Journal of the American Medical Informatics Association, 30(1), 2023, 178–194 https://doi.org/10.1093/jamia/ocac143 Advance Access Publication Date: 19 September 2022 Perspective

OXFORD

Perspective

Computer clinical decision support that automates personalized clinical care: a challenging but needed healthcare delivery strategy

Alan H. Morris (1,2, Christopher Horvat³, Brian Stagg⁴, David W. Grainger⁵, Michael Lanspa², James Orme Jr.^{1,2}, Terry P. Clemmer⁶, Lindell K. Weaver², Frank O. Thomas¹, Colin K. Grissom², Ellie Hirshberg², Thomas D. East⁷, Carrie Jane Wallace², Michael P. Young⁸, Dean F. Sittig ⁹, Mary Suchyta², James E. Pearl^{1,2}, Antinio Pesenti¹⁰, Michela Bombino¹¹, Eduardo Beck¹², Katherine A. Sward (1)¹³, Charlene Weir (1)¹⁴, Shobha Phansalkar¹⁵, Gordon R. Bernard¹⁶, B. Taylor Thompson¹⁷, Roy Brower¹⁸, Jonathon Truwit¹⁹, Jay Steingrub²⁰, R. Duncan Hiten²¹, Douglas F. Willson²², Jerry J. Zimmerman²³, Vinay Nadkarni²⁴, Adrienne G. Randolph²⁵, Martha A. Q. Curley²⁶, Christopher J. L. Newth²⁷, Jacques Lacroix²⁸, Michael S. D. Agus²⁹, Kang Hoe Lee³⁰, Bennett P. deBoisblanc³¹, Frederick Alan Moore³², R. Scott Evans³³, Dean K. Sorenson³⁴, Anthony Wong³⁵, Michael V. Boland³⁶, Willard H. Dere³⁷, Alan Crandall^{4,38}, Julio Facelli³⁹, Stanley M. Huff (1)⁴⁰, Peter J. Haug³³, Ulrike Pielmeier⁴¹, Stephen E. Rees⁴¹, Dan S. Karbing⁴¹, Steen Andreassen⁴¹, Eddy Fan⁴², Roberta M. Goldring⁴³, Kenneth I. Berger⁴³, Beno W. Oppenheimer⁴³, E. Wesley Ely^{44,45}, Brian W. Pickering⁴⁶, David A. Schoenfeld⁴⁷, Irena Tocino⁴⁸, Russell S. Gonnering ⁴⁹, Peter J. Pronovost⁵⁰, Lucy A. Savitz⁵¹, Didier Dreyfuss⁵², Arthur S. Slutsky⁵³, James D. Crapo⁵⁴, Michael R. Pinsky⁵⁵, Brent James⁵⁶, and Donald M. Berwick⁵⁷

¹Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA, ²Department of Internal Medicine, Intermountain Healthcare, Salt Lake City, Utah, USA, ³Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, ⁴Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA, ⁵Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA, ⁶Department of Internal Medicine (Critical Care), Intermountain Healthcare, Salt Lake City, Utah, USA, ⁷SYNCRONYS - Chief Executive Officer, Albuquerque, New Mexico, USA, ⁸Department of Critical Care, Renown Regional Medical Center, Reno, Nevada, USA, ⁹School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, USA, ¹⁰Faculty of Medicine and Surgery-Anesthesiology, University of Milan, Milano, Lombardia, Italy, ¹¹Department of Emergency and Intensive Care, San Gerardo Hospital, Monza (MB), Italy, ¹²Faculty of Medicine and Surgery - Anesthesiology, University of Milan, Ospedale di Desio, Desio, Lombardia, Italy, ¹³Department of Biomedical Informatics, College of Nursing, University of Utah, Salt Lake City, Utah, USA, ¹⁴Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA, ¹⁵Wolters Kluwer Health—Clinical Solutions—Medical Informatics, Wolters Kluwer Health, Newton, Massachusetts, USA, ¹⁶Vanderbilt University School of Medicine, Nashville, Tennessee, USA, ¹⁷Pulmonary and Critical Care Division, Department of Internal Medicine, Harvard Medical School, Boston, Massachusetts, USA, ¹⁸Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA, ¹⁹Department of Internal Medicine, Pulmonary and Critical Care, Medical College of Wisconsin, Milwaukee, Wisconsin, USA, ²⁰Department of Internal Medicine, Pulmonary and Critical Care, University of Massachusetts Medical School, Baystate Campus, Springfield, Massachusetts, USA, ²¹Department of Internal

© The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com Medicine, Pulmonary and Critical Care, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA, ²²Pediatric Critical Care, Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA, ²³Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA, ²⁴Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA, ²⁵Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA, ²⁶University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA, ²⁷Childrens Hospital Los Angeles, Department of Anesthesiology and Critical Care, University of Southern California Keck School of Medicine, Los Angeles, California, USA, ²⁸Division of Pediatric Critical Care Medicine, Department of Pediatrics, Université de Montréal Faculté de Médecine, Montreal, Quebec, Canada, ²⁹Division of Medical Pediatric Critical Care, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA, ³⁰Department of Intensive Care Medicine, Ng Teng Fong Hospital and National University Centre of Transplantation, National University Singapore Yong Loo Lin School of Medicine, Singapore, ³¹Department of Internal Medicine, Pulmonary and Critical Care, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, ³²Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA, ³³Department of Medical Informatics, Intermountain Healthcare, and Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA, ³⁴Department of Medical Informatics, Intermountain Healthcare, Salt Lake City, Utah, USA, ³⁵Department of Data Science Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA, ³⁶Department of Ophthalmology, Massachusetts Ear and Eye Infirmary, Harvard Medical School, Boston, Massachusetts, USA, ³⁷Endocrinology and Metabolism Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA, ³⁸Posthumous, ³⁹Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA, ⁴⁰Department of Medical Informatics, Intermountain Healthcare, Department of Biomedical Informatics, University of Utah, and Graphite Health, Salt Lake City, Utah, USA, ⁴¹Aalborg University Faculty of Engineering and Science - Department of Health Science and Technology, Respiratory and Critical Care Group, Aalborg, Nordjylland, Denmark, ⁴²Internal Medicine, Pulmonary and Critical Care Division, Institute of Health Policy, Management and Evaluation, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada, ⁴³Department of Internal Medicine, Pulmonary and Critical Care, New York University School of Medicine, New York, New York, USA, ⁴⁴Internal Medicine, Pulmonary and Critical Care, Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA, ⁴⁵Tennessee Valley Veteran's Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, Tennessee, USA, ⁴⁶Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA, ⁴⁷Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA, ⁴⁸Department of Radiology, Yale University School of Medicine, New Haven, Connecticut, USA, ⁴⁹Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA, ⁵⁰Department of Anesthesiology and Critical Care Medicine, University Hospitals, Highland Hills, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA, ⁵¹Northwest Center for Health Research, Kaiser Permanente, Oakland, California, USA, ⁵²Assistance Publique— Hôpitaux de Paris, Université de Paris, Sorbonne Université - INSERM unit UMR S_1155 (Common and Rare Kidney Diseases), Paris, France, ⁵³Interdepartmental Division of Critical Care Medicine, Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada, ⁵⁴Department of Internal Medicine, National Jewish Health, Denver, Colorado, USA, ⁵⁵Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA, ⁵⁶Department of Internal Medicine, Clinical Excellence Research Center (CERC), Stanford University School of Medicine, Stanford, California, USA, and ⁵⁷Institute for Healthcare Improvement, Cambridge, Massachusetts, USA

