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ABSTRACT

Objective: We sought to demonstrate the feasibility of utilizing deep learning models to extract safety signals

related to the use of dietary supplements (DSs) in clinical text.

Materials and Methods: Two tasks were performed in this study. For the named entity recognition (NER) task,

Bi-LSTM-CRF (bidirectional long short-term memory conditional random field) and BERT (bidirectional encoder

representations from transformers) models were trained and compared with CRF model as a baseline to recog-

nize the named entities of DSs and events from clinical notes. In the relation extraction (RE) task, 2 deep learn-

ing models, including attention-based Bi-LSTM and convolutional neural network as well as a random forest

model were trained to extract the relations between DSs and events, which were categorized into 3 classes: pos-

itive (ie, indication), negative (ie, adverse events), and not related. The best performed NER and RE models

were further applied on clinical notes mentioning 88 DSs for discovering DSs adverse events and indications,

which were compared with a DS knowledge base.

Results: For the NER task, deep learning models achieved a better performance than CRF, with F1 scores above

0.860. The attention-based Bi-LSTM model performed the best in the RE task, with an F1 score of 0.893. When

comparing DS event pairs generated by the deep learning models with the knowledge base for DSs and event,

we found both known and unknown pairs.

Conclusions: Deep learning models can detect adverse events and indication of DSs in clinical notes, which

hold great potential for monitoring the safety of DS use.

Key words: named entity recognition, relation extraction, natural language processing, deep learning, dietary supplements, clini-

cal notes

INTRODUCTION

The popularity of dietary supplements (DSs) has continued to grow

during recent years. A 2019 survey conducted by the Council for Re-

sponsible Nutrition indicated that the use of DSs remains strong and

increasing, with 77% of Americans taking DSs, up from 66% com-

pared with 2008.1 Despite the widespread use and consumers’ in-

creasingly receptive attitudes, there still exist some quality, efficacy,

and safety issues, such as insufficient information on the identity of

ingredients, lack of well-designed human clinical trials to assess the

safety of DSs, limited in vitro experiments to elucidate the mecha-

nisms for actions, etc.2 Owing to the complex regulatory environ-

ment for DSs in the United States, some DS ingredients may not

have undergone thorough safety evaluations before being legally in-

troduced into the market since DSs are considered as a special cate-

gory of food. However, adverse events (AEs) related to DSs can be

severe or even deadly. According to one study, among the total AEs
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(n¼15 430) submitted to the U.S. Food and Drug Administration

Center for Food Safety and Applied Nutrition AE reporting system

during 2004-2013, 25.4% resulted in hospitalization and 2.2% led

to deaths.3 The lack of premarket safety requirements combined

with the perception by the public that most DS products are natural

and therefore safe have further contributed to the paucity of volun-

tary reporting data regarding AEs through postmarket surveillance

mechanisms. Moreover, the reporting data on AEs may suffer from

the lack of accurate information on the temporal relationship be-

tween product ingestion and the onset of AEs. Such reporting bias

makes detection of some potential causal relationships between DSs

and AEs difficult.4

Owing to the limitations mentioned previously, there remains a

critical need for use of alternative data sources for overseeing and

monitoring safety in terms of DS use. It has been long recognized

that EHR data, especially clinical notes, provide the most compre-

hensive documentation of clinical events that occur during the

course of health care.5 Compared with conventional data sources

(ie, clinical trials, spontaneous reporting data), clinical notes present

several advantages such as the availability of more comprehensive,

real-world patient information and accurate documentation of dis-

ease development. Clinical natural language processing (NLP) tech-

niques have been extensively leveraged to approach this task

through performing extraction on medication entities and their rela-

tionships with corresponding AEs. Over the years, various clinical

NLP shared tasks, such as the i2b2 (Informatics for Integrating Biol-

ogy and the Bedside) challenge,6 n2c2 (National NLP Clinical Chal-

lenges),7 and the most recent MADE (2018 Medication and Adverse

Drug Event) challenge,8 have been organized to examine the state-

of-the-art NLP methods for clinical concept recognition and relation

extraction. The approaches for the medication entity extraction

task, namely named entity recognition (NER) task, fall into catego-

ries of rule-based,9 supervised machine learning,10 and hybrid meth-

ods.11 The most recent developments in deep learning techniques

have achieved more competitive results compared with traditional

machine learning methods. Particularly, bidirectional long short-

term memory (Bi-LSTM) models combined with a conditional ran-

dom field (CRF) layer have been shown to achieve better perfor-

mance in medical concept extraction.12, 13 Existing methods for

relation extraction (RE) can be grouped into rule-based, bootstrap-

ping, supervised, distant supervision, unsupervised, and deep learn-

ing methods. The methods in the last decade have been dominated

by feature-based and kernel-based methods,14 in which the hand-

designed linguistic features were fed into machine learning classifiers

such as logistic regression classifiers and support vector machines.

