partners HealthCare, in addition to the commonly used Beth Israel

Deaconess Medical Center (via MIMIC II) data. Furthermore, the num-

ber of mentions without a mapping (CUI-less mentions) has been

greatly reduced from around 30% in previous MCN challenges to

2.7% in this challenge. This reduction is due to the compositional anno-

tation approach,19 in which CUI-less mentions are split into multiple

smaller spans. For example: the mention “Breast or ovarian cancer”

may be annotated as 2 CUIs, [C0006142, breast cancer] and

[C0029925, ovarian cancer], and the mention “Left breast biopsy” can

be mapped to the CUIs [C0222601, left breast] and [C0005558, bi-

opsy]. The result is a dataset that covers a broader set of concepts,

expands institutional coverage, and minimizes CUI-less mentions. This

allows a more effective assessment of MCN performance and a more

comprehensive characterization of the state of the art for clinical MCN.

MATERIALS AND METHODS

Data
2019 n2c2/UMass Lowell shared task track 3 used the MCN corpus

developed by Luo et al.19 This corpus added normalization annota-

tions to a subset of the 2010 i2b2/VA shared task dataset.20 The

2010 i2b2/VA challenge identified mentions corresponding to prob-

lem, treatment, and test concepts found in narratives. MCN corpus

mapped these mentions to CUIs from the controlled vocabularies,

RxNorm22 and SNOMED CT (SNOMEDCT_US)21 within the

2017AB version of the UMLS.15 SNOMED CT is a comprehensive

vocabulary for clinical terminology and RxNorm is a comprehensive

vocabulary focusing on clinical drugs and medications. Overall, the

MCN corpus consists of 100 de-identified discharge summaries orig-

inating from Beth Israel Deaconess Medical Center and Partners

Healthcare. These records contain 13 609 mentions, 3791 distinct

CUIs, and 368 CUI-less mentions. Of the 3791 distinct CUIs, 244

are found in both SNOMED CT and RxNorm, while 3331 and 216

are found exclusively in SNOMED CT and RxNorm, respectively.

Shared task setup
For the 2019 n2c2/UMass Lowell shared task track 3, the MCN data

were split into training and test sets. Each set contained 50 discharge

summaries. The total number of mentions, CUIs, and number of CUI-

less mentions were similar for both sets. The training set contained

6684 mentions, 2330 CUIs, and 151 CUI-less mentions. The test set

contained 6925 mentions, 2578 CUIs, and 217 CUI-less mentions.

We released the training data, its gold standard annotations, and

an evaluation script to participants after completion of a data use

agreement via an online Web portal (https://n2c2.dbmi.hms.harvar-

d.edu/track3). Teams were given an approximate 2-month develop-

ment period before we released the test data. Gold standard

Table 1. Summary of medical concept normalization datasets and shared tasks

Task Domain Data Source Concepts Vocabulary

BioCreative I Task 1B31 Biomedical MEDLINE Fly, mouse, and yeast genes Organizer provided

BioCreative II Task 1B32 Biomedical MEDLINE Human genes EntrezGene

BioCreative III GN33 Biomedical PMC full text Genes EntrezGene

BioCreative V CDR Task A34 Biomedical PubMed Chemicals, diseases, chemi-

cal-disease interactions

MeSH

TAC 201735 Biomedical Drug labels ADRs MedDRA

AZDC Corpus36 Biomedical PubMed Disorders UMLS

NCBI Corpus37 Biomedical PubMed Disorders MEDIC

SMM4H 2017 Task 338 Consumer health Twitter ADRs MedDRA

TwADR-S39 Consumer health Twitter ADRs SNOMED CT

TwADR-L40 Consumer health Twitter ADRs SIDER 4

CADEC Corpus42 Consumer health Online health forum ADRs, diseases, drugs,

symptoms, findings

SNOMED CT, MedDRA,

AMT

ShARe/CLEF 2013 Tracks 1b

and 228

Clinical Clinical records Disorders SNOMED CT

SemEval-2014 Task 7B29 Clinical Clinical records Disorders SNOMED CT

SemEval-2015 Task 14 Tracks

1 and 2a30

Clinical Clinical records Disorders SNOMED CT

2019 n2c2 Track 3 Clinical Clinical records Problems, treatments, tests SNOMED CT, RxNorm

ADR: adverse drug reaction; AMT: Australian Medicines Terminology; AZDC: Arizona Disease Corpus; MedDRA: Medical Dictionary for Regulatory Activi-

ties; MeSH: Medical Subject Headings; NCBI: National Center for Biotechnology Information; SIDER: SIDe Effect Resource; SNOMED CT: Systematized No-

menclature of Medicine Clinical Terms.
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annotations on test data were withheld. Teams were given 2 days af-

ter the release of test data to submit their system’s output via the on-

line Web portal. We performed the final evaluation and posted the

rankings of all teams online. We released the gold standard for the

test data once the results were posted.