Corresponding Author: Alan H. Morris, MD, Department of Internal Medicine, University of Utah Medical Center, Salt Lake City, UT, USA; alan.morris@hsc.utah.edu; alan.morris@imail.org

Received 22 April 2022; Revised 27 July 2022; Editorial Decision 7 August 2022; Accepted 22 August 2022

ABSTRACT

How to deliver best care in various clinical settings remains a vexing problem. All pertinent healthcare-related questions have not, cannot, and will not be addressable with costly time- and resource-consuming controlled clinical trials. At present, evidence-based guidelines can address only a small fraction of the types of care that clinicians deliver. Furthermore, underserved areas rarely can access state-of-the-art evidence-based guidelines in real-time, and often lack the wherewithal to implement advanced guidelines. Care providers in such settings frequently do not have sufficient training to undertake advanced guideline implementation. Nevertheless, in advanced modern healthcare delivery environments, use of *eActions* (validated clinical decision support systems) could help overcome the cognitive limitations of overburdened clinicians. Widespread use of *eActions* will require surmounting current healthcare technical and cultural barriers and installing clinical evidence/data curation systems. The authors expect that increased numbers of evidence-based guidelines will result from future comparative effectiveness clinical research carried out during routine healthcare delivery within learning healthcare systems.

Key words: clinical, clinicians, computers, decision-support, automated clinical care, closed-loop

INTRODUCTION

Evidence-based guidelines currently address a small fraction of the patient care decision-making quandaries that clinicians encounter. Overburdened, unfettered clinicians in the absence of guidelines deliver opinion-based care reflecting their variable levels of understanding, their biases, their backgrounds, and their personal foibles. Clinician treatment decisions/actions vary widely.^{1–5} Even when relevant best-of-care recommendations for patients do exist, unwarranted variation in clinicians' decisions and actions impair care delivery,^{1,6–8} when they fail to use applicable guidelines.^{9,10} Patients only receive recommended care about 50% of the time.^{5,11–13} This can lead to costly inefficiencies in care delivery,^{14,15} delayed care, and patient morbidity and mortality These, in part, reflect the dangers of lack of standardization that characterize poor process control.^{16–18} Eliminating unwarranted deviations from evidence-based care is thus a fundamental clinical challenge.

We recently discussed barriers (both technical and cultural) that impede consistent evidence-based care delivery and reviewed obstacles to the implementation of learning healthcare systems.¹⁹ We concluded that replicable expert clinical decision-support systems (CDSS) called "*eActions*," based on either physiological models or production rules, were a desirable solution.¹⁹ While the previous publication described CDSS that can produce replicable clinician actions (*eActions*), it did not forcefully advocate for automating personalized clinical care (precision medicine²⁰) with *eActions*.¹⁹ This manuscript presents the case for the adoption of *eActions* to automate care where possible.

Well-designed CDSS can improve both the safety and efficiency of care and patient outcomes, but they are not widely used, even though electronic health record (EHR)-based automation of some tasks^{21–30} can unburden clinicians by diminishing their workloads.³¹ Challenges to their use include economic, cultural, and technical impediments.^{32–35} Two critical objectives for improving care involve (1) increasing adherence to relevant guidelines and best evidence when they are available and (2) developing additional guidelines for clinical situations not yet adequately addressed.

RATIONALE FOR ADOPTION OF eActions

In situations where established guidelines and a useful evidence base do not exist, carefully reasoned, mindful clinician variation can contribute new insights. Examples of this occurred during the coronavirus disease 2019 (COVID-19) pandemic.³⁶ However, individual clinician decision-making is commonly associated with mindless^{32,36} or unwarranted variation (deviations from best practice, not based on evidence or patient preference),^{37,38} and associated with waste, morbidity, and mortality.^{2,39-45} Even specialists claiming to follow the best evidence do not consistently do what they say.⁴⁶⁻⁵¹ Unwarranted variation introduces noise, both random and systematic, into EHR system data. Regardless of its source, variations in clinical practice contribute to EHR data that can appear erratic ("noisy") when viewed in aggregate. Such noise can impair the ability of modern information systems to generate high-quality data capable of supporting clinical investigations and improvements in clinical practice, and impairs our ability to achieve a learning healthcare system.

EHR noise is produced by corrupt, inaccurate, outdated, or biased data that commonly exhibit unexplainable and unwarranted variation^{3–5,19,37,38,52} reducing the signal-to-noise ratio for important clinical data and events.^{53–55} Noisy EHR data result not only from clinician performance (unwarranted,^{2–5,32,36–39,41–45,52,56–60} or

mindless,^{32,61} in contrast to mindful^{19,32,36,62,63} variation) but also from clinical information systems designed without due consideration for the downstream dependencies of CDSS. Unwarranted variation in clinician decisions and actions can be produced by conflicting clinician opinions or biases, inaccurate laboratory data, vague interpretations of images, and other sources. Both "big data" and "deep learning" have been proposed as solutions to this challenge. 31,64-69 However, data quality is often more important than data quantity.^{70,71} The validity of machine learning, including deep learning, is limited by the validity of the learning data it uses.^{71–73} While machine learning has been successful in multiple applications,^{74,75} it has not yet realized its clinical potential.^{31,69,71-73,76-81} Some of its most successful applications are in image interpretation (see Appendix in Ref.76) but even imaging results can be misleading due to data noise.⁷¹ In certain contexts, machine learning models currently return only approximate results that are often reasonable. Importantly, approximate results, whether from clinical guideline applications or image interpretations, are not adequately detailed to provide personalized clinical care (or precision medicine²⁰) CDSS instructions.^{74,77,79} Accordingly, any CDSS produced by machine learning can reflect random and systematic EHR noise, 3,4,19,37,38,52 in part due to poor clinical process control¹⁶⁻¹⁸ induced by unwarranted clinician variation. This noise may be subtle and difficult to identify.⁷¹ Successful applications of machine learning CDSS have used population predictive analytics for condition surveillance coupled with careful incorporation into clinical workflows. These efforts rely heavily on frequently overburdened clinicians to determine appropriate courses of action after being alerted by the CDSS model output.74,77,82 This differs from replicable, closed-loop systems that provide specific personalized care for individual patients and simultaneously unburden clinicians.^{21,23–25,83–98} Promising recent reports highlighted the potential value of techniques such as reinforcement learning to create closed-loop CDSS. These approaches still await rigorous prospective clinical trial evaluation.^{99,100}

