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ABSTRACT

Objective: Reticular pseudodrusen (RPD), a key feature of age-related macular degeneration (AMD), are poorly

detected by human experts on standard color fundus photography (CFP) and typically require advanced imag-

ing modalities such as fundus autofluorescence (FAF). The objective was to develop and evaluate the perfor-

mance of a novel multimodal, multitask, multiattention (M3) deep learning framework on RPD detection.

Materials and Methods: A deep learning framework (M3) was developed to detect RPD presence accurately us-

ing CFP alone, FAF alone, or both, employing >8000 CFP-FAF image pairs obtained prospectively (Age-Related

Eye Disease Study 2). The M3 framework includes multimodal (detection from single or multiple image modali-

ties), multitask (training different tasks simultaneously to improve generalizability), and multiattention (improv-

ing ensembled feature representation) operation. Performance on RPD detection was compared with state-of-

the-art deep learning models and 13 ophthalmologists; performance on detection of 2 other AMD features (geo-

graphic atrophy and pigmentary abnormalities) was also evaluated.

Results: For RPD detection, M3 achieved an area under the receiver-operating characteristic curve (AUROC) of

0.832, 0.931, and 0.933 for CFP alone, FAF alone, and both, respectively. M3 performance on CFP was very sub-

stantially superior to human retinal specialists (median F1 score ¼ 0.644 vs 0.350). External validation (the Rot-

terdam Study) demonstrated high accuracy on CFP alone (AUROC, 0.965). The M3 framework also accurately
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detected geographic atrophy and pigmentary abnormalities (AUROC, 0.909 and 0.912, respectively), demon-

strating its generalizability.

Conclusions: This study demonstrates the successful development, robust evaluation, and external validation

of a novel deep learning framework that enables accessible, accurate, and automated AMD diagnosis and prog-

nosis.

Key words: reticular pseudodrusen, subretinal drusenoid deposits, age-related macular degeneration, Age-Related Eye Disease

Study 2, deep learning, multimodal deep learning, multitask training, multiattention deep learning

INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of legal

blindness in developed countries.1,2 Late AMD is the stage with the

potential for severe visual loss; it takes 2 forms, geographic atrophy

and neovascular AMD. AMD is traditionally diagnosed and classified

using color fundus photography (CFP),3 the most widely used and ac-

cessible imaging modality in ophthalmology. In the absence of late

disease, 2 main features (macular drusen and pigmentary abnormali-

ties) are used to classify disease and stratify risk of progression to late

AMD.3 More recently, additional imaging modalities have become

available in specialist centers, particularly fundus autofluorescence

(FAF) imaging.4,5 Following these developments in retinal imaging, a

third macular feature (reticular pseudodrusen [RPD]) is now recog-

nized as a key AMD lesion.6,7 RPD presence is strongly and indepen-

dently associated with increased risk of progression to late AMD,

including 2-fold increased risk of geographic atrophy,6 as well as

faster enlargement of geographic atrophy,8 which is an important end-

point in ongoing clinical trials. However, RPD are very poorly visible

to human eyes on clinical examination or CFP, even to trained experts

at the reading center level. 9–11

CFP and FAF are considered complementary imaging modali-

ties.12 In AMD, some disease features are visualized more clearly to

human experts on one or the other modality. For example, macular

drusen are typically observed well on CFP but poorly on FAF, while

the opposite is true for RPD.9–12 Other AMD features are observed

on both modalities. For example, pigmentary abnormalities are seen

on both (though typically classified on CFP),3,12 while geographic at-

rophy is seen on both (but typically identified and measured on

FAF).12,13 Importantly, while CFP is easily performed and very widely

available across the globe, FAF imaging is usually available only at

specialized academic centers in the developed world; even there, FAF

imaging lies outside current standards of care. Hence, any techniques

that enable the accurate ascertainment of the full spectrum of AMD

features (particularly RPD) from CFP alone would be extremely valu-

able for improved disease classification and risk prediction.

Recent deep learning approaches have been proposed for the di-

agnosis and classification of AMD, based on CFP, specifically in the

automated detection of macular drusen, pigmentary abnormalities,

and geographic atrophy.14–18 However, several problems apply to

these approaches. First, we are not aware of deep learning

approaches to RPD detection from CFP or FAF images by other

groups. Second, these approaches have generally not incorporated

CFP and FAF images together, so the phenotypic characterization of

disease is partially limited. Third, very few studies have reported the

results of external validation (ie, in which models were tested on a

distinct population not used for training), so the possibility of model

overfitting is high.

For these reasons, we have developed, trained, and tested a new

deep learning approach that benefits from multimodal, multitask,

multiattention (M3) operation. The multimodal operation means

that the trained models are versatile and can handle 3 different image

scenarios in practical use (ie, using CFP alone, FAF alone, or both to-

gether as input). The aim of the multimodal and multitask training

was for single image modality models (either CFP alone or FAF

alone) to benefit from the complementary information present in

both image types during training. Essentially, what is learned for

each image modality task can assist during training for the other im-

age modality tasks (by sharing features that are generalizable be-

tween the image modalities). Hence, even when the approach is used

clinically in the CFP-alone scenario, this benefit is retained. In addi-

tion, we employed a multiattention mechanism. It firstly uses self-at-

tention19 to distill important features for each modality, which

makes the framework suitable when only single-modality images are

available. Then, it uses cross-modality attention20 to ensemble the

distilled features from different modalities. The multiattention mech-

anism improves the interpretability of image features for diagnosis.

To test the potential benefits of this new M3 approach, we com-

pared the performance of the M3 models with existing state-of-the-

art deep learning models, for each of the 3 image scenarios. We fur-

ther compared the performance of the M3 models with a total of 13

ophthalmologists at 3 different expertise levels. We then performed

external validation of the M3 models by testing on an independent,

well-characterized RPD image dataset from a different continent. A

user-friendly desktop application was developed for enabling exter-

nal evaluation by end users; the software tool is available upon re-

quest. To demonstrate that the M3 technique is generalizable to

different tasks and datasets, we also applied this method to 2 other

important AMD features: geographic atrophy and pigmentary ab-

normalities.