Annotation guidelines

Detailed annotation guidelines are reported by Luo et al.19 Annota-

tion consisted of double annotation by 4 pharmacy and nursing stu-

dents followed by adjudication by a certificated professional medical

coder. Annotators used the MAE annotation tool.51 They were

instructed to map every mention to a single CUI. Multiple CUIs per

span were not allowed. As mentioned previously, CUI-less mentions

were tackled by a compositional annotation approach,19 which split

these mentions into multiple smaller spans. Where synonymous CUIs

existed for a span, the CUI was standardized across the corpus.

Preadjudication interannotator agreement (IAA) was calculated

as the accuracy of the annotators over all annotated mentions. Post-

adjudication IAA is similar to preadjudication IAA but adds synony-

mous CUIs to the total matched.19 Formally,

Preadjudication IAA ¼ NMA/NAM

Postadjudication IAA ¼ (NMA þ NEA) /NAM

Where NMA is the number of matched mentions, NEA is the

number of synonymous mentions, and NAM is the number of anno-

tated mentions.

Preadjudication IAA for all mentions was 67.69%. Postadjudica-

tion IAA was 74.20%. Compositional mentions, which account for

19.75% of the total mentions, were more challenging for annotators

than mentions that were not compositional. IAA values were

52.21% and 79.61%, respectively.

Evaluation and significance testing
We used accuracy as an evaluation metric and computed statistical

significance using approximate randomization.52,53 As with previ-

ous studies,54–57 we ran approximate randomization using 50 000

shuffles and the significance level set to 0.1.

Systems
In total, 33 teams participated in the 2019 n2c2/UMass Lowell

shared task track 3, resulting in 108 total submissions. In our analy-

sis, we focus on the best-performing run of the top 10 performing

teams. The methods used by these teams can be broadly divided into

4 groups:

1. Cascading dictionary matching—6 of the top 10 teams applied

a series of matching steps of decreasing exactness, starting with

exact dictionary matching, followed by hand-crafted rules, edit

distance matching, term overlap, or ML-based matching.

2. Cosine distance—one team used the cosine distance between the

mention and CUI vectors.

3. Deep learning—one of the participating teams relied on deep

learning alone.

4. Retrieve and rank—2 teams performed a retrieval step using IR

methods to return a set of candidate CUIs. Then they ranked the

candidate CUIs using ML.

Table 2 provides brief descriptions of the top-performing submis-

sions.

Regardless of how CUIs were selected, disambiguation was re-

quired by most systems. Ambiguity was often caused by parallel hi-

erarchies of different semantic types in the UMLS. Determining the

correct CUI therefore requires inferring the semantic type of men-

tions. For semantic type prediction, Alibaba (Ali) and ezDI trained

deep learning based classifiers. University of Wisconsin–Milwaukee

(UWM) trained a traditional ML classifier. Kaiser Permanente (KP)

assigned a semantic type based on the observed frequency in the

training corpus and the greatest number of supporting vocabularies.

Massachusetts Institute of Technology (MIT) used edit distance and

hand-crafted rules. University of Arizona (UAZ) used hand-crafted

rules. Rather than predict semantic types, Med Data Quest (MDQ)

Table 2. Top performing teams and a brief description of their system

System Type Team Name Brief Description

Cascading dictionary

matching

ezDI, Inc (ezDI) Start with exact matches, then hand-crafted text cleaning

rules and Levenshtein distance for inexact matches

Kaiser Permanente (KP) Start with exact matches, then similarity score based on 3-

gram matches

Massachusetts Institute of Technology (MIT) Start with exact matches, then a modified edit distance for

inexact matches

National Centre for Text Mining (NaCT)

Toyota Technological Institute of Advanced Industrial

Science and Technology

Start with exact matches, then word overlap, lastly the

shortest edit distance

University of Arizona (UAZ) Rule-based ranker for exact matches then character overlap

and BioBERT ranker for inexact matches

University of Wisconsin–Milwaukee (UWM) Start with exact matches, then learned edit distance rules for

inexact matches, and last, submention matching.