However, compared with state-of-the-art deep learning methods, su-

pervised machine learning techniques rely heavily on handcrafted

features and language specific resources, which are more time con-

suming and labor-intensive to construct.

Using DSs could lead to various AEs caused by individual DS use

or their interactions with other concomitant DSs, drugs, and food

due to their complicated characteristics.15 Several studies have de-

veloped methods for the creation of DS terminology and knowledge

base as well as the detection of DS-associated AEs from different

data sources.16–22 For example, we have extracted and standardized

DS information from online sources to build an integrated DS

knowledge base, (ie, iDISK).23 And we demonstrated that as com-

pared with the UMLS, DS terminology in the iDISK contains more

novel synonyms, and achieved a better performance in a DS NER

task on biomedical literature.16 Also, we demonstrated the utility of

word embeddings on clinical notes for DS terminology expansion.17

Previously, we employed signal detection methods to extract AEs as-

sociated with DSs from Center for Food Safety and Applied Nutri-

tion AE reporting system.18 We developed methods to extract the

DS usage information from Twitter, and assessed the association be-

tween DS use and mental disorders (eg, anxiety, depression).19 We

also mined AEs from DS product labels in the Dietary Supplement

Label Database using topic modeling.20 In addition, we developed a

rule-based NLP system to normalize DS product names in the Die-

tary Supplement Label Database.21 Another study successfully ap-

plied a deep neural network to identify the drug-drug interactions

and drug-food interactions based on their structural information

and names.22 However, no studies have investigated the detection of

DSs and related AEs in clinical notes. Like medications, a great deal

of DS information including their associated indications and AEs is

documented in clinical notes. Recognizing DS named entities and

their relationships with signs and symptoms in clinical notes is of

great significance for automatic safety surveillance on DSs. Detect-

ing AEs related to DS use is critical for patient safety. Thus, applying

NLP techniques for automatic AEs extraction can accelerate down-

stream pharmacovigilance-related research.

Thus the main contributions of this study are the following:

• To the best of our knowledge, this is the first study of deep learn-

ing models for extracting AEs and indications associated with

DSs from clinical notes
• An evaluation of different deep learning (eg, pretrained bidirec-

tional encoder representations from transformers [BERT]) mod-

els on annotated DS-specific clinical corpora
• Demonstration of the feasibility of deep learning models applied

to clinical notes to facilitate discovery of DS safety knowledge

MATERIALS AND METHODS

This study consists of 2 tasks: NER and RE. The methods for these

2 tasks are described in detail as follows.

TASK 1: NER

Study design
The NER task was carried out in the following 5 steps: (1) prepro-

cessing the clinical notes and randomly collecting 1000 sentences for

each of the 7 commonly used DSs; (2) annotating collected sentences

with mentions of DSs, and event to generate the gold standard; (3)

randomly splitting the gold standard into training, development,

and test sets; (4) training, tuning, and evaluating the models; and (5)

comparing the performance of deep learning models and a baseline

CRF model.

Data collection and annotation
The dataset used in this study was collected from clinical data repos-

itory (CDR) of the academic medical center affiliated with the Uni-

versity of Minnesota. The CDR contains 180 million clinical notes

of over 2.9 million patients seeking health care at 8 hospitals and

over 40 clinics. Institutional review board approval was obtained

for accessing the clinical notes. Document-level clinical notes were

split into sentences through sentence boundary detection using Bio-

MedICUS (BioMedical Information Collection and Understanding

System), an NLP pipeline developed at University of Minnesota.24

Based on our prior study on DS term expansion,17 a collection of DS

terms were used for retrieving sentences mentioning 7 DSs, including

black cohosh, chamomile, cranberry, folic acid, garlic, turmeric, and
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valerian, which were chosen based on their popularity in the CDR.