Background
Most deep learning models in the medical informatics domain are

single-modality approaches, as demonstrated in recent literature

reviews.21–25 For instance, a detailed review summarized 15 deep

learning models for retinal disease diagnosis; all were single-

modality, using either CFP alone or optical coherence tomography

(OCT) images alone.22 By contrast, multimodal deep learning mod-

els, in which image features from different modalities are captured

and fused, have been used more widely in general medical image

applications, such as tumor image segmentation (computed tomog-

raphy, magnetic resonance, and positron emission tomography

[PET] image tuples),26 lung image retrieval (computed tomography

and PET pairs),27 and Alzheimer’s disease diagnosis (PET and mag-

netic resonance pairs).28 These studies demonstrate that the perfor-
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mance of multimodal deep learning models is more effective than

their counterparts using single-modality images. Indeed, recent

reviews in the ophthalmology domain considered developing multi-

modal deep learning models as an important future direction.22,24,25

To our knowledge, few studies have used multimodal deep learn-

ing models for retinal disease diagnosis. We are aware of only 2

such studies for the detection of AMD: Vaghefi et al29 trained a

deep learning model using CFP, OCT, and OCT-angiography image

tuples to identify the presence of intermediate AMD, and Yoo et

al30 trained a deep learning model using CFP and OCT image pairs

to detect the presence of AMD. While both studies reported that the

multimodal deep learning models achieved higher performance than

single-modality models, they have important limitations. First, these

previous models require that all image modalities used during train-

ing must be present during operation. For example, if a model was

trained using CFP, OCT, and OCT-angiography images, all 3 image

types must be available for classification. This may not be practical,

particularly for advanced imaging modalities like OCT-angiography

or FAF, so the accessibility of models like this may remain very lim-

ited. Second, the existing methods simply concatenated the image

features extracted from the different modalities. This is not effective,

especially when the modalities are very different.31,32

In response, we proposed a novel multimodal deep learning

framework, which uses a multitask learning technique and a multi-

attention mechanism for detecting macular features with improved

performance. Notably, this work complements our previous work,33

in which we fine-tuned convolutional neural network (CNN) mod-

els such as InceptionV3 to detect the presence of RPD on single-

modality images.

MATERIALS AND METHODS

Primary dataset for deep learning model training and

internal validation
The primary dataset used for deep learning model training and inter-

nal validation was the dataset of images, labels, and accompanying

clinical information from the AREDS2 (Age-Related Eye Disease

Study 2). The AREDS2 was a multicenter phase 3 randomized con-

trolled clinical trial designed to assess the effects of nutritional sup-

plements on the course of AMD in people at moderate to high risk

of progression to late AMD.34 Its primary outcome was the develop-

ment of late AMD, defined as neovascular AMD or central geo-

graphic atrophy. Institutional review board approval was obtained

at each clinical site, and written informed consent for the research

was obtained from all study participants. The research was con-

ducted under the Declaration of Helsinki and complied with the

Health Insurance Portability and Accountability Act.

The AREDS2 design has been described previously.34 In short,

4203 participants 50-85 years of age were recruited between 2006 and

2008 at 82 retinal specialty clinics in the United States. Inclusion crite-

ria at enrollment were the presence of either bilateral large drusen, or

late AMD in one eye and large drusen in the fellow eye. At baseline

and annual study visits, comprehensive eye examinations were per-

formed by certified study personnel using standardized protocols. The

study visits included the capture of digital CFP by certified technicians

using standard imaging protocols. In the current study, the field 2

images (ie, 30� imaging field centered on the fovea) were used.

In addition, as described previously,11 the AREDS2 ancillary

study of FAF imaging was conducted at 66 selected clinic sites,

according to the availability of imaging equipment. Sites were per-

mitted to join the ancillary study at any time after FAF imaging

equipment became available during the 5-year study period. The

FAF images were acquired from the Heidelberg Retinal Angio-

graph (Heidelberg Engineering, Heidelberg, Germany) and fundus

cameras with autofluorescence capability by certified technicians

using standard imaging protocols. For the Heidelberg images, a

single image was acquired at 30� centered on the fovea, captured

in high speed mode (768 � 768 pixels), using the automated real

time mean function set at 14. All images (both CFP and FAF) were

sent to the University of Wisconsin Fundus Photograph Reading

Center.

The primary dataset consisted of all AREDS2 images where a

CFP-FAF pair was available, that is, in which a CFP and a corre-

sponding FAF image (taken from the same eye at the same study

visit) were available. The dataset is described with these CFP-FAF

pairs as the imaging unit. The total number of images was 8487 (ie,

8487 CFP, 8487 FAF images, and 8487 CFP-FAF image pairs). The

dataset was split randomly into 3 sets, with the division made at the

participant level (such that all images from a single participant were

present in 1 of the 3 sets only): 70% for training, 10% for valida-

tion, and 20% for testing of the models. The characteristics of the

participants and images used for training and testing are shown in

Table 1.

Ground truth labels for the primary dataset
The ground truth labels used for training and testing were the grades

previously assigned to the images by expert human graders at the

University of Wisconsin Fundus Photograph Reading Center. The

protocol and definitions used for RPD grading have been described

recently.11 In brief, the RPD grading was performed from FAF

images (because RPD are detected by human experts with far greater

accuracy on FAF images than on CFP).9–11 The expert human grad-

ing team comprised 6 graders: 4 primary graders and 2 senior graders

as adjudicators. These graders did not overlap with the 13 ophthal-

mologists described elsewhere. RPD were defined as clusters of dis-

crete round or oval lesions of hypoautofluorescence, usually similar

in size, or confluent ribbon-like patterns with intervening areas of

normal or increased autofluorescence; a minimum of 0.5 disc areas

(approximately 5 lesions) was required. Two primary graders at the

reading center independently evaluated FAF images for the presence

of RPD; in the case of disagreement between the 2 primary graders, a

senior grader at the reading center would adjudicate the final grade.

Intergrader agreement for the presence or absence of RPD was

94%.11 Label transfer was used between the FAF images and their

corresponding CFP images; this means that the ground truth label

obtained from the reading center for each FAF image was also ap-

plied to the corresponding CFP. Similarly, the labels from the FAF

images were also applied to the CFP-FAF image pairs.

The protocol and definitions used for the grading of (1) geo-

graphic atrophy and (2) pigmentary abnormalities have been de-

scribed previously.35 This grading was performed from CFP (because

this remains the gold standard for grading pigmentary abnormalities

and was traditionally considered the gold standard for grading geo-

graphic atrophy). For the baseline images, 2 primary graders inde-

pendently evaluated the CFP for these 2 features; in the case of

disagreement between the 2 primary graders, a senior grader at the

reading center would adjudicate the final grade. For the annual

follow-up images, a single grader performed grading (independent of
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the images and grading results from previous visits). Geographic at-

rophy was defined as an area of partial or complete depigmentation

of the retinal pigment epithelium, of size equal to or larger than dru-

sen circle I-2 (diameter 433 mm, area 0.146 mm2 [ie, 1/4 disc diame-

ter and 1/16 disc area]) at its widest diameter, with at least 2 of the

following features: roughly circular or oval shape, well-demarcated

margins, and visibility of underlying large choroidal vessels.35,36 Pig-

mentary abnormalities were defined as areas of increased or de-

creased pigmentation that did not meet the criteria for geographic

atrophy.35,36 Intergrader agreement for these 2 features has previ-

ously been reported.35 For both geographic atrophy and pigmentary

abnormalities, label transfer was used between the CFP and (1) their

corresponding FAF images and (2) the CFP-FAF image pairs.