We characterize eActions as complex, highly evolved, and validated expert systems that manage a specific clinical task or condition. eActions generate multiple, replicable, decisions based on relevant data inputs. We chose the name eActions to emphasize replicable clinician actions. We contrast patient-specific replicable actions with decision aids (common clinical guidelines, protocols, and machine learning) that merely deliver replicable generic messages to clinicians, such as "give influenza vaccine to eligible patients each September." Clinicians considering such general, "high-level" recommendations must often collect and consider additional patient-specific information and introduce additional logic before deciding upon a specific action for each patient. Replicability occurs when the decision-making process leads different clinicians to take the same actions for different patients whenever the patients' contexts and clinical information match.¹⁰¹⁻¹¹³ To test if a clinical care or research method is replicable, one can ask, "Is the advice from the decision-support tool theoretically capable of being executed automatically?" If not, it requires supplemental clinician judgment (additional input data or CDSS logic) at the point of decision-making and will not lead to replicable clinician actions because of unwarranted variation among healthcare decisionmakers.^{2-5,32,36-39,41-45,52,56-60}

Specifically, *eActions* return detailed, personalized clinical care (precision medicine²⁰) recommendations for individual patients. By contrast, other types of CDSS tools provide often reasonable but only approximate recommendations that do not lead to replicable personalized care decisions and actions. We summarize the contrasting attributes of different clinical decision support systems (CDSS)

181

in Table 1. While not a comprehensive literature review, Table 1 should help clarify important distinctions between *eActions* that return detailed personalized clinical care (precision medicine²⁰) decisions and actions for individual patients, from other CDSS tools that cannot do so. Replicability of clinician actions (interventions) enhances the scientific validity of both experimental and observational studies.

Two modes of eActions implementation exist. In the first, openloop *eActions* present each decision to clinicians for approval.^{9,29,107,109-111,113,116,121-125} In the second, closed-loop *eAc*tions directly and automatically control therapy-they remove the decision from the clinician.^{21,23-28,83-86,88-92,95-98,126-129} Results from initial eActions developed by the group at LDS Hospital (Salt Lake City, USA, using an open-loop CDSS^{101,103–105,114}) illustrate the potential for improved clinical research and care. These eActions generated personalized mechanical ventilation care instructions, displayed on bedside computer terminals (Figure 1). These open-loop instructions were accepted by bedside clinicians 95% of the time.^{101,103–105,107,111,114,123–125} Furthermore, closed-loop control (automated care) can also be reasonable and practical in specific settings.^{21,23–25,83–98} A mechanical ventilation closed-loop controller evaluated in a randomized controlled trial reduced clinician burden and was safe.¹³⁰ Importantly, a compelling, quasi-experimental comparative effectiveness clinical trial of closed-loop mechanical ventilation, generated through routine clinical care of COVID-19 pandemic acute respiratory distress syndrome (ARDS) patients, produced results favoring closed-loop control, while also unburdening clinicians.97

We present herein our argument for the targeted use of automated, closed-loop *eActions* in personalized care, as a fundamental objective of both clinical care and clinical research. Examples include closed-loop control of ventilator weaning and specific treatments for Type 1 diabetes mellitus.^{94,96,98,117} Support for our argument includes the following:

- 1. eActions satisfy CDSS evaluation requirements.
- 2. eActions fit within clinical informatics models.
- eActions use can produce study results that are more scientifically rigorous and valid.
- eActions use will identify those clinical decisions that can be automated, differentiating them from those that cannot, only if initially designed to function as closed-loop (automated) CDSS.

eActions satisfy CDSS evaluation requirements¹³¹

First, we should distinguish therapeutic from diagnostic CDSS. Therapeutic eActions return personalized best evidence-based care for patients, once a diagnosis has been made, or a clinical task specified.^{9,19,101,105–113,115,132,133} The diagnosis or specified clinical task establishes a clinical context that enables the initiation of a therapeutic process.¹²⁸ As articulated by others, diagnostic CDSS is inherently more challenging.^{34,134-137} Previous workers have had difficulty capturing a physician's complex patient understanding with a CDSS tool¹³⁷ and artificial intelligence has not yet realized its promise to properly assist clinician decision-makers.⁸⁰ In contrast, for therapeutic eActions, it is possible to capture the way clinicians manage clinical tasks or problems. This is achieved through knowledge engineering with multiple clinicians,¹⁰⁶ coupled with implementation, iterative refinement, and validation in multiple clinical settings in which the specific clinical task or problem-focused eActions are intended to be used.^{106,131,135} These are well-supervised clinical settings that can function as human outcomes research laboratories¹⁰⁶ (Figure 1). This approach assures validation and safety in all sites in which *eActions* are implemented. *eActions* thus meet effective CDSS implementation requirements.¹³⁸

System-wide Information Technology (IT) "top-down" CDSS solutions are unlikely to produce positive outcomes³⁴ and can even lead to harm.¹³⁹ By contrast, a narrow focus on the clinical problem at hand is a prerequisite for success in an advice-giving CDSS. *eAc*-*tions* embrace an interprofessional clinician and patient problem-centric strategy¹⁴⁰ in concert with Abraham Maslow's problem centering research imperative (see Chapter 16 in Ref.141) echoed by others (see pp. 543–4 in Ref.142) CDSS-based *eActions* are not information technology-focused, but rather provide tools to address specific clinical problems. *eActions* only require the decision-making information that expert clinicians need and currently use for the specific clinical problem or task.^{19,102,106,108}

eActions fit within clinical informatics models

Friedman's "fundamental theorem" of biomedical informatics requires a synergy between clinician-users and computer applications, with clinician users being the most important source of information.¹³⁶ To be successful, the outcome of this synergy must exceed the outcome achieved by the unaided clinician (Fig-Figure 2).^{34,136,137,149} *eActions* comply with this "fundamental theorem" by capturing the detailed and comprehensive information clinicians use to make decisions.^{102,106,108}

Our previous work demonstrated how *eActions* instructions at LDS Hospital (Salt Lake City, UT, USA)^{101,103–105,112,114,150} (Figure 1) and elsewhere^{9,107} led to more uniform patient management and lower tidal volumes, within the safety limits of accepted mechanical ventilation (Figure 3). *eActions* reduced unwarranted variation in care, thereby reducing both random and systematic (bias) EHR noise.^{151–159} *eActions* must therefore increase the signal-to-noise ratio^{53–55} of EHR data⁵⁵ and outcomes (Figure 3), improving the "Knowledge to Performance" limb of the proposed learning healthcare cycle (Figure 4),^{68,160} reflecting a common conceptual model (see pp. 28, 667, and 786 in Ref.161). The *eActions* for mechanical ventilation of ARDS patients^{101,103–105,112,114,150} provided a foundation for the mechanical ventilation protocol developed and used by the ARDS Network in a groundbreaking randomized clinical trial.¹⁶²

eActions use can produce study results that are more scientifically rigorous and valid