Cosine distance University of Aveiro (UAv) Cosine similarity between mention and CUI

Deep learning Toyota Technological Institute (TTI) Neural network based on cosine similarity between Sci-

BERT and learnable CUI vectors in a dictionary

Retrieve and rank Alibaba (Ali) Retrieval using standard IR methods, then ranking using

ML

Med Data Quest, Inc (MDQ) Retrieval using generated queries, then ranking using ML

The table is sorted alphabetically first by system type, then by team name within each type.

CUI: concept unique identifier; IR: information retrieval; ML: machine learning

1532 Journal of the American Medical Informatics Association, 2021, Vol. 27, No. 10



disambiguated using the majority type in the training data and the

similarity scores between CUI descriptions.

System descriptions
Six teams (ezDI, KP, MIT, National Centre for Text Mining

[NaCT], UAZ, UWM) normalized mentions using cascading dictio-

nary matching. Each of these systems started by attempting to find

an exact match between the mention and an example in the training

data or a CUI in the UMLS. They differed in how inexact matches

were handled. For inexact matches KP used a similarity score based

on 3-gram matches between the mention and the CUI. UAZ used a

BioBERT-based ranker.17 ezDI applied text cleaning heuristics, used

Levenshtein distance, and other manual rules. MIT used a modified

edit distance. UWM used a set of automatically learned character-

level edit distance rules58 followed by submention matching. NaCT

used Hyphen59 to clean the data prior to exact matching. For inex-

act matches, they used the number of shared words and shortest edit

distance between the mention and CUI. Notably, UAZ used Lucene

(https://lucene.apache.org/) for efficient exact matching and allacro-

nyms.com for acronym expansion.

Toyota Technological Institute (TTI) performed MCN using a

deep learning architecture. Interestingly, their architecture was

based primarily on the cosine distance between a feature vector of

the mention and learnable CUI vectors in the UMLS. The mention

vector was constructed by breaking the mention into its subwords

(eg, “heart” and “attack” for “heart attack”). The subwords were

input into a pretrained SciBERT60 layer, which was average pooled

and input into a fully connected layer. The resulting mention vector

was connected to the next layer which computed its cosine distance

from learnable CUI vectors for all 434 056 CUIs in SNOMED CT

and RxNorm databases (as well as CUI-less). Last, these cosine dis-

tances were input into a softmax layer for predicting the CUI for

each mention. The system is trained on both the training corpus and

the UMLS itself. They used the ArcFace optimization function61

during training, and tuned hyperparameters using Optuna.62

University of Aveiro (UAv) created a cosine distance-based sys-

tem. They first cleaned the text using hand-crafted rules. Next, they

calculated the cosine distance between the embedding of the men-

tion and precalculated CUI embeddings in the UMLS. They used

pregenerated biomedical word embeddings.63 For multiword terms,

they used the average of constituent word vectors.

Two teams (Ali, MDQ) created retrieve-and-rank systems. Ali

retrieved a set of candidate CUIs using IR methods (eg, frequency,

tf-idf, edit distance). Next, they ranked the candidates using ML.

The features they used for ML included the output of the IR step,

edit distance, dictionary matching, matching atomic unique identi-

fier counts, and semantic types. MDQ built their system using the

UIMA64 framework with Lucene indexing. Candidate CUIs were re-

trieved via dictionary lookup. Candidates were ranked using ML.

The features they used in ML included word embeddings, tf-idf vec-

tors, WordNet, and a BioBERT17 encoder.

RESULTS

Table 3 presents system performance in ranked order. The first col-

umn shows the team name and their rank (based on statistically sig-

nificant differences in performance), the next column shows the

accuracy of the best run of that team, and the next columns show

statistical significances. An “X” indicates that there is a statistically

significant difference between the 2 teams indicated by the row and

column: (1) TTI performs the best and significantly better than all

other systems; (2) KP performs significantly better than all but TTI

and UAZ; (3) UAZ performs significantly better than all but TTI,

KP, and Ali; and (4) Ali, MDQ, and UWM perform better than (5)

UAv, ezDI, MIT, and NaCT.