M3 deep learning framework
The proposed deep learning framework is shown in Figure 1, includ-

ing the multimodal and multitask nature of training and the multiat-

tention mechanism. The framework consists of 3 deep learning

models: the CFP model, the FAF model, and the CFP-FAF model.

The CFP model takes CFP images as its input and predicts RPD pres-

ence or absence as its output; the same idea applies to the FAF and

CFP-FAF models. For the CFP model and FAF model, each has a

CNN to extract features from the input image, followed by an atten-

tion module to analyze the features that contribute most to decision

making, followed by fully connected layers, and an output layer,

which makes the prediction. The CFP-FAF model has the same

structure except that, instead of having its own CNN backbone, it

Figure 1. Details of the framework: multimodal, multitask, multiattention (M3) deep learning convolutional neural network (CNN) for the detection of reticular

pseudodrusen from color fundus photography (CFP) alone, their corresponding fundus autofluorescence (FAF) images alone, or the CFP-FAF image pairs. (1) In

the first stage (multitask learning), the 3 models (CFP-alone, FAF-alone, and CFP-FAF models) are trained simultaneously. The CFP model takes a CFP as its input,

and the FAF model takes the corresponding FAF image as its input. Each image is processed by a CNN backbone, followed by an attention module to capture im-

portant image features. For the CNN backbone, the figure shows a simplified Inception module, but this can be replaced by others, such as ResNet. The important

features captured from the CFP and FAF images form the basis of the CFP-FAF model, using cross-modality attention. (2) In the second stage (cascading task fine-

tuning), the 3 models are further fine-tuned individually based on the outputs of the first stage. The CFP and FAF models are trained first. (3) The attention mod-

ules of the finalized CFP and FAF models are used to extract features for fine-tuning the CFP-FAF model.

Table 1. Numbers of study participants and color fundus photography and fundus autofluorescence image pairs used for deep learning

model training

Training Set Validation Set Test Set Total

Participants, n 1541 212 433 2186

Female, % 57.7 56.1 56.6 57.3

Mean age, y 72.4 72.7 73.2 72.6

Image pairs, na 5966 838 1683 8487

Reticular pseudodrusen present, %b 28.3 25.7 27.6 27.9

Geographic atrophy present, %c 18.8 18.6 21.6 19.4

Pigmentary abnormalities present, %c 82.8 80.5 83.6 82.7

The full set of image pairs was divided into the following subsets at the participant level: training set (70% of the participants), validation set (10%), and test

set (20%).
aThese refer to the total number of color fundus photography and corresponding fundus autofluorescence image pairs (ie, 8487 color fundus photography and

the 8487 corresponding fundus autofluorescence images that were captured on the same eye at the same study visit).
bAccording to reading center expert grading of the fundus autofluorescence images, which provided the ground truth labels for presence or absence of reticular

pseudodrusen.
cAccording to reading center expert grading of the color fundus photography, which provided the ground truth labels for presence or absence of both geo-

graphic atrophy and pigmentary abnormalities.
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receives the image features from both the CFP and the FAF models.

Multitask training was used to train the deep learning models.37–39

As shown in Figure 1, this consists of (1) multitask learning and (2)

cascading task fine-tuning. In multitask learning, the models are

trained jointly, with each model considered as a parallel task, using

a shared representation. In cascading task fine-tuning, each model

then undergoes additional training separately. The aim of multitask

learning is to learn generalizable and shared representations for all

the image scenarios, and the aim of cascading task fine-tuning is to

perform additional training suitable for each separate image sce-

nario.

We created 3 non-M3 deep learning models, 1 for each image

scenario, in order to compare performance between these and the

M3 models. Importantly, the structure of the non-M3 CFP model

and the non-M3 FAF model represents what is used in existing stud-

ies of other medical computer vision tasks to achieve state-of-the-

art performance.21,22 Hence, we created non-M3 models expected

to have a high level of performance, in order to set a high standard

for the M3 models. For the CFP-only and FAF-only image scenar-

ios, the non-M3 model comprised a CNN backbone, followed by

the fully-connected and output layers. To ensure a fair comparison,

we used InceptionV3 as the CNN backbone for both the non-M3

and the M3 models.22 InceptionV3 is a state-of-the-art CNN archi-

tecture that is used commonly in medical computer vision applica-

tions. For the same reasons, the fully-connected and output layers

were exactly the same as those used in the M3 models. For the CFP-

FAF image scenario, the non-M3 model used a typical concatena-

tion to combine the CFP and FAF image features from the Incep-

tionV3 CNN backbones. Unlike the M3 models, the 3 non-M3

models were trained separately and did not use attention mecha-

nisms.

For each of the 3 image scenarios, we trained an M3 model 10

times using the same training, validation, and test split shown in

Table 1, to create 10 individual M3 models (ie, 30 models in total).

Similarly, we trained each non-M3 model 10 times (ie, another 30

models), using the same training, validation, and test split. This was

to allow a fair comparison between the 2 model types, including

meaningful statistical analysis (as described subsequently). Both the

M3 and the non-M3 models shared the same hyperparameters and

training procedures to ensure a fair comparison (except that the M3

models had an additional cascading task fine-tuning step, as shown

in Figure 1). The InceptionV3 CNN backbones were pretrained us-

ing ImageNet, an image database of over 14 million natural images

with corresponding labels, using methods described previously.14

During the training process, each input image was scaled to 512 �
512 pixels. The model parameters were updated using the Adam op-

timizer (learning rate of 0.001) for every minibatch of 16 images.