The quality of scientific data depends on methodological replicability for validating research results—a long recognized¹⁶³ core requirement of rigorous science^{164–167} and a clinical research ethical imperative.¹⁶⁸ Methodological replicability is achieved by *eActions* that utilize detailed and comprehensive input data.^{19,169} Replicability is not achieved by more general evidence-based guidelines currently provided to clinician decision-makers.^{170–174} Consequently, *eActions* increase the scientific rigor of clinical studies.^{3,4,37,38,52}

Joining 4 strategies reflected in Table 2 would enhance the population of a robust EHR with valid and largely noise-free data, enabling the development of a rigorous learning healthcare system. For example, *eActions* can enable distributed, replicable, evidence-based clinical care and research methods.^{101,105–113,115} This would lead to more robust explanatory trial results, more scientifically robust multi-institutional trials, and could replace some pragmatic comparative effectiveness clinical trials.^{108,190} After completion of a trial, *eActions* have been immediately introduced into usual care¹¹⁰ and **Table 1.** Attributes of usual guidelines, protocols, and machine learning that contrast those of *eActions*: CDSS examples that demonstrate and clarify distinctions between *eActions* that return detailed personalized clinical care decisions and actions from the other CDSS tools that provide only approximate and often reasonable recommendations that cannot lead to replicable personalized care decision and actions

Decision-support tool	Replicable?	Description	Ν	Iodel	Needs	e	Actio	ons
			Rule	Physiol	added clinician logic	Yes	?	Auto
Mechanical Ventilation for ARDS patients ^{9,101} , 103-105,107,114	Yes	Production rule-based protocol generating decisions for starting, stopping, and adjusting FiO ₂ , PEEP, mode of ventilation, arterial blood gas testing sampling, and waiting times. Multisite validation with iterative refine- ments following capture of clinician reasons for declin- ing any returned personalized medicine instruction. The <i>eActions</i> if-then logic fills approximately 50 pages of paper flowsheets. Used clinically as an open-loop CDSS for >30 years at 3 hospitals in Utah (~2200 patients) and one in Texas. It was successfully used in 2 patients for ~850 h as a closed-loop controller.	х			Х		х
Mechanical Ventilation ¹¹⁵ .	Yes	This was a short-term (6 h) open-loop CDSS management study.		Х		Х		
Iron Lung Mechanical Ventila- tion ⁸³	Yes	These investigators and clinicians used closed-loop con- trol to manage iron lung mechanical ventilation for 2 poliomyelitis patients.		Х		Х		Х
Weaning Mechanical Ventila- tion ⁹¹	Yes	These investigators and clinicians managed mechanical ventilation weaning in children using the SmartCare/PS option of the Evita XL mechanical ventilator (Dräger- werk AG & Co. KGaA).				Х		х
Mechanical Ventilation ²¹	Yes	These investigators managed inspired oxygen to maintain arterial oxygenation in low-birth-weight infants.	Х	Х		Х		Х
IV Insulin: ICU blood glucose ^{109,110116}	Yes	These investigators and clinicians used <i>eActions</i> to per- sonalize care orders for starting, stopping, and adjust- ing IV insulin, blood glucose testing, measurement and waiting times, IV glucose, and nutrition. Developed and validated over several years and implemented in multiple institutions in adult and pediatric ICUs.	Х			Х		
IV insulin to control ICU blood glucose ^{98,113,117}	Yes	These investigators and clinicians used <i>eActions</i> to per- sonalize care orders for blood glucose management in RCTs of children.		Х		Х		
Sepsis ¹¹¹	Yes	eActions produced higher compliance and lower mortal- ity in Sepsis and Septic Shock patients than did a pa- per-based protocol with the same rules. Both were more favorable than published outcomes after usual care.	Х			Х		
Post Operative Left Atrial Pressure ⁸⁵	Yes	These investigators and clinicians managed 8500 consec- utive cardiac surgery postoperative patients with a physiological model for controlling left atrial pressure with automatic control of blood infusion and vasodi- lating agents by closed-loop feedback control. They managed other postoperative care with a rule-based CDSS.	х	Х		Х		х
Clinical Guidelines	No	Generally, a consensus circumscribed set of if—then— else statements, based on a very limited set of input data that fail to lead to replicable clinician actions. For example, if a diabetic patient has not had an HbA1c test in the last 6 months, then order an HbA1c test. Or if a treatment is employed, like a diet in a hospitalized patient, the recent ESPEN Hospital Nutrition Guide- line recommends "reevaluation 5 days after hospital- ization." ¹¹⁸ In contrast to the preceding general guideline statements, the Heart Failure Guideline, ar- guably the most mature and scholarly of clinical guide- lines, provides more detailed recommendations but			Х			

(continued)

183

Decision-support tool	Replicable?	Description		1odel	Needs	eActions		
			Rule	Physiol	added clinician logic	Yes	?	Auto
		these also fail to lead to replicable clinician actions. For example, Diuretic and Decongestions Strategies in Patients with Heart Failure and Pharmacological Treat- ment for HFrEF recommend: "For patients with HF and congestive symptoms, addition of a thiazide (eg, metolazone) to treatment with a loop diuretic should be reserved for patients who do not respond to moder- ate or high-dose loop diuretics to minimize electrolyte abnormalities," and "In patients with previous or cur- rent symptoms of chronic HFrEF, in whom ARNi is not feasible. Treatment with an ACE or ARB provides						
Common Clinical Protocols	No	not feasible, treatment with an ACEi or ARB provides high economic value." ¹¹⁹ These are usually paper-based and generally consist of a			Х			
		circumscribed set of if—then—else statements based on a very limited set of input data. "Try to return to FIO2 = 0.4 and $PEEP = 5$ as soon as possible," a rec- ommendation from an old book of ICU protocols, is an example of a protocol return that fails to lead to repli- cable clinician actions. Similarly, a more recent recom- mendation for oxygen: "Oxygen has to be given						
		cautiously with monitoring as uncontrolled high-flow oxygen can lead to respiratory depression and worsen- ing hypercapnia in type 2 respiratory failure," or for Noninvasive Ventilation: "To control pH and pCO2- manipulate the minute ventilation, the respiratory rate and tidal volume, consider NIV for extubation in se- lected cases." ¹²⁰						
Machine (Deep) Learning ^{74,77,79}	No	Machine learning CDSS currently return only approxi- mate results that are often reasonable, like clinical guideline recommendations are reasonable. However, approximate results, whether from clinical guidelines application or from image interpretations, are not ade- quately detailed to provide personalized medicine CDSS instructions.			Х			
Renal Dialysis	?	Potential clinical challenges that we expect can likely be					Х	
Anesthetic dosing	?	managed with a future <i>eActions</i> Potential clinical challenges that we expect can likely be managed with a future <i>eActions</i>					х	