In total, 7000 sentences (1000 sentences for each of the 7 DSs) were

randomly selected from the resulting sentence-level corpus. Annota-

tion guidelines were created based on 100 randomly selected senten-

ces out of the sentence-level corpus of 7000 sentences for this NER

task. Disagreement was resolved with discussion to reach consensus.

The interrater agreement was calculated based on these 100 senten-

ces using Cohen’s kappa score. The remaining sentences were

equally split into 2 parts, which were independently annotated by 2

experts with clinical background (each annotated 3450 sentences).

A beginning-inside-outside annotation schema was used. Among

these 7000 sentences, 2812 (40.17%) had both mentions of DSs and

events. Two categories of named entities were defined and anno-

tated: DS and event. DS is defined as any mention of DSs, including

generic names (ie, black cohosh) and brand names (ie, garlique), syn-

onyms (ie, folate), abbreviations (ie, cran), and misspellings (ie,

tumeric). Event includes indications (a sign or symptom for which

DS is taken for, for example, black cohosh for hot flash), AEs (a sign

or symptom caused by DS use, for example, liver damage caused by

black cohosh), and other signs or symptoms (not related to the DS

use).

Models
The standard neural model for the NER task is based on Bi-LSTM-

CRF. In this model, word or character embeddings or the combina-

tion of them are often used as inputs. In this task, we compared 3

Bi-LSTM-CRF25 models using 3 types of inputs (word embeddings

only, word embeddings combined with convolutional neural net-

work [CNN] character-level representations, word embeddings

combined with LSTM character-level representations) with CRF

model as a baseline to extract named entities of DSs and events from

clinical narratives. The Bi-LSTM-CRF model consists of 3 layers, in-

cluding an embedding layer, a Bi-LSTM layer, and a CRF layer. The

sequence of embeddings is given as the input for the Bi-LSTM layer,

which then returns a representation of the left and the right context

for each word. These representations are further concatenated and

linearly projected onto a CRF layer. In this study, word-level repre-

sentations are distributed word embeddings trained from a large

clinical corpus using word2vec in one of our previous studies.17 Spe-

cifically, these embeddings were trained using over 26 million clini-

cal notes. Besides word-level information, character-level

information was also considered because character-level embeddings

have been found to be beneficial for out-of-the-vocabulary words

and are capable of capturing morphological information.26 Both

CNN26 and recurrent neural network (Bi-LSTM)25 models were ap-

plied to generate character-level representations separately. To be

specific, character embeddings are randomly initialized for every

character. The character embeddings corresponding to every charac-

ter contained in a word are given as the input to a CNN or a

Bi-LSTM model, the outputs of which are the character-level repre-

sentations for each word. Character-level representations are further

concatenated with word2vec word embeddings to be fed into the Bi-

LSTM layer.

Besides the standard neural models, the NER task can also be

approached using transfer learning. Transfer learning is the process

of training a model on a large-scale dataset and then using the pre-

trained model to conduct the learning on a task specific dataset,

which might be smaller. The benefit of such method is that not

much data are needed in the downstream task to achieve good

results. BERT is one of the state-of-the art and empirically powerful

language models released by Google in 2019.27 The key innovation

of BERT28 is to apply bidirectional training of transformers to lan-

guage modeling. To train the language model, BERT utilizes 2 train-

ing strategies: masked language model and next sentence prediction.

The language models trained in such a way often have a deeper sense

of language context, which can be further applied to handle a vari-

ety of NLP tasks (ie, NER) with just 1 additional output layer. Uti-

lizing the self-attention mechanism of the transformer encoder,

BERT is shown to be able to capture syntactic and coreference infor-

mation.29 BERT also utilizes positional embeddings to incorporate

sequential information in order to overcome the limitation imposed

by self-attention. Additionally, the use of WordPiece embedding can

help achieve a balance between size of the vocabulary and out-of-

vocabulary tokens. In this study, we applied 2 pretrained BERT

models, BERT large cased model and Clinical BERT model to per-

form the NER task. Specifically, the pretrained BERT large cased

model (ie, 24 layers, 1024 hidden units, 16 attention heads, 340 mil-

lion parameters) was trained on the BooksCorpus (800 million

words) and English Wikipedia (2500 million words). Clinical

BERT,30 initialized from BERT base model (ie, 12 layers, 768 hid-

den units, 12 attention heads, 110 million parameters), was trained

on MIMIC-III (Medical Information Mart for Intensive Care-III)

clinical notes.