We applied an early stop procedure to avoid overfitting: the training

was stopped if the loss on the validation set no longer decreased for

5 epochs. The M3 models completed training within 30 epochs,

whereas the non-M3 model completed training within 10 epochs. In

addition, image augmentation procedures were used, as follows, in

order to increase the dataset size and to strengthen model generaliz-

ability: (1) rotation (0�-180�), (2) horizontal flip, and (3) vertical

flip. For the cascading task fine-tuning step of the M3 models, the

same hyperparameters were used, except for a learning rate of

0.0001. The models were implemented using Keras (https://github.

com/keras-team/keras)40 and TensorFlow.41 All experiments were

conducted on a server with 32 Intel Xeon CPUs, using 3 NVIDIA

GeForce GTX 1080 Ti 11Gb GPUs for training and testing, with

512 GB available in RAM memory.

Evaluation of the deep learning models in comparison

with each other
For the RPD feature, each model was evaluated against the gold

standard reading center grades on the full test set of images. For

each model, the following metrics were calculated: F1 score, area

under the receiver-operating characteristic curve (AUROC), sensitiv-

ity (also known as recall), specificity, Cohen’s kappa, accuracy, and

precision. The F1 score (which incorporates sensitivity and precision

into a single metric) was the primary performance metric. The

AUROC was the secondary performance metric. The performance

of the deep learning models was evaluated separately for the 3 imag-

ing scenarios; for each scenario, the performance of the M3 models

was compared with those of the non-M3 models. The Wilcoxon

rank sum test was used to compare the F1 scores of the 10 M3 and

10 non-M3 models (separately for each imaging modality). In addi-

tion, the differential performance of the models was analyzed by ex-

amining the distribution of cases correctly classified by both models,

neither model, the non-M3 model only, or the M3 model only. For

these analyses, bootstrapping was performed with 50 iterations,

with 1 of the 10 models selected randomly for each iteration. Similar

methods were followed for the other 2 AMD features (geographic

atrophy and pigmentary abnormalities).

Evaluation of the deep learning models in comparison

with human ophthalmologists
For the RPD feature, for each of the 3 image scenarios, the perfor-

mance of the deep learning models was compared with the perfor-

mance of 13 ophthalmologists who manually graded the same

images (when viewed on a computer screen at full image resolution).

For this comparison, the test set of images was a random subset of

the full test set (at the participant level) and comprised 100 CFP

images, and the 100 corresponding FAF images, from 100 different

participants (comprising 68 positive cases and 32 negative cases).

The ophthalmologists performed the grading independently of each

other, and separately for the 2 image scenarios (ie, CFP alone then

FAF alone). The ophthalmologists comprised 3 different levels of se-

niority and specialization in retinal disease: “attending” level (high-

est seniority) specializing in retinal disease, attending level not

specializing in retinal disease, and “fellow” level (lowest seniority).

Prior to grading, all the ophthalmologists were provided with the

same RPD imaging definitions as those used by the reading center

graders (ie, as described previously). The performance metrics were

calculated, the Wilcoxon rank sum test applied, and ROC curves

generated, as previously mentioned.

Attention maps
For the RPD feature, attention maps were generated to investigate

the image locations that contributed most to decision making by the

deep learning models. This was done by back-projecting the last

convolutional layer of the neural network. The keras-vis package

(https://github.com/raghakot/keras-vis) was used to generate the at-

tention maps.42

External validation of deep learning models using a

secondary dataset not involved in model training
A secondary and separate dataset was used to perform external vali-

dation of the trained deep learning models in the detection of RPD.

The secondary dataset was the dataset of images, labels, and accom-

panying clinical information from a previously published analysis of

RPD in the Rotterdam Study. This dataset has been described in de-
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tail previously.43 In this prior study, eyes with and without RPD

were selected from the Rotterdam Study, a prospective cohort study

investigating risk factors for chronic diseases in the elderly. The

study adhered to the tenets in the Declaration of Helsinki and insti-

tutional review board approval was obtained.

The dataset comprised 278 eyes of 230 patients 65 years of age

and older, selected from the last examination round of the Rotter-

dam Study and for whom 3 image modalities were available (CFP,

FAF, and near infrared [NIR]).43 The positive cases comprised all

those eyes in which RPD were detected from CFP (n¼72 eyes);

RPD presence was confirmed on both FAF and NIR images. The

negative cases comprised eyes with soft drusen and no RPD

(n¼108) and eyes with neither soft drusen nor RPD (ie, no AMD;

n¼98); RPD absence was required on all 3 image modalities (ie,

CFP, FAF, and NIR). The ground truth labels for RPD presence or

absence came from human expert graders locally in the Rotterdam

Study. RPD were defined as indistinct, yellowish interlacing net-

works with a width of 125-250 mm on CFP44; groups of hypoauto-

fluorescent lesions in regular patterns on FAF,45–47 and groups of

hyporeflectant lesions against a mildly hyperreflectant background

in regular patterns on NIR images.47

Each deep learning model was evaluated against the gold stan-

dard grades on the full set of images (n¼278). As for the primary

dataset, the performance of the deep learning models was evaluated

separately for the 3 imaging scenarios. The same performance met-

rics were used as previously described.

RESULTS

Automated detection of RPD by M3 deep learning
The results are shown in Figure 2 and Table 2. The F1 scores were

substantially higher for the FAF and CFP-FAF scenarios than for the

CFP scenario. In all 3 image scenarios, the F1 score of the M3 model

was significantly and substantially higher than that of the non-M3

model. This was particularly noticeable for the clinically important

CFP scenario, with an increase of over 20% in the F1 score for the

M3 model vs the non-M3 model (60.28 vs 49.60; P< .0001). In the

FAF scenario, the median F1 scores were 79.30 (interquartile range

[IQR], 78.38–79.79) and 75.18 (IQR, 74.55–76.49), respectively

(P< .001). In the CFP-FAF scenario, the median F1 scores were

79.67 (IQR, 78.90–80.09) and 76.62 (IQR, 75.62–77.33), respec-

tively (P< .001). The F1 score of the most accurate M3 model,

among all runs, was 63.45 for CFP, 79.91 for FAF, and 80.61 for

CFP-FAF. The equivalent AUROC values were 84.20, 93.55, and

93.76, respectively. Model calibration analyses were also per-

formed. Supplementary Figure S1 shows the results, using CFP

images as an example. Both the M3 and non-M3 models were mod-

erately well calibrated; the M3 models had a numerically superior

Brier score (0.13 vs 0.16).

As observed in Table 2, using the same default cutoff threshold

of 0.5, the sensitivity of the M3 models was substantially higher for

all 3 image scenarios, and particularly for the CFP scenario. In addi-

tion, the M3 had higher AUROC for all 3 image scenarios, suggest-

ing that the M3 could better distinguish positive and negative cases.

The differential performance of the models was further analyzed by

examining the distribution of cases correctly classified by both mod-

els, neither model, the M3 model only, or the non-M3 model only,

as shown in Figure 3. Analysis of the positive cases demonstrated a

relatively high frequency where only the M3 model was correct, par-

ticularly for the CFP image scenario (mean 23.7 6 9.1%), and a

very low frequency of cases in which only the non-M3 model was

correct (mean 6.1 6 4.1%). Similarly, in the FAF scenario, the

equivalent figures were 14.2 6 6.1% and 2.1 6 1.1%, respectively.

In order to assess whether the multimodal and multitask or the

multiattention mechanism contributed most to improved perfor-

mance of the M3 models, the performance of non-M3 models with

one or the other mechanism was examined. The results are shown in

Supplementary Table S1, using CFP images as an example. The F1

score had an absolute increase of 10% (multimodal and multitask)

and 6% (multiattention only), which suggests that both aspects con-

tributed to improved performance (while multiattention operation

also improves model interpretability).