Rule: rule-based model; Physiol: physiological-based model; Needs bedside clinician logic: Decision-making clinician must supply missing data or logic not found in the decision support system; ?: uncertain if decision support tool is replicable or qualifies as an *eActions*; ARDS: acute respiratory distress syndrome patients.

have become foundations^{9,107,111} of additional quasi-experimental or more rigorous comparative effectiveness trials.^{123–125,191–193} This contrasts strikingly with the longstanding extended delays characteristic of translation of research results to clinical practice.⁵

eActions use will identify those clinical decisions that can be automated, differentiating them from those that cannot, only if initially designed to function as closedloop (automated) CDSS

Automated (closed-loop) personalized clinical care has been a difficult concept to accept by those engaged in healthcare delivery.^{1,6,7,19,31,69,143} Our *eActions* strategy does not assume all clinical tasks/decisions can be automated.¹⁹⁴ Only by capturing the information detail that would theoretically enable automated functions can we identify those clinician decisions and tasks able to be automated. Necessary details of a task may only become clear when the CDSS is executed in the intended clinical environment.³⁴ This has been one justification for the required iterative refinement and validation of *eActions* in the intended clinical use environments.^{102,105–108,111,195} Significantly, *eActions* need not be perfect to justify *eActions* use. Clinicians aided by *eActions* need only produce more favorable clinical outcomes for each specific clinical task *or* problem than do unaided clinicians.^{131,136,137}

We believe the evidence we cite strongly supports our argument that the best CDSS strategy for distinguishing those clinical tasks that can be fully automated using *eActions* from those that cannot is to undertake the same detailed work on evidence and logic for all clinical tasks being considered for *eActions*. The results of this process will make it clear that some *eActions* are implementable as closed-loop $CDSS^{21,23-30,83,85-92,95-98,126-129}$ and some are not.

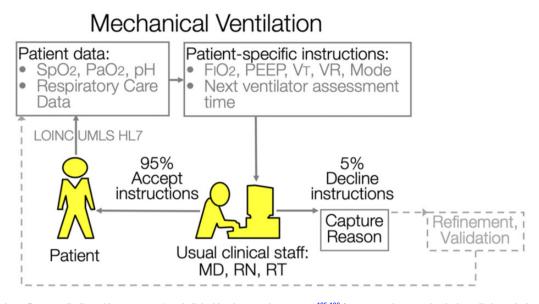


Figure 1. Iterative refinement (indicated by ______) and clinical implementation strategy^{105,106} for an open-loop mechanical ventilation *eActions* clinical decision support system (CDSS)^{9,29,107,109–111,113,116,121–125} that provides personalized medicine care instructions. SpO2: pulse oximetry; PaO2: arterial oxygen partial pressure; pH: arterial pH; FIO2: fraction of inspired oxygen; PEEP: positive end-expiratory pressure; VT: tidal volume; VR: ventilatory rate; MD: physician; RN: nurse; RT: respiratory therapist. Clinicians accepted *eActions* instructions 95% of the time and declined *eActions* instructions 5% of the time.^{105,106} Clinician reasons for declining instructions were captured by *eActions*. Quantitative distributions of VT are presented in Figure 3. Information Technology Communication Standards include, but not limited to: LOINC: Logical Observation Identifiers Names and Codes; UMLS: Unified Medical Language System; HL7: Health Level Seven, a standard for exchanging health information between medical applications. Modified from Ref.¹⁰⁴

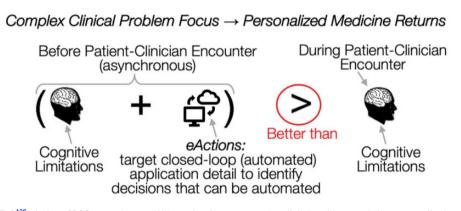


Figure 2. Modified from Ref.¹³⁶ eActions CDSS, operating as a Web service, focus on complex clinical problems to deliver personalized medicine returns tailored to the individual patient's needs at the time of execution. Friedman's "fundamental theorem" of biomedical informatics requires only that the clinician, with her/ his cognitive limitations, ^{32,36,81,102,108,143–148} aided by the computer CDSS (eActions), produces a clinically important outcome more favorable than that produced by the unaided clinician. ^{131,136,137} eActions need not be perfect, but only better than the unaided clinician. The information captured by knowledge engineering and embedded in eActions occurs asynchronously, before the patient-clinician encounter.¹⁰⁶ During the patient-clinician encounter, eActions provide what amounts to a consultation that delivers evidence-based clinical decisions and actions. The "Computer Screen←→Cloud" icon indicates a Web-service communication strategy.

Maintenance and curation of *eActions* will be challenging but should be manageable with allocation of adequate resources. To keep *eActions* data and logic updated and reliable, a yet unexplored formal process for continuous curation seems necessary. Our anticipated structure and flow of this formal process are outlined in Figure 5.^{19,31,69} We foresee that each *eAction* focused on a specific clinical problem/task will be curated by a separate multiinstitutional committee. Each committee would be tasked and resourced to provide continual iterative refinement and assessment of clinical outcomes. Curation would comply with national policies for best practices to improve both use of CDSS and health care decision-making. Widespread use of *eActions* will require transparency and shared learning. Transparency in the development, testing, and implementation processes should support and accelerate *eAc-tions* adoption. Users of *eActions* should be able to review the clinical logic that generated any clinician action and be able to review the oversight results of *eActions* effectiveness.

Curation of multiple copies of *eActions* on different vendors' cumbersome EHR platforms would be an irresolvable technology maintenance nightmare. Consequently, we suggest that *eActions* should operate as platform-independent Web-services, based on a standard, shared data model and interchange format that ensures syntactic and semantic interoperability, to enable effective and efficient curation of the *eActions* logic and performance.^{142,161} Signifi-

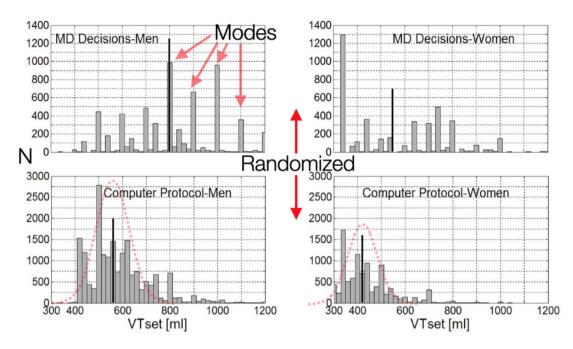


Figure 3. Distribution of set Tidal Volume (VT set [ml]) in physician-controlled (MD Decisions) and *eActions* controlled (Computer Protocol) groups (unpublished RCT data from Ref.¹⁰⁵) from the same study depicted in Figure 1. *N*: number of VT set (ml). Vertical black bars = group means. The tidal volume setting (VTset [ml]) distributions in the *eActions* controlled (Computer Protocol) group more strongly reflect the random contributions of physiologic and other variability that are expected to have a Gaussian distribution (superimposed red dots) than those of the MD Decisions groups. Modes indicate step changes of 100 ml, a reflection of noise introduced by MD Decisions.