Model training and evaluation
A total of 7000 sentences were split into training (80%), develop-

ment (10%), and test (10%) sets. We trained the deep learning mod-

els on the training set and applied it on the development set. The

model with the best performance on the development set was further

applied on the test set for final evaluation. We denote the Bi-LSTM-

CRF model using only word embeddings for inputs as Bi-LSTM-

CRF (word only). Different numbers of hidden units in the Bi-LSTM

layer were tested (ie, 64, 128, and 256). The optimal hidden size

was set as 256. We denote the Bi-LSTM-CRF model using CNN to

generate character-level representations as Bi-LSTM-CRF (char

cnn). We experimented with a range of hyperparameters, including

the number of filters (ie, 50, 100, 200, and 300), the kernel size (ie,

2, 3, 4, 5, and 6), and the hidden size for the LSTM layer (ie, 32, 64,

128, and 256). The optimal hyperparameters for this model are ker-

nel size of 5, filter numbers of 300, and 256 for the LSTM hidden

size. The Bi-LSTM-CRF model using Bi-LSTM to generate

character-level information is denoted as Bi-LSTM-CRF (char lstm),

which was experimented with various hyperparameters, including

the hidden size of character Bi-LSTM layer (ie, 32 and 64), the hid-

den size of word Bi-LSTM layer (ie, 32, 64, 128, and 256). The Bi-

LSTM hidden size for the character and token level were set as 25

and 256, respectively. Early stopping was used to reduce overfitting.

To be specific, if the F1 score did not increase within 500 training

steps, the training process stopped. Furthermore, 2 pretrained BERT

models were fine-tuned and evaluated using the training and devel-

opment data, respectively. Specifically, the 2 BERT models were

fine-tuned on training data for 3 epochs, with a learning rate of 2 �
10-5. A CRF layer was built on the top of the BERT model to per-

form the NER task. The final performance was reported using the

test data. We also trained a CRF model to compare against with the

deep learning models. Features used to train the CRF model include

word suffix, POS(part of speech) tags, the POS tags of the nearby

words (1 word before and 1 word after), etc. Precision, recall, and

F1 score were used as the evaluation metrics.
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TASK 2: RE

Study design
The relation extraction task was performed in the following steps:

(1) randomly collecting 3000 sentences on 15 DSs; (2) annotating

and categorizing DS and event mention pairs into 1 of the 3 relations

(ie, positive, negative, and not related); (3) splitting the data into

training, development, and test sets; (4) training, tuning, and evalu-

ating models; (5) comparing the performances of deep learning and

random forests; and (6) applying the model with best performance

on 88 unseen DSs for knowledge discovery.

Data collection and annotation
In order to collect a corpus for the RE task that requires the co-

occurrence of DS and event mentions, a list of DS terms (similar to

the NER task) and signs and symptoms terms compiled from

iDISK23 were used to randomly retrieve sentences. Based on the pop-

ularity and availability of DSs in our CDR, we retrieved a total of

3000 sentences (200 sentences on each) of the 15 DSs, including

black cohosh, chamomile, cranberry, dandelion, folic acid, garlic,

ginger, ginkgo, ginseng, glucosamine, green tea, lavender, melato-

nin, milk thistle, and saw palmetto. We followed the annotation

guideline of the NER task for annotating DS and event entities.

Three relation types were further defined between DS and event en-

tity pairs: positive, negative, and not related. Positive means that a

DS is taken for some events (indications). Negative refers that the

DS has caused some events (AEs or side effects). The relation type

“not related” indicates that there were no direct relationships be-

tween the DS and event based on the semantic and linguistic cues

given by the context in the sentence. Negation was considered when

domain experts completed RE annotations. If the relationship be-

tween DSs and events was negated, we annotated it as “not related.”

However, we did not include the probabilistic terms in our annota-

tion. 100 sentences were randomly selected and annotated by 2

annotators to evaluate the interrater agreement using Cohen’s kappa

score. The remaining sentences (2900) were equally split and inde-

pendently annotated by the 2 annotators.