Attention maps were generated and superimposed on the fundus

images. For each image, these demonstrate quantitatively the rela-

Figure 2. Box plots showing the F1 score results of the multimodal, multitask, multiattention (M3) and standard (non-M3) deep learning convolutional neural net-

works for the detection of reticular pseudodrusen from color fundus photography (CFP) alone, their corresponding fundus autofluorescence (FAF) images alone,

or the CFP-FAF image pairs, using the full test set. Each model was trained and tested 10 times (ie, 60 models in total), using the same training and testing images

each time. The horizontal line represents the median F1 score and the boxes represent the first and third quartiles. The whiskers represent quartile 1 – (1.5 � inter-

quartile range) and quartile 3 þ (1.5 � interquartile range). The dots represent the individual F1 scores for each model. ****P� .0001; ***P� .001 (Wilcoxon rank

sum test). Note that the y-axis of the CFP scenario is different.

1140 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6



T
a
b

le
2
.

P
e

rf
o

rm
a

n
ce

re
su

lt
s

o
f

th
e

M
3

a
n

d
st

a
n

d
a

rd
(n

o
n

-M
3

)
d

e
e

p
le

a
rn

in
g

co
n

v
o

lu
ti

o
n

a
l

n
e

u
ra

l
n

e
tw

o
rk

s
fo

r
th

e
d

e
te

ct
io

n
o

f
re

ti
cu

la
r

p
se

u
d

o
d

ru
se

n
fr

o
m

C
F

P
s

a
lo

n
e

,
th

e
ir

co
rr

e
sp

o
n

d
in

g

F
A

F
im

a
g

e
s

a
lo

n
e

,
o

r
th

e
C

F
P

-F
A

F
im

a
g

e
p

a
ir

s,
u

si
n

g
th

e
fu

ll
te

st
se

t

F
1

S
co

re
P
re

ci
si

o
n

S
en

si
ti

v
it

y
(R

ec
a
ll
)

S
p
ec

if
ic

it
y

A
U

R
O

C
K

a
p
p
a

A
cc

u
ra

cy

C
F
P

m
o
d
a
li
ty

S
ta

n
d
a
rd

(n
o
n
-M

3
)

4
9
.6

0
(4

0
.2

8
–
5
2
.1

5
)

6
1
.7

2
(5

7
.4

1
–
7
0
.4

1
)

4
2
.1

3
(3

0
.1

2
–
4
8
.3

3
)

9
0
.4

0
(8

6
.9

6
–
9
4
.5

1
)

7
7
.5

0
(7

5
.9

4
–
7
9
.0

4
)

3
3
.8

7
(7

5
.7

6
–
7
7
.4

8
)

7
6
.7

4
(7

5
.7

6
–
7
7
.4

8
)

M
3

6
0
.2

8
(5

8
.2

5
–
6
1
.2

3
)

6
6
.3

9
(6

5
.0

0
–
6
8
.1

1
)

5
5
.2

8
(5

0
.5

4
–
5
9
.7

5
)

8
9
.6

2
(8

8
.2

1
–
9
0
.7

5
)

8
2
.1

7
(8

1
.4

9
–
8
2
.5

4
)

4
6
.4

9
(4

5
.3

9
–
4
7
.6

1
)

7
9
.7

1
(7

9
.1

9
–
8
0
.2

1
)

F
A

F
m

o
d
a
li
ty

S
ta

n
d
a
rd

(n
o
n
-M

3
)

7
5
.1

8
(7

4
.5

5
–
7
6
.4

9
)

8
6
.3

2
(8

4
.1

4
–
8
8
.2

9
)

6
7
.1

3
(6

4
.4

4
–
7
1
.2

8
)

9
5
.9

4
(9

4
.9

1
–
9
6
.6

3
)

9
1
.3

9
(9

0
.8

8
–
9
1
.9

6
)

6
7
.3

1
(6

6
.3

0
–
6
8
.9

3
)

8
7
.7

6
(8

7
.1

7
–
8
8
.5

3
)

M
3

7
9
.3

0
(7

8
.3

8
–
7
9
.7

9
)

8
1
.9

0
(8

0
.5

1
–
8
3
.4

2
)

7
6
.7

2
(7

4
.8

4
–
7
8
.8

3
)

9
3
.6

4
(9

2
.7

2
–
9
4
.3

4
)

9
3
.0

6
(9

2
.9

9
–
9
3
.4

7
)

7
1
.7

1
(7

0
.2

5
–
7
2
.5

2
)

8
8
.8

3
(8

8
.2

2
–
8
9
.2

4
)

C
o
m

b
in

ed
m

o
d
a
li
ty

S
ta

n
d
a
rd

(n
o
n
-M

3
)

7
6
.6

2
(7

5
.6

2
–
7
7
.3

3
)

8
1
.9

3
(8

0
.5

6
–
8
7
.4

2
)

7
1
.6

6
(6

8
.8

6
–
7
4
.2

5
)

9
3
.8

5
(9

3
.4

6
–
9
6
.1

5
)

9
1
.5

3
(9

1
.1

6
–
9
1
.5

7
)

6
8
.1

6
(6

7
.5

6
–
6
9
.6

7
)

8
7
.9

7
(8

7
.6

0
–
8
8
.5

2
)

M
3

7
9
.6

7
(7

8
.9

0
–
8
0
.0

9
)

8
0
.3

8
(7

7
.7

0
–
8
1
.8

8
)

7
9
.4

2
(7

6
.9

4
–
8
0
.3

3
)

9
2
.7

0
(9

1
.0

8
–
9
3
.4

8
)

9
3
.3

0
(9

3
.1

0
–
9
3
.5

6
)

7
1
.9

0
(7

0
.9

3
–
7
2
.7

1
)

8
8
.8

0
(8

8
.5

0
–
8
9
.3

0
)

V
a
lu

es
a
re

m
ed

ia
n

(i
n
te

rq
u
a
rt

il
e

ra
n
g
e)

.
E

a
ch

m
o
d
el

w
a
s

tr
a
in

ed
a
n
d

te
st

ed
1
0

ti
m

es
(i

e,
6
0

m
o
d
el

s
in

to
ta

l)
,
u
si

n
g

th
e

sa
m

e
tr

a
in

in
g

a
n
d

te
st

in
g

im
a
g
es

ea
ch

ti
m

e.