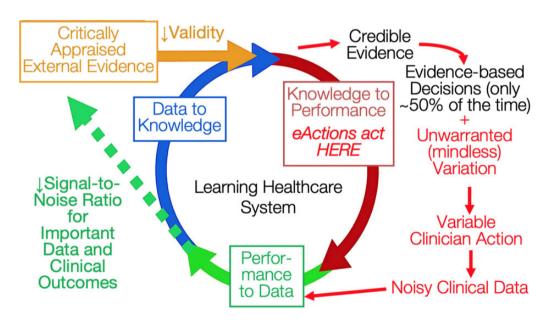


Figure 4. Conceptual learning healthcare system model modified from Friedman et al^{68,160} and reflecting a common conceptual model (see p. 28 in Ref.161) EHR data are noisy and degraded reducing signal-to-noise ratio^{19,55} for important data and outcomes, and therefore reducing both precision and validity of "Critically Appraised External Evidence." *eActions* focus on clinician performance and reduce EHR noise by reducing unwarranted,^{2-4,32,36-39,41-45,52,56-60} or mindless,^{32,61} in contrast to mindful^{19,32,36,62,63} variation, improving the "Knowledge to Performance" component of the learning healthcare system model and secondarily improving the Performance to Data and the Data to Knowledge limbs, since all 3 limbs are tightly linked.⁶⁸ This will increase the signal-to-noise ratio for important clinical data and outcomes and should increase the validity of "Critically Appraised External Evidence," leading to more "Credible Evidence" for "Evidence-based Decisions."

cant obstacles exist to the implementation of "external to the institution" remote clinical services. These include maintaining the privacy of transmitted patient information, maintaining bidirectional feedback connections among participating sites so discovered erroneous recommendations can be rapidly reported from peripheral sites and alternatively recognized "centrally" at the remote service provider. Regardless of origin, errors must be dealt with rapidly and effectively to ensure patient safety. The ability to identify patients who may have been affected by "bugs" in remotely hosted *eActions* will be of utmost importance. Sites hosting remote

Strategy	Bottom-up clinical problem-centric	Top-down system-cen- tric	Efficacy trials	Effectiveness trials	Replicable method	Reference
Information Technology standardization		Х				175-181
Embedded clinical investigation	Х	Х		Х		182-184
Multiple simultaneous interventions	Х			Х		185-189
eActions CDSS or other replicable-evidence-	Х		Х	Х	Х	101,105–113
based strategies						

Table 2. Four strategies for advancing a learning healthcare system

The citations are not an exhaustive literature review but support our conclusions. For example, *eActions* are "bottom-up" (designed and led by clinicians trying to solve a clinical task/problem), enable both effectiveness and efficacy clinical trials, and are replicable clinical care/research methods.

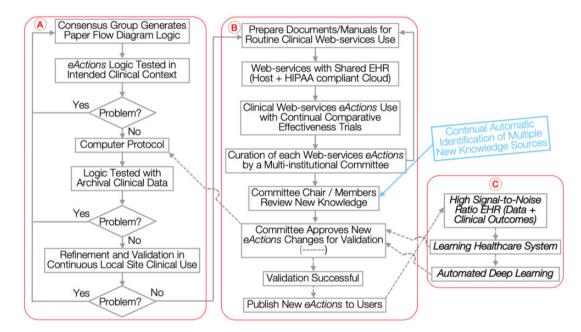


Figure 5. (A) Development, iterative refinement, and validation of *eActions* at the local development site (modified from Refs.^{101,150}). (B) Anticipated Web services *eActions* implementation and distribution with iterative refinement and validation of *eActions* directed by the chair and members of each multi-institutional committee responsible for each specific clinical *eActions* curation. (C) Anticipated Learning Healthcare System with continual, iterative learning enabled by the high signal-to-noise ratio of EHR data populated with *eActions* clinical care. We envision curation to include continual outcome analyses (length of stay, survival...) to accommodate any change in *eActions* or in databases (eg, coding). We envision use of web-services *eActions* to require participation of all institutions, practitioners, and patients in ongoing curation (comparative effectiveness research) and requiring links to the Host EHRs to allow assessment of the outcomes.²²⁶⁻²²⁸ Refusing to participate would preclude clinical use of *eActions*.²²⁷ We do not expect this will be a problem if *eActions* produce a significantly better clinical outcome, than is realized with unaided clinicians or with other forms of "usual care." New knowledge or changes returned from C (Learning Healthcare System) lead the multi-institutional committee members to first approve for validation (B), then send to Computer Protocol in A, for the process to flow down A, then return to B (Prepare Documents...), flow down to "Publish New…," and then go to C (High Signal-to-Noise) in an iterative loop without end.

eAction services must be fully uninterruptible and crash-proof. Similarly, network connectivity between clinical sites and remote *eAction* service providers must be error-free and uninterruptible. Interruptions in network connectivity can be just as serious as life-threatening software bugs. Healthcare institutions relying on closed-loop remote service-based *eActions* will put patients at risk if services "downtimes" are not recognized immediately and effective downtime procedures are not implemented rapidly and safely.

With the momentum and requirement to learn faster and better (eg, COVID-19 provides an example^{196,197}) extending the admittedly difficult development of *eActions* in collaboratives that rely on a shared or synthetic data infrastructure across health systems is desirable. This will expand the problem space (clinical challenges and tasks) that *eActions* can address and will engage smaller healthcare organizations that cannot resource their own embedded learning systems. This could address concerns that most care in the United States occurs in small-to-medium sized hospitals and clinics that lack adequate informatics personnel and expertise. These challenges could include issues that benefit from n-of-1, ^{198–201} micro-randomized, ^{202,203} or novel decentralized²⁰⁴ clinical trials, as well as from traditional randomized controlled clinical trials (RCTs)¹⁵¹ and quality improvement strategies. ^{36,205–208}