Table 4 presents the aggregate statistics for the best runs among

all 33 teams and among the top 10 teams. The best-performing team

(TTI) achieved an accuracy 0.8526. The worst-performing system

achieved an accuracy of 0.5184. The median was 0.7733, and the

mean was 0.7426 with an SD of 0.0858. The differences in perfor-

mance among the top 10 teams were less. The median, mean, and

SD were 0.8090, 0.8111, and 0.0167, respectively. Overall perfor-

mance was higher than the IAA (74.20%).

Table 3. Accuracy and statistically significant differences between top performing systems.

Team Name (Abbreviation) Accuracy Statistical Significances

TTI KP UAZ Ali MDQ UWM UAv ezDI MIT NaCT

(1) Toyota Technological In-

stitute (TTI)

0.8526 X X X X X X X X X

(2) Kaiser Permanente (KP) 0.8194 X X X X X X X X

(3) University of Arizona

(UAZ)

0.8166 X X X X X X X

(4) Alibaba (Ali) 0.8105 X X X X X X

(4) Med Data Quest, Inc

(MDQ)

0.8101 X X X X X X X

(4) University of Wisconsin–

Milwaukee (UWM)

0.8079 X X X X X X X

(5) University of Aveiro

(UAv)

0.8013 X X X X X X

(5) ezDI, Inc (ezDI) 0.8006 X X X X X X

(5) Massachusetts Institute

of Technology (MIT)

0.7961 X X X X X X

(5) National Centre for Text

Mining (NaCT)

0.7957 X X X X X X

X indicates significant difference between the systems in the row and column.
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These results are similar to the results of previous MCN shared

tasks. The most directly comparable results are those of ShARe/

CLEF 2013 1b and SemEval 2015 Task 2a. These tasks focused on

normalization of gold standard disorder mentions, and the best-per-

forming teams achieved accuracies of 0.895 and 0.854, respectively.

Our best-performing team (TTI) achieved an accuracy of 0.8526

over all mentions. When considering only disorder mentions indi-

cated by the UMLS semantic group “DISO,” they remained the

best-performing team, and achieved an accuracy of 0.8694 on the

2329 disorder mentions in the test set.

Figure 1 shows the average accuracy of the top 10 teams and the

percent of mentions in the test set as a function of their length in

terms of number of words. A total of 55% of the mentions consisted

of single words, and they are correctly normalized 86% of the time

by the top systems. Figure 1 indicates that as mention length

increases, the number of mentions in the test set decreases, and the

average accuracy generally decreases until the mention length

reaches 10. This trend of decreasing accuracy as mention length

increases reflects the difficulty normalizing complex mentions. Nor-

malizing long mentions (10þ words) is likely easier because there

are fewer confounding candidate CUIs.

Because single-word mentions comprise 55% of the test set cor-

pus, they deserve further investigation. Figure 2 shows both the av-

erage accuracy and percent of samples in the test corpus vs the

character length of the mention. It shows that shorter mentions tend

to be more difficult to normalize, and that single character mentions

are the most difficult.

To discover why certain systems performed better than others,

we also performed a statistical and manual analysis comparing the

top systems. Despite differences in system architectures and imple-

mentations, most (8 of 10) used very similar normalization techni-

ques based on lexical rules and word and character overlap

matching. Notably, TTI and UAv differ from the other systems in

that they model linguistic variability with semantic representations.

Figure 3 shows the effect of mention length on accuracy of the

top systems. It shows that for all systems but TTI accuracy decreases

as mention length increases. TTI’s accuracy is unaffected by mention

length. Mentions containing more than 11 words are omitted be-

cause there are few of them. The distinguishing factor between TTI

and other systems is its use of contextual semantic representations

(SciBERT). Although UAv used word embeddings, its performance

is still affected by mention length. This indicates that contextual se-

mantic representations can overcome the effects of mention length

on normalization performance.

Figure 4 shows the accuracy of the top systems on single character

mentions. For these, all systems perform similarly poorly, but Ali and

ezDI perform noticeably better than others. Ambiguity is particularly

problematic for single character mentions, and the distinguishing fac-

tor between these 2 systems is that Ali and ezDI performed disambigu-

ation using deep learning with contextual embeddings. These results

indicate the importance of incorporating context for normalizing sin-

gle character mentions. No noticeable differences in performance were

found beyond character lengths of 1.