A
U

R
O

C
:
a
re

a
u
n
d
er

th
e

re
ce

iv
er

-o
p
er

a
ti

n
g

ch
a
ra

ct
er

is
ti

c
cu

rv
e;

C
F
P
:
co

lo
r

fu
n
d
u
s

p
h
o
to

g
ra

p
h
;
F
A

F
:
fu

n
d
u
s

a
u
to

fl
u
o
re

sc
en

ce
;
M

3
:
m

u
lt

im
o
d
a
l,

m
u
lt

it
a
sk

,
m

u
lt

ia
tt

en
ti

o
n
.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6 1141



tive contributions made by each pixel to the detection decision. Fig-

ure 4 shows representative examples where the non-M3 model

missed RPD presence but the M3 model correctly detected it. In gen-

eral, for all 3 image scenarios, the non-M3 models had only 1 or

very few focal areas of high signal; often, these did not correspond

with retinal areas where RPD are typically located. By contrast, the

M3 models tended to demonstrate more widespread areas of high

signal that corresponded well with retinal areas where RPD are lo-

cated (eg, peripheral macula).

Performance of M3 deep learning models vs

ophthalmologists in detecting RPD
For the CFP-alone and FAF-alone image scenarios, the M3 and non-

M3 models were used to analyze images from a random subset of

the test set. The performance metrics for the detection of RPD were

compared to those obtained by each of 13 ophthalmologists.

The results are shown in Figure 5 and Table 3. In Figure 5, the per-

formance of the deep learning models is shown by their ROC curves,

with the performance of each ophthalmologist shown as a single

point. For the CFP scenario, the median F1 scores of the ophthalmolo-

gists were 31.14, 35.04, and 40.00, for the attending (retina), attend-

ing (nonretina), and fellow levels, respectively. This low level of

human performance was expected, as RPD are typically observed very

poorly on CFP, even at the gold standard level of reading center

experts.9–11 In comparison, the median F1 score was 64.35 for the

M3 models and 49.14 for the non-M3 models. Considering all 13

ophthalmologists together, the F1 scores of the M3 models were ap-

proximately 84% higher than those of the ophthalmologists

(P< .0001). Indeed, the performance of the M3 models was twice as

high as that of the retinal specialists at attending level (the most senior

level of ophthalmologists and those specialized in retinal disease).

For the FAF-alone image scenario, the median F1 scores of the

ophthalmologists were 81.81, 68.32, and 79.41, for the attending (ret-

ina), attending (nonretina), and fellow levels, respectively. In compari-

son, the median F1 score was 85.25 for the M3 models and 78.51 for

the non-M3 models. Considering all 13 ophthalmologists together,

the F1 scores of the M3 models were significantly higher than those of

the ophthalmologists (P< .001). By contrast, this was not true of the

non-M3 models (P¼ .95). Similarly, the performance of the M3 mod-

els was substantially superior to that of all 3 levels of ophthalmolo-

gists considered separately, including the most senior and specialized

in retinal disease. Again, this was not true of the non-M3 models.

External validation of the M3 deep learning models for

detecting RPD: The Rotterdam Study
External validation of the M3 models was performed by testing per-

formance on a secondary and separate dataset of images from the

Rotterdam Study. The results are shown in Table 4. The F1 scores

of the 3 M3 models were 78.74 (CFP alone), 65.63 (FAF alone), and

79.69 (paired CFP-FAF). The equivalent AUROC values were

Figure 3. Differential performance analysis: distribution of test set images correctly classified by both models, neither model, the multimodal, multitask, multiat-

tention (M3) model only, or the non-M3 model only, for the detection of reticular pseudodrusen from color fundus photography (CFP) alone, their corresponding

fundus autofluorescence (FAF) images alone, or the CFP-FAF image pairs, using the full test set. Each model was trained and tested 10 times (ie, 60 models in to-

tal), using the same training and testing images each time. For each modality, a bootstrapping analysis was performed under 95% confidence interval (randomly

selecting 1 M3 model and 1 non-M3 model), computing the above distributions, and repeating it for 200 iterations). The mean and SD are shown.
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96.51, 90.83, and 95.03, respectively. Hence, the performance of

the CFP M3 model demonstrated very robust external validation,

with performance on the external dataset that was actually substan-

tially higher than on the primary dataset. The F1 score of the FAF

M3 model was inferior on the external dataset, and AUROC was

modestly inferior. The F1 score of the CFP-FAF M3 model on the

external dataset was very similar to that for the primary dataset, and

the AUROC was actually superior on the external dataset.

Automated detection of geographic atrophy and

pigmentary abnormalities by M3 deep learning models
M3 deep learning models were trained to detect 2 other important

features of AMD, geographic atrophy and pigmentary abnormali-

ties. The results are shown in Supplementary Table S2. For the de-

tection of geographic atrophy, in all 3 image scenarios, the median

F1 scores of the M3 models were numerically higher than those of

the non-M3 models. The differences were statistically significant for

the CFP-only and FAF-only scenarios (P< .001 and P< .01, respec-

tively). The superiority of the M3 models was particularly evident

for the clinically important CFP-only scenario. In the CFP-only sce-

nario, the median F1 score was 83.99 for the M3 model and 80.20

for the non-M3 model. The model with the highest F1 score was the

M3 model in the CFP-FAF scenario, at 85.45.

For the detection of pigmentary abnormalities, again, in all 3 im-

age scenarios, the median F1 scores of the M3 models were numeri-

cally higher than those of the non-M3 models. The differences were

statistically significant for the FAF-only and CFP-FAF scenarios

(P< .05 and P< .0001, respectively). The model with the highest F1

score was the M3 model in the CFP-FAF scenario, at 88.79.

DISCUSSION

Clinical importance and implications
The ability to detect RPD presence accurately but accessibly is clini-

cally important for multiple reasons. RPD are now recognized as a

Figure 4. Deep learning attention maps overlaid on representative image examples (color fundus photography [CFP] alone, fundus autofluorescence [FAF]

images alone, or the CFP-FAF image pairs), for the detection of reticular pseudodrusen (RPD) by the M3 model or the non-M3 model: representative examples

where the non-M3 model missed RPD presence but the M3 model correctly detected it. For each image, the attention maps demonstrate quantitatively the rela-

tive contributions made by each pixel to the detection decision. The heatmap scale for the attention maps is also shown: signal range from -1.00 (purple) to þ1.00

(brown). RPD are observed on the FAF images as ribbon-like patterns of round and oval hypoautofluorescent lesions with intervening areas of normal and in-

creased autofluorescence. Areas of RPD clearly apparent to human experts are shown (black arrows), as well as areas of RPD possibly apparent to human experts

(dotted black arrows).
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Figure 5. Receiver-operating characteristic (ROC) curves of the M3 and standard (non-M3) deep learning convolutional neural networks for the detection of reticu-

lar pseudodrusen from (A) color fundus photographs (CFP) alone or (B) their corresponding fundus autofluorescence (FAF) images alone, using a random subset

of the test set (100 CFP and the 100 corresponding FAF images, from 100 different participants). Each model was trained and tested 10 times, using the same

training and testing images each time. The mean ROC curve is shown (dotted line), together with its standard deviation (shaded area). The performance of the 13

ophthalmologists on the same test sets is shown by 13 single points. The ophthalmologists comprised 3 different levels of seniority and specialization in retinal

disease: “attending” level (highest seniority) specializing in retinal disease, attending level not specializing in retinal disease, and “fellow” level (lowest seniority).