LEARNING HEALTH SYSTEMS FOR DEVELOPING AND TESTING NEW GUIDELINES/eActions

The conceptual model of the learning healthcare system of Friedman et al proposes an iterative learning cycle involving EHR and other data, knowledge, clinician performance, and external critical ap-

praisal (Figure 4).^{68,160} Learning healthcare systems and eActions are mutually complementary activities. In the absence of guidelines and consensus for many healthcare delivery topics, proposed learning healthcare systems can provide data to support creation and validation of new guidelines and *eActions*, both within an institution and at the national level. Such learning systems will work best with valid and precise data, but EHR data are noisy and degraded.^{3,4,19,37,38,52} In contrast, data generated by *eActions* can enable rigorous explanatory clinical trial results and complement other major efforts to achieve a learning healthcare system, both "bottomup" and "top-down" (Table 2). "Bottom-up" approaches include eActions,^{9,19,101,105–112} eAcrule-based model-based tions, 113, 115, 132, 133 comparative effectiveness studies of multiple interventions simultaneously (master protocols,¹⁸⁵ platform trials,¹⁸⁶⁻¹⁸⁸ and combinations of adaptive platform trials with pragmatic point-of-care trials,¹⁸⁹ and adaptive intervention trials²⁰⁹) "Top-down" IT-based efforts include system-centric or administration-centric efforts to standardize information exchange or work processes and focus on multiple standardization strategies (Table 2).¹⁷⁵⁻¹⁸¹ Recent investigations have combined some "bottom-up" and "top-down" efforts and have been embedded in routine care processes, sometimes within the EHR.^{182-184,210-212}

Results from RCTs remain a reference standard for many clinical care and research questions. However, RCTs are costly, time- and resource-consuming, cannot address all pertinent clinical areas of uncertainty because of resource limitations, 174, 194, 213-218 and impact clinical care slowly and incompletely.⁵ As a complement and addition to needed RCTs, many clinical questions and challenges could be effectively addressed with valid study designs in a learning healthcare system with data generated through routine clinical care.^{31,149} These questions and challenges could theoretically be rigorously studied in a learning healthcare system with comparisons of different care strategies using comparative effectiveness, quality improvement, quasi-experimental, and even RCT strategies that could avoid large cost and time consumption. Such studies could be conducted if best evidence-based clinical care methods were consistently applied in routine clinical care. Results from this care would reduce random and systematic (bias) noise and populate EHRs with more valid data. However, EHRs have not yet met such expectations. 31,69,159,219,220

Ongoing continuous quality improvement efforts within a learning healthcare system could use eActions as their foundation. As critical care increasingly evolves to deliver phenotypic-based therapy (personalized medicine), eActions could facilitate adherence to protocol for studies enrolling large numbers of patients at multiple institutions. Thus, eActions use provides a basis for clinical discovery and advances through thoughtful modifications that can be tested. This would lead to enhanced replicability of clinical care and research. This all depends on obtaining credible, internally valid study results (best evidence) that are then applied consistently by clinicians in usual care. This contrasts with allowing variable decision-making and actions, hoping to find a better solution by chance, a real but infrequent route to progress. This need for credible evidence-based care has been highlighted by widespread exaggeration and hyperbolic behavior that characterize discussions of the current COVID pandemic.¹⁹⁶ This behavior evokes images of the poor process control that results from responding to system noise rather than to credible representative data.^{16-18,197} We aver that joining automated eActions^{97,130,221} with the comparative effectiveness clinical studies in a learning healthcare system such as the groundbreaking studies conducted at Vanderbilt University Medical Center (Nashville, TN,

Table 3. Impact of decision support tools on clinician decision-making burden

		Clinician unburdened?			
Decision support tool type	Clinician use	Little	Moderate	Maximal	
Clinical Process ^{16–18,41}	Common	Х			
Guideline ^{10,17,41}	Low	Х			
Common paper or com- puter protocol	Common	Х			
Open-loop <i>eAc-</i> <i>tions</i> ^{9,29,101,103-} 105,107,109-	~95%		Х		
111,113,114,116,121,122					
Closed-loop <i>eAc-</i> <i>tions</i> ^{21,23,25,83–98}	$\sim 100\%$			Х	

USA)^{182,210–212} could significantly enhance our ability to achieve an effective learning healthcare system based on routinely acquired clinical care data.

eActions consistently link personalized medical decision-making with best evidence, even though eActions algorithmic data and logic are based on population evidence, clinician protocols from accepted best practice, results from RCTs, and meta-analyses.^{9,19,101,105-} ^{113,115} When *eActions* cannot accommodate a particular patient state, the input data, and associated logic are incomplete. Accordingly, clinicians must then supplement such data and logic gaps of the eActions. For this reason, it is essential during CDSS development, validation, and subsequent clinical use, to capture the bedside clinician's reasoning for not following every declined eActions instruction.¹⁰⁶ This enables modification of detailed elements of the algorithm, with the potential to eventually achieve closed-loop control, the ideal development target for the CDSS, though closed-loop control will not always be possible.¹⁹ While the feasibility of eActions, including closed-loop implementation, is clearly established, the evaluation of clinical problems and tasks for which eActions in either closed- or open-loop application would be desirable has been sparse. Substantial work invested in clinical guidelines and ordinary protocols (including pharmacy drug-drug interaction CDSS), neither of which are replicable methods of care or research, does not inform this issue. The fraction of applicable clinical problems or tasks is currently unknown but, in our view, likely sizeable. Even if only 10% of clinical activities accommodate eActions, that would represent ~\$410 billion in US national annual healthcare expenditures.^{222,223} Widely applicable scalability remains to be demonstrated.

We expect most comparative effectiveness clinical research^{224,225} questions in the future to be addressed within learning healthcare systems,^{169,190} as part of routine healthcare delivery with *eActions*,^{226–228} if *eActions* CDSS can be successfully scaled and broadly applied.¹⁶⁷

DISCUSSION

Whenever relevant and feasible, patient care and clinical studies should be guided by well-designed *eActions* that enable interprofessional clinical teams^{229,230} to consistently link decisions and actions to best evidence.^{55,231} This will both maximize the probability of desired individual and population clinical outcomes, and address the tension between individual patient and population care.²³²

Clinical care is delivered in a complex and dynamic system.^{230,233} Clinical decision-makers are cognitively limited^{32,36,46,48,234-238} and commonly overwhelmed with both information and clinical tasks.^{32,36,81,102,108,143-148} Within that system, unintended consequences and errors are well documented²³⁹⁻ ²⁴⁵—likely reflecting domain-independent general human limitations.²⁴⁶ Despite the advancement of clinical guidelines and protocols, clinical practice remains a process that largely lacks systemsengineering input and design.^{9,247-249} Insights generated from even the most detailed in silico simulators of health systems and human biology have not yet, to our knowledge, been translated to wideranging practice changes nor have such holistic mathematical models been subjected to rigorous, prospective evaluation.²⁵⁰⁻²⁵² Unburdening clinicians, expediting care including emergency care, and enabling all clinical team members to practice at their maximum skill level will be most effectively accomplished by automating some evidence-based care tasks (Table 3).^{21-30,78-87}

Many clinicians and investigators with different views will likely object to our arguments for eActions use in clinical research and care^{253–256} described in this Perspective manuscript. These different views have focused on diverse issues that include: hazards of EHRs with frequent, often irrelevant, system-generated disruptions, 257-259 ethical challenges,^{260,261} the potential for overuse of automated CDSS,²⁶² potential CDSS bias,²⁶³ and the potential to make some clinicians obsolete,^{264,265} a fear linked to concern about deskilling.²⁶⁶⁻²⁶⁹ Deskilling appears to be an unavoidable consequence of civilization's advance (see p. 42 in Ref.270, p. 29 in Ref.271) and is certainly apparent in the changing medical landscape of the past 60 years. These issues have merit and deserve our attention. However, with respect to *eActions*, they are largely distracting because they are equally applicable to the decisions and actions effected by unaided clinicians. Rather than using these distractions to dismiss eActions, we assert it is more important to focus on the question implicit in Figure 2: "Does clinician behavior aided by albeit imperfect eActions lead to more favorable healthcare outcomes?"