Models
In this study, we compared 2 deep learning models with random for-

est as a baseline for relation extraction, including a CNN model and

an attention-based Bi-LSTM (Att-BLSTM) model. The CNN

model31 consists of 4 layers: the embedding layer, the convolutional

layer, the pooling layer, and the fully connected layer with softmax

function to perform the final classification. For each word in the

sentence, its word embedding obtained through training a word2vec

model on a large medical corpus in our previous study,17 was

concatenated with 2 position embeddings, which encode informa-

tion on the relative distance of the current word to the 2 entities of

interest in the sentence. The dimensionality of the position embed-

ding is a hyperparameter, which needs to be tuned. The convolution

layer with varied filter sizes is applied to recognize n-gram features.

The max pooling layer is further used to extract the most important

or relevant features generated from the convolution layer. The max

pooling scores from each filter were concatenated to form a single

vector, which goes through a dropout and is fed into a fully con-

nected layer.

The Att-BLSTM32 model for relation extraction consists of 4

layers: the embedding layer, with each word in a sentence repre-

sented by a pretrained word2vec word embedding from a previous

study17; the Bi-LSTM layer with the forward and backward LSTM

outputs concatenating through element-wise sum; the attention

layer, which produces a weight vector to be multiplied with Bi-

LSTM outputs; and the final output layer using the softmax func-

tion. Dropout and L2 regularization are applied in the final output

layer for reducing overfitting. Dropout is also applied in the embed-

ding layer and LSTM layer for regularization. Specifically, the atten-

tion layer produces an attention vector that is equal to the length of

the sequence. Each value in this vector is the weight associated with

the corresponding Bi-LSTM output feature vector. The weighted lin-

ear combination of the Bi-LSTM outputs and attention weights

form the output of the attention layer. With the addition of the at-

tention layer, the model is capable of capturing more significant se-

mantic features with decisive effects on the classification results.

Model training and evaluation
The dataset was divided into training (80%), development (10%),

and test (10%) sets. The development set was used for tuning hyper-

parameters. For the CNN relation extraction model, the inputs for

the model are the concatenation of the word embeddings for the cur-

rent token and 2 position embeddings, one is the relative distance

from the current token to the DS entity head and the other is the rel-

ative distance to the event entity head. The 3 vectors are

concatenated and fed into the model as inputs. Because the posi-

tional information is encoded in inputs, different convolutional fil-

ters can be learned for the same n-gram if it occurs in a different

position relevant to the entities of interest. We experimented with a

set of parameters, including the dimensionality of the position em-

bedding (ie, 50, 100, and 200), the number of filters (ie, 64, 128,

256, and 512), and filter sizes (ie, 2, 3, 4, 5, and 6). The optimal

hyperparameters are as follows: position embedding dimension of

100, filter sizes of 2-4, and 128 filters for each size. The dropout

rate is 0.3. For the Att-BLSTM model, we tuned the hyperparameter

hidden size of the Bi-LSTM layer (ie, 64, 128, 256, and 512). The

optimal value for the hidden size was chosen as 128. The model

with optimal parameters was applied to the test set for final model

evaluation. Early stopping was used to reduce overfitting. Addition-

ally, a random forest model was trained as a baseline model. Some

preprocessing was performed, including normalization and stop

words removal. N-gram features were used for training the model.

Precision, recall, and F1 score were used as the evaluation metrics.

Knowledge discovery
To compare the results generated by our methods with existing DS

safety knowledge, we further collected sentences containing another

88 DS terms (listed in Supplementary Table 1) based on the popular-

ity and availability of DSs in the CDR. Specifically, the sentences

mentioning the 88 DSs were collected from over 26 million clinical

notes ranging from April 2015 to December 2016 at the University

of Minnesota Medical Center. Our trained NER model was applied

to detect the mentions of DSs and events. The sentences with both

mention of DSs and events were further fed into the best-performing

RE model. In each sentence, a DS and event entity pair was classified

into 1 of the 3 categories based on the best RE model. We analyzed

the results and limited the scope to positive and negative relations.

Given the frequencies of DS and event entity pairs in these 2 catego-

ries, entity pairs with number of their source sentences larger than

10 were further compared with the knowledge in the existing data-

base, Natural Medicines Comprehensive Database (NMCD).

NMCD is managed by the Therapeutic Research Center, which pro-

vides 15 categories (eg, scientific names, indications, safety, effec-
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tiveness) of information for each product. In addition, we conducted

a manual review of 20 randomly selected high- and low-frequency

pairs with their 100 source sentences to estimate the performance of

our deep learning algorithms.