DISCUSSION

Error analysis
A total of 505 mentions were incorrectly predicted by all top 10 sys-

tems. We manually analyzed a subset of these to broadly character-

ize the reasons that they were missed. The 2 main reasons were (1)

ambiguous mentions and (2) complex mentions. We further expand

on these reasons subsequently and provide characteristic examples

of the problems observed. Solving these types of errors will improve

performance in future systems.

Ambiguous mentions
Most ambiguities were caused by acronyms, abbreviations, misspell-

ings, and unknown semantic types. Abbreviations and acronyms are

much more common in clinical text than in the general domain.65

Mentions missed by all top systems include examples such as “smear

there consistent with ALL,” where ALL refers to [C0023449, Leu-

kemia, Acute Lymphocytic]. Some of the missed mentions are in lists

Table 4. Aggregate statistics over the best runs of the top 10 per-

forming teams

Among 33 teams Among top 10 teams

Maximum 0.8526 0.8526

Minimum 0.5184 0.7957

Median 0.7733 0.8090

Mean 0.7426 0.8111

SD 0.0858 0.0167

Figure 1. Mention length, in terms of number of words, and average accuracy.
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with many acronyms and abbreviations, such as “no m/r/g PULM—

CTAB no w/r/r ABD -nt/nd; incision c/d/I,” where nd maps to

[C0577599, swelling is absent]. Lists like this are common for clini-

cal records, and future systems may require acronym dictionaries,

knowledge of the context, and knowledge of clinical note structure

to normalize them. This difficulty with abbreviations echoes find-

ings from ShARe/CLEF 2013. There, task 2 focused exclusively on

normalizing abbreviations whereas task 1b focused on normalizing

disorders. The best results for task 2 were 0.719 vs 0.895 for task

1b. These qualitative results are supported by the results in Figure 2,

as it shows that terms with few characters such as acronyms and

abbreviations, and particularly single character terms are exception-

ally difficult to normalize.

Misspelled mentions were also problematic, particularly mis-

spelled brand names: examples are “acuchecks” for accuchecks, a

brand name for [C0430032, Glucometer blood glucose], and

“Duracef” for Duricef, a brand name for [C0007538, Cepha-

droxyl].

Additionally, because mentions can map to different CUIs in parallel

SNOMED CT hierarchies, there were many errors where knowing the

semantic type was necessary. Although most teams incorporated seman-

tic type prediction into their algorithms, it was not perfect. An example

missed by all top teams was “positive pressure at the bedside,” in which

bedside should map to [C0558274, Bed area] but was most often incor-

rectly mapped to [C0282662, bedside testing].

Complex mentions
Complex mentions typically contained many words, were very spe-

cific, or required domain knowledge to normalize. Complex men-

tions should not to be confused with compositional annotations.

Compositional annotations require more than 1 CUI to describe the

annotation, whereas complex mentions map to a single CUI. Al-

though ambiguity played a role in errors related to complex men-

tions, the root problem was that systems were unable to fully

represent and understand them. Nevertheless, system’s incorrect

normalizations were often closely related to the correct ones. Incor-

rect normalization as CUI-less was also common.

As an example, consider “there was a mild diminution of light

touch, pinprick, position, and vibration sense the left side,” for

[C0020580, Hypesthesias (decreased sense of touch/sensation)]. In

this case, the mention is a list of symptoms. Incorrect normalizations

for this mention included [C1285608, observable sense of touch]

and [C1295585, decreased vibratory sense (finding)]. Another char-

acteristic mention is “to the left anterior descending artery and diag-

Figure 2. Character length and average accuracy.

Figure 3. The effects of mention length, in terms of number of words, on the

accuracy of semantic and lexical-based systems. Ali: Alibaba; KP: Kaiser Per-

manente; MDQ: Med Data Quest; MIT: Massachusetts Institute of Technology;

NaCT: National Centre for Text Mining; TTI: Toyota Technological Institute;

UAZ: University of Arizona; UAv: University of Aveiro; UMW: University of

Wisconsin–Milwaukee.