AUROC: area under the receiver-operating characteristic curve.

Table 3. Performance results of the M3 and standard (non-M3) deep learning convolutional neural networks, in comparison with those of 13

ophthalmologists, for the detection of reticular pseudodrusen from CFPs alone or their corresponding FAF images alone, using a random

subset of the test set (100 CFPs and the 100 corresponding FAF images, from 100 different participants)

F1 Score Precision Sensitivity (Recall) Specificity AUROC Kappa Accuracy

CFP modality

Human level

Fellow 40.00 (9.64) 44.44 (10.21) 37.50 (12.50) 76.47 (2.94) – 11.89 (12.82) 65.00 (5.00)

Attending Other 35.04 (5.34) 40.18 (11.68) 32.81 (10.16) 80.15 (10.66) – 9.01 (11.18) 63.50 (7.00)

Attending Retina 31.14 (10.43) 65.91 (39.49) 21.88 (2.34) 94.12 (11.76) – 18.68 (20.12) 71.00 (9.75)

Overall 35.00 (9.64) 44.44 (15.38) 28.12 (15.62) 77.94 (16.18) – 11.89 (14.24) 65.00 (8.00)

Model level

Standard (non-M3) 49.14 (24.58) 71.43 (17.13) 43.75 (27.34) 91.18 (10.66) 82.58 (5.09) 29.28 (20.40) 73.00 (6.25)

M3 64.35 (6.29) 70.19 (6.05) 57.81 (11.72) 88.24 (2.21) 85.66 (2.82) 48.14 (6.85) 79.00 (3.50)

FAF modality

Human level

Fellow 79.41 (4.83) 71.43 (4.21) 78.12 (6.25) 85.29 (4.41) – 67.92 (6.98) 85.00 (5.00)

Attending Other 68.32 (5.86) 73.05 (6.69) 68.75 (10.94) 86.76 (7.72) – 54.84 (9.00) 81.00 (4.25)

Attending Retina 81.81 (3.43) 91.25 (12.91) 70.31 (5.47) 96.32 (5.88) – 75.17 (4.51) 90.00 (1.75)

Overall 79.41 (12.63) 74.07 (14.78) 75.00 (12.50) 88.24 (8.82) – 67.92 (18.85) 85.00 (8.00)

Model level

Standard (non-M3) 78.51 (8.51) 92.67 (7.28) 65.62 (10.16) 97.79 (2.57) 94.18 (2.82) 71.07 (11.98) 88.50 (5.00)

M3 85.25 (5.24) 91.26 (4.52) 81.25 (2.34) 96.32 (1.47) 95.56 (2.24) 78.79 (7.59) 91.00 (3.25)

Values are median (interquartile range). Each model was trained and tested 10 times, using the same training and testing images each time. The ophthalmolo-

gists comprised 3 different levels of seniority and specialization in retinal disease: “attending” level (highest seniority) specializing in retinal disease (4 people), at-

tending level not specializing in retinal disease (4 people), and “fellow” level (lowest seniority) (5 people).

AUROC: area under the receiver-operating characteristic curve; CFP: color fundus photograph; FAF: fundus autofluorescence; M3: multimodal, multitask,

multiattention.
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key AMD lesion.6,7 Their presence is strongly associated with in-

creased risk of progression to late AMD.6 Identifying these eyes

with high likelihood of progression is essential so that clinicians can

intervene in a timely way to decrease risk of visual loss. These clini-

cal interventions include prescribing medications (eg, AREDS2 oral

supplements),48,49 smoking cessation,50 dietary interventions,51 tai-

lored home monitoring,52–54 and tailored reimaging regimens.55 Im-

portantly, RPD presence is suggested as the critical determinant of

the ability of subthreshold nanosecond laser to decrease progression

from intermediate to late AMD.56 However, current attempts to in-

corporate this key lesion into AMD classification and risk prediction

algorithms are hampered. Because RPD grading requires access to

both multimodal imaging and expert graders, ascertainment is lim-

ited to the research setting in specialist centers only. Because multi-

modal imaging is not typically performed in routine clinical

practice, the ability to detect RPD presence from CFP alone repre-

sents a valuable step forward in accessibility.

For this clinically important task of detecting RPD (and other

common AMD features), we developed and tested a new deep learn-

ing approach that benefits from multimodal, multitask, and multiat-

tention operation. This novel M3 approach means that the models

can detect RPD accurately in 3 different scenarios; the approach

works irrespective of whether CFP alone, FAF alone, or both imaging

modalities are available. Importantly, even when the approach is used

in the CFP-alone scenario, the multimodal and multitask training

mean that the performance benefits from both image types having

been present during training. To demonstrate this, we compared with

standard non-M3 models in which models were trained and tested on

exactly the same images as the M3 models. In all 3 image scenarios,

the performance of the M3 models was superior to that of the non-

M3 models. This was particularly true for the CFP scenario, the most

clinically important task for improving accessibility to RPD grading.

We compared deep learning and human performance, using a

large number of ophthalmologists at 3 different levels of seniority

and specialization and from 2 different institutions. Human perfor-

mance at detecting RPD from CFP alone was very poor, as expected.

Interestingly, human performance on CFP was also relatively inde-

pendent of seniority or specialization (Table 3). Low performance

on CFP by the retinal specialists at attending level was driven partic-

ularly by 1 specialist with very low performance. For detection from

CFP or from FAF, the performance of the M3 models was substan-

tially superior to those of the ophthalmologists, including the most

senior and specialized group of ophthalmologists.

Generalizability: External validation and applicability to

other important features of AMD
The M3 models were highly generalizable during external valida-

tion. This was shown robustly for all 3 image scenarios by testing

their performance on an independent, well-curated RPD dataset

from a different continent. The performance metrics were very high

for all 3 image scenarios. In the case of the CFP scenario, the most

important task clinically, performance (AUROC, 96.51) was actu-

ally higher than during internal testing. That is, despite the fact that

the M3 models was trained using AREDS2 images (a dataset with a

different population distribution than that of the Rotterdam Study)

and had not seen the Rotterdam Study images previously, they still

had superior performance to machine learning algorithms previously

reported. This high degree of generalizability was likely obtained

through the wide breadth of training data used, as the images were

obtained from 66 different retinal specialty clinics across the United

States, comprising a large variety of patients, fundus cameras, and

photographers.