RESULTS

Dataset
The Cohen’s kappa scores for NER and RE are 0.879 and 0.863, re-

spectively. There were a total of 12 213 DS and 3807 event entities

in the 7000 sentences of 7 DSs. Among the 5131 relation pairs,

3451 were positive relations, 1071 were negative relations, and 609

fell into the category of “not related.” Among the sentences with

mentions of 88 DSs, there were 31 675 DS and event entity pairs.

Performance of NER models
The results of the NER models on the test set out of 7000 sentences

are shown in Table 1. According to the results, deep learning models

outperformed the CRF model. Four deep learning models had very

close F1 scores, although the BERT model performed slightly better

overall. For DS entities, 5 models performed well, with F1 scores all

over 0.8. However, the CRF model had a relatively low recall score

in recognizing event entities, partially owing to the small number of

event entities used for training, which also indicates that the deep

learning models are more resistant to imbalanced data. Compared

with other models, the BERT model had significantly outperformed

them on the NER task based on Student’s t test (P< .05).

Performance of relation extraction models
The results of relation extraction are shown in Table 2. Overall, 2

deep learning models achieved better performances than the random

forest model. Specifically, the averaged F1 score of the Att-BLSTM

model (0.893) was higher than that of the CNN (0.890) model.

However, based on Student’s t test (P< .05), overall performances

of the Att-BLSTM and CNN models are not significantly different.

Both methods significantly outperformed the random forest model.

Knowledge discovery
Because the Att-BLSTM model has the best performance in relation

extraction, it was further applied on the 13 474 sentences with men-

tions of 88 unseen DSs extracted from more than 26 million clinical

notes to categorize the DS and event entity pairs into 1 of the 3 pre-

defined classes. In total, there were 18 348 positive relations and

13 130 negative relations. We also checked the existence of these

positive and negative DS-AE pairs with frequency larger than 10 by

comparing with the information in the NMCD and indicated in the

table. Within 133 positive signals, 94 (70.7%) were known in

NMCD, and 39 (29.3%) were unknown signals. Among 84 negative

signals, 48 (57.1%) and 36 (42.9%) were known and unknown

signals in the NMCD, respectively. Example unknown pairs are

listed in the Supplementary Table 2. To further estimate the perfor-

mance of our deep learning methods to detect signals, we randomly

selected 20 pairs (10 for positive and 10 for negative) and manually

reviewed the randomly selected 10 sentences for each pair (200 total

sentences). Details of these entity pairs with their frequency, preci-

sion, and example sentences are listed in the Table 3. At the supple-

ment level, the precision for vitamin C, fish oil, vitamin E,

peppermint, zinc, psyllium, biotin, and niacin are 90%, 70%,

100%, 95%, 100%, 70%, 100%, and 61.7%, respectively.

The findings generated by the deep learning models are consis-

tent with the known knowledge regarding the indications or AEs of

DSs. For example, Vitamin C can promote wound healing because

of its role in collagen formation. Vitamin C is a co-factor in proline

and lysine hydroxylation, a necessary step in the formation of colla-

gen. Rash, flushing, and hives are common side effects of niacin.

The allergic symptoms to fish oil include rash, hives, and diarrhea.

Fish oil may inhibit platelet aggregation and may potentially in-

crease the risk of bleeding. In addition, we found some unknown

pairs which are worth further investigation.