Figure 4. Accuracy of each system on single character mentions. Ali: Alibaba;

KP: Kaiser Permanente; MDQ: Med Data Quest; MIT: Massachusetts Institute

of Technology; NaCT: National Centre for Text Mining; TTI: Toyota Techno-

logical Institute; UAZ: University of Arizona; UAv: University of Aveiro; UMW:

University of Wisconsin–Milwaukee.
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onal” for [C0226034, structure of distal portion of anterior

descending branch of left coronary artery]. This mention includes a

list of modifiers specifying the type and location of “artery.” The

most common incorrect prediction for this mention was [C0226032,

structure of anterior descending branch of left coronary artery]. For

these types of mentions, heuristics such as term overlap and vector-

based representations built from the sum or average of constituent

words may be inappropriate. Future systems may require more com-

plex mention representations and mapping techniques. For examples

such as “diminution of light touch, pinprick, position, and vibration

sense the left side,” a system may first need to recognize that the

mention is describing symptoms. It may then utilize domain knowl-

edge such as UMLS glosses for normalization. For the “left anterior

descending artery and diagonal” example, a parse tree could help se-

lect the most appropriate CUI or help navigate the UMLS hierarchy

based on how words in the mention relate to “artery.” Alternatively,

a mapping could potentially be improved if UMLS is better repre-

sented by learned embeddings that capture the local node structure

around each CUI.

Other cases are even more complex, and likely require hand-

crafted rules. For example: “a Gleason ’s IV, plus V tumor,” should

be mapped to [C0332334, Gleason grade score 9 out of 10], but

was incorrectly mapped to [C0332329, gleason grade 4]. A correct

mapping of this mention requires both domain knowledge that a

Gleason grade of IV plus Gleason grade of V equals a Gleason grade

of 9, and understanding that the mention implies that the 2 scores

should be summed.

Concept category
In addition to the overall performance evaluation, we calculated the

normalization accuracy for each of the three 2010 i2b2/VA concept

categories included in the MCN corpus: problems, treatments, and

tests. For compositional annotations in the 2010 i2b2/VA corpus,

we measured the weighted accuracy over the component mentions.

For example, “bowel wall thickening,” in 2010 i2b2/VA annotation

was split into 2 subsumed concept mentions, “bowel wall” and

“thickening,” in the MCN annotation. In this case, each correct nor-

malization contributes 0.5 score to the accuracy. We report the aver-

age normalization scores for each category in Figure 5. The results

showed similar normalization accuracy among 3 categories. This

indicates, importantly, that widening the scope for normalized clini-

cal concepts in fact does not make the task more challenging for cur-

rent state-of-the-art concept normalization methods. At the same

time, the MCN strategy of splitting compositional mentions into

subspans19 may have simplified the normalization task for difficult

cases, making the overall task more accessible for automated sys-

tems.

CONCLUSIONS

MCN acounts for variation in term usage by mapping mentions to a

controlled vocabulary. For this shared task, 33 teams submitted sys-

tem runs. Among the top 10 performing teams, we observed 4 pri-

mary architectures: (1) cascading dictionary matching, (2) cosine

distance, (3) deep learning, and (4) retrieve and rank. Overall, sys-

tems performed well and exceeded IAA; the median accuracy of all

participating teams was 0.7733, and the IAA was 0.7420. The best-

performing system was a deep learning system that used the cosine

distance between SciBERT embeddings and learnable CUI vectors. It

achieved an accuracy of 0.8526.

MCN is a challenging task, even for human annotators due to

ambiguities and linguistic complexities of mentions. Ambiguous

mentions include acronyms, abbreviations, misspellings, and un-

known semantic types. More accurate spelling correction, better ac-

ronym and abbreviation resolution, and better semantic type

prediction can help MCN of these mentions. Complex mentions in-

clude long multiword expressions, which are often very specific.

Normalizing these mentions likely requires the development of more

complex representations. Furthermore, such representations may

help systems to recognize and automatically break up compositional

mentions (eg, “left breast biopsy,” or “breast or ovarian cancer”),

which required manual standardization during annotation. Future

work should focus on these ambiguous and complex cases, in which

exact dictionary matching, word overlaps, edit distance, and simple

vector representations fail. As a starting point, the analysis indicates

that contextual semantic representations help overcome challenges

associated with long mentions and single character mentions.
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