In addition, the M3 approach was applicable to important AMD

disease features other than RPD, namely geographic atrophy and

pigmentary abnormities. Using single-modality, single-task training,

we previously demonstrated that deep learning can detect these 2

features from CFP with similar or slightly superior accuracy to at-

tending level ophthalmologists specializing in retinal disease.14,15

However, the M3 approach was modestly superior to the non-M3

models for both geographic atrophy and pigmentary abnormalities

in all 3 image scenarios. Again, this improves the accessibility of

grading in common clinical scenarios where only CFP is available.

Regarding the 2 multimodal deep learning studies described pre-

voiusly,29,30 both comprised training and testing on one disease or

disease stage only, with relatively small datasets. More broadly, in

the medical image analysis domain, the generalization capability of

deep learning models is an open issue: few studies have evaluated

the performance of deep learning models in different tasks or with

external validation datasets.57,58

Potential advantages of multitask and multiattention

training
Multitask training has important advantages over traditional single-

task learning, in which each model is trained separately.37 Single-

task training has the disadvantage that the performance of each

model is limited by the features present on that particular image mo-

dality. Models trained in this way may also be more susceptible to

overfitting.59 By contrast, multitask training exploits the similarities

(shared image features) and differences (task-specific image features)

between the features present on the different image modalities. In

this way, it usually has improved learning efficiency and accuracy.

Essentially, what is learned for each image modality task can assist

during training for the other image modality tasks. In this way, it

benefits each model by sharing features that are generalizable be-

tween the image modalities. We considered that this may be particu-

larly relevant for retinal lesions like RPD, in which different imaging

Table 4. External validation of the M3 deep learning convolutional neural network for the detection of reticular pseudodrusen: Performance

results from color fundus photographs (CFP) alone, their corresponding fundus autofluorescence (FAF) images alone, or the CFP-FAF image

pairs, using a test set from the Rotterdam Study

F1 Score Precision Sensitivity (Recall) Specificity AUROC Kappa Accuracy

CFP 78.74 94.34 67.57 98.53 96.51 72.67 90.29

FAF 65.63 77.78 56.76 94.12 90.83 55.69 84.17

CFP and FAF 79.69 94.44 68.92 98.53 95.03 73.80 90.65

For external validation, we used the model that achieved the highest F1 score on the internal test set.

AUROC: area under the receiver-operating characteristic curve; CFP: color fundus photograph; FAF: fundus autofluorescence; M3: multimodal, multitask,

multiattention.
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modalities (CFP and FAF) highlight very different features relating

to the same underlying anatomy.

In addition, many existing multimodality deep learning models

simply concatenate features from each image modality. However,

CFP and FAF are very different modalities and they have substan-

tially different features. To address this problem, we employed self-

attention19 and cross-modality attention20 modules, combined with

the multitask training (Figure 1). For the CFP and FAF models, the

self-attention module was used to find the most important features

extracted from the CNN backbones. Then, the cross-modality atten-

tion module was used to combine the features learned from the self-

attention modules. Importantly, the 2 self-attention modules (from

each of the 2 image modalities) are shared between all 3 models.

Other strengths, limitations, and further steps required

for clinical application
In addition to those described previously, other strengths of this

study include the large size and well-characterized nature of the co-

hort. These data represent one of the largest datasets available in

which individuals with AMD are followed longitudinally with both

CFP and FAF at all study visits. Regarding the ground truth labels,

the study also benefits from centralized grading of all images for all

relevant AMD features by at least 2 expert graders at a single read-

ing center with standardized grading definitions.11 The availability

of corresponding CFP and FAF images for all eyes also meant that

label transfer between image modalities could be used for training

and testing: the ground truth for RPD presence came from the FAF

images (but the labels were transferred to the corresponding CFP

images); the opposite was true for geographic atrophy and pigmen-

tary abnormalities. Additional strengths include comparison with

human performance using a large number of ophthalmologists at 3

different levels of seniority and specialization in retinal disease.

The limitations include the use of a single imaging modality

(FAF) for the ground truth of RPD presence. For RPD detection,

NIR imaging may have slightly higher sensitivity than FAF imaging

in some studies, though at the expense of lower specificity60; NIR

imaging may also have low sensitivity in detecting ribbon-type

RPD.61 Similarly, OCT imaging is reported to have slightly higher

sensitivity and specificity than FAF imaging for RPD detection.

However, this may depend on the OCT device, and standard macu-

lar OCT scans may miss some cases in which the RPD are more pe-

ripheral.6 Ideally, multimodal imaging may be used for detecting

RPD. However, adding a second imaging modality (eg, FAF with

NIR, or FAF with OCT) can increase either the sensitivity or the spe-

cificity but not both.6 One potential limitation is the use of multiple

images from individual eyes (from sequential annual study visits),

from approximately half of the eyes. Although this was done in or-

der to increase the data available for training, it can increase the

chance of overfitting to the internal dataset. However, this concern

is much less relevant, given that the models appeared highly robust

during external validation testing.

Further steps need to be taken for the findings to be applied in

the clinic. As well as the successful external validation described

here, we are planning additional external validation testing using

data from other datasets. Prospective validation would also be use-

ful, comparing the performance of deep learning and ophthalmolo-

gists in the detection of RPD in a prospective clinical trial setting.

This approach was the basis for the first Food and Drug Administra-

tion approval of an autonomous artificial intelligence system in clin-

ical care, for the detection of diabetic retinopathy.62

CONCLUSION

In this work, we presented M3, a deep learning framework for the

detection and detailed characterization of AMD. In all 3 image sce-

narios (CFP only, FAF only, and CFP-FAF), M3 performance was

significantly superior to that of existing deep learning methods and

of human experts. This was particularly true in the clinically impor-

tant CFP scenario, in which its performance was twice as high as

that of the retinal specialists. The M3 approach was also highly gen-

eralizable: during external validation on an independent dataset

from a different continent, RPD detection from CFP alone was

highly accurate. Generalizability was also shown by adaptation to

detecting 2 other important AMD features.

Overall, we believe that this M3 approach demonstrates the po-

tential for automated but accurate ascertainment of the full spec-

trum of AMD features from CFP alone. This is extremely valuable

for improved AMD classification and risk prediction. Importantly,

operation from CFP alone makes it accessible far beyond the small

number of specialist centers in the developed world with access to

multimodal imaging and expert graders. Planned future work con-

sists of additional external validation and prospective assessment in

a clinical trial setting. This would take a step toward clinically appli-

cable artificial intelligence systems.
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