DISCUSSION

Owing to the inherent limitations of clinical trials and voluntary

reporting data, the information regarding the DS safety and efficacy

is incomplete and biased. With the increasing consumption and pop-

ularity of DSs, there remains a critical need to expand our knowl-

edge base of DSs for patient safety, which is of extreme importance

in the healthcare process. Clinical notes in EHR systems, document-

ing detailed and extensive real-world patients’ information, present

several advantages over conventional data sources, which can be lev-

eraged for potential pharmacovigilance research. There are several

studies demonstrating the utility of clinical notes in drug pharmaco-

vigilance,33, 34 yet very few studies have attempted to investigate the

use of clinical notes for monitoring the adverse events caused by

DSs. In this study, we have demonstrated the feasibility of automatic

detection of DS safety signals in clinical notes using deep learning

models. Without any external sources or feature engineering, our

deep neural models have achieved better performance when com-

pared with traditional machine learning models. Compared with

studies investigating pharmacovigilance, our models also achieved

comparable results.35

When applied on the test dataset, the deep learning models dem-

onstrate good generalizability. Using pretrained word embeddings

as input, deep learning models can generalize well when used on un-

seen data because distributed word embeddings often carry semantic

and syntactic relations between words. One of our previous stud-

ies26 showed that word embeddings trained on a large medical cor-

pus are capable of capturing the synonyms, brand names,

abbreviations, and misspellings of DS names. Using these distributed

word embeddings as input, deep learning models can detect the

named entities with similar word embeddings. However, for most

clinical NLP systems, the NER component is mainly dictionary

based or traditional machine learning based. The dictionary-based

NER system often has a high precision but low recall because the

dictionary often fails to cover complete acronyms, abbreviation, and

misspellings. It is well recognized that the performances of tradi-

tional machine learning models rely heavily on handcrafted features.

Determining the best set of features requires trial-and-error experi-

ments. However, the deep learning models are totally end to end,

with minimal work on feature engineering, which is more scalable

and better for maintenance. Therefore, deep learning methods offer

advantages over rule-based or traditional machine learning–based

methods. Additionally, the results also demonstrate that the combi-

nations of word embeddings with character-level information are

more informative than the word embeddings only. Interestingly, the

large BERT model outperformed the clinical BERT pretraining on

MIMIC, and the potential reason may be that the MIMIC corpus

(intensive care unit notes) does not sufficiently represent our corpus,

collected from a variety of clinical settings. Moreover, clinical BERT
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was trained from the BERT base model, which is smaller than the

BERT large model.

During evaluation of generated pairs and source sentences in

knowledge discovery, we found that the precisions for high-frequency

pairs are generally higher than those of less frequent pairs. Two types

of errors were found during the error analysis. One type of error is

that a sentence could contain several DSs and AEs, and the relation

between 1 DS and 1 AE was wrongly predicted. For example, in the

sentence “The patient is taking 1 tablet aspirin by mouth every 6

hours as needed for mild pain and fish oil considering the medical his-

tory of hypertension,” the symptom “pain” was wrongly matched

with the DS “fish oil.” Another type of error is due to the preprocess-

ing of clinical notes, which merges sentence from 2 sections into 1 sen-

tence. For instance, in sentence “The patient is taking multivitamin po

1 tablet daily, fish oil 1000 mg po daily, past medical history: hemor-

rhage,” the “past medical history” is the starting of another section in

origin clinical notes. However, the fish oil is wrongly linked to the

“hemorrhage” in the merged sentence.

The results of our study also show the feasibility of using clinical

notes to perform real-time DS safety monitoring. Applying the

trained model on clinical notes can generate entity pairs of DSs and

AEs, which provide a new way for knowledge discovery or hypothe-

sis generation. The valuable resources and knowledge obtained can

help identify novel signals of AEs associated with DSs. Such infor-

mation can also assist subsequent in-depth investigations through

clinical trials or in vitro experiments by narrowing down the scope

of DSs, which can further optimize the use of DSs and improve

patients’ safety.

There also exist some limitations of this study. First, the sample

size for training the deep learning model is relatively small because

manually annotating the clinical notes is expensive, labor-extensive,

and time-consuming. In the future, we may expand the data size and

investigate how the increase of the data size will affect the deep

learning model performance. Second, we did not consider the clini-

cal terms that cross the sentence boundary. Third, we only included

a small variety of feature sets for training the CRF and random for-

est models. We may experiment with other syntactic, semantic, or-

thographic, and domain-specific features in the future work. For the

NER deep learning models, we considered both word-level and

character-level features. We may also train other traditional ma-

chine learning models such as support vector machine for perfor-

mance comparison. However, one study36 showed that the addition

of word affixes information achieved better performance. Therefore,

our future work might include affixes in our deep learning models.

CONCLUSION

Automatic detection of AEs related to DS use from clinical notes has a

profound effect on patient safety. Deep learning models were applied

to extract named entities of DSs and events and their relationships

from clinical notes in this study. When compared with traditional ma-

chine learning methods, the deep learning models have a better perfor-

mance and generalizability. Our study has demonstrated that clinical

notes hold great potential for monitoring the safety of DS use, which

can create a new model for pharmacovigilance.
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