Automated *eActions* (where possible) have been only sparsely evaluated in clinical settings^{21,83,85,91} and are disruptive innovations.²⁷² They are responsive to the call for new care models^{5,117} including changes in academic centers.¹¹⁸ Disruptive innovations are not likely to be encouraged by mature medical institutions, including professional societies.^{273–276} *eActions* work best when advanced by clinician-led interprofessional teams.^{229,230} They will have to address multiple regulatory barriers.^{31,69,231} We cannot expect politicians and regulators to take the lead²⁷⁵—nor should they. Politicians and regulators typically follow healthcare changes; they do not lead them.²⁷⁷

SUMMARY

All pertinent clinical questions have not, cannot, and will not be addressable with costly time- and resource-consuming controlled clinical trials. We expect most comparative effectiveness clinical research questions in the future to be addressed within learning healthcare systems, as part of routine healthcare delivery using evidence-based care. EHR data noise and overburdened clinician cognitive limitations are barriers to providing accurate evidence to a learning healthcare system. Reducing EHR data noise and unburdening clinicians will be most effectively accomplished by automating some care tasks and removing these decisions and tasks from the clinician's workload. Automated *eActions* (validated clinical decision support systems) would help achieve a learning healthcare system. Widespread use of *eActions* will require surmounting current healthcare technical and cultural barriers and installing a clinical evidence/data curation system.

Widespread and scaled implementation of *eActions* entails significant future work. Clinical experts must identify new healthcare guidelines based on data gleaned from learning health systems (and other mechanisms). Local and national clinical committees must determine which clinical problems and tasks are amenable to openand closed-loop *eAction* solutions. Healthcare system vendors must evolve current, relatively inflexible and proprietary EHRs into systems that can be modified to collect and rapidly externalize patient data in standardized format in order to support the implementation and evolution of *eActions*. Fundamental to all of this is rigorous testing of *eActions* and evaluation of *eActions* impact on important clinical outcomes.

FUNDING

This work was supported by the NIH grant numbers HL36787, HHSN268200425210C/NO1-HC-45210, HHSN268200425210C/NO1-HR-56171, HHSN268200536179C/N01-HR-56179, HHSN 268200536170C/N01-HR-56170, HHSN268200536175C/N01-HR-56175, and HHSN268200536165C/N01-HR-56165, and by the Deseret Foundation, and Intermountain Healthcare, Inc.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to the conception or design of this work, revised the drafts critically for important content, approved the final version, and are accountable for the arguments contained therein. The following authors participated as investigators in the development and validation of eActions described in cited works: Alan Morris, Michael Lanspa, James Orme, Jr, Terry Clemmer, Lindell Weaver, Frank Thomas, Colin Grissom, Ellie Hirshberg, Thomas East, Carrie Wallace, Michael Young, Mary Suchyta, Dean Sittig, Michela Bombino, Eduardo Beck, Katherine Sward, Shobha Satsangi Phansalkar, Gordon Bernard, Taylor Thompson, Roy Brower, Jonathon Truwit, Jay Steingrub, Duncan Hite, Douglas Willson, Jerry Zimmerman, Vinay Nadkarni, Christopher Newth, Jacques Lacroix, Kang Lee, Bennett deBloisblanc, Dean Sorenson, Anthony Wong, Peter Haug, Ulrike Pielmeier, Stephen E. Rees, Dan S. Karbing, Steen Andreassen, David Schoenfeld, Derek Angus, and Michael Pinsky.

ACKNOWLEDGMENTS

We are indebted to many nurse, respiratory therapist, physician, and informatics technology colleagues who enabled the execution of this work during the past 35 years. We acknowledge important arguments by Roberta Goldring, MD, Waldemar Johanson, MD, and Robert Rogers, MD, in support of initial NIH funding; incisive editorial critiques by Gordon Rubenfeld, MD, MSc and Ognjen Gajic, MD; past investigator contributions by Bruce A. McKinley, PhD, and R. Matthew Sailors, PhD, whom we were unable to contact; and the central role of the HELP system medical informatics infrastructure provided by Homer Warner, MD, PhD, T. Alan Pryor, PhD and Reed Gardner, PhD. We acknowledge the important editorial assistance provided by JAMIA reviewers who critiqued our submitted manuscripts with impacting recommendations. Finally, Marilyn S. Morris, PT, MS, convinced Alan H. Morris, MD, to teach a course titled "Human Cognitive Limitations: Why Humans Overestimate Performance and So Commonly Make Bad Decisions." This led to the exploration of many constructs included in this publication.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY

No new data were generated or analyzed in support of this Perspective manuscript.

REFERENCES

- Berwick DM. Era 3 for medicine and health care. *JAMA* 2016; 315 (13): 1329–30.
- Bakwin H. Pseudodoxia pediatrica. N Engl J Med 1945; 232 (24): 691–7.
- Hebert PC, Wells G, Martin C, et al. A Canadian survey of transfusion practices in critically ill patients. Transfusion requirements in Critical Care Investigators and the Canadian Critical Care Trials Group. Crit Care Med 1998; 26 (3): 482–7.
- Hirshberg E, Lacroix J, Sward K, Willson D, Morris AH. Blood glucose control in critically ill adults and children: a survey on stated practice. *Chest* 2008; 133 (6): 1328–35.
- Balas EA, Boren SA. Managing clinical knowledge for health care improvement. *Yearb Med Inform* 2000; 9 (1): 65–70.
- 6. James BC. Making it easy to do it right. N Engl J Med 2001; 345 (13): 991-3.
- Thaler RH, Sunstein CR. Nudge: Improving Decisions about Health, Wealth, and Happiness. New Haven: Yale University Press; 2008: x, 293p.
- Weir CR, Taber P, Taft T, Reese TJ, Jones B, Del Fiol G. Feeling and thinking: can theories of human motivation explain how EHR design impacts clinician burnout? J Am Med Inform Assoc. 2021; 28 (5): 1042-6.
- Sucher JF, Moore FA, Todd SR, Sailors RM, McKinley BA. Computerized clinical decision support: a technology to implement and validate evidence based guidelines. *J Trauma* 2008; 64 (2): 520–37.
- Hoesing H. Clinical Practice Guidelines: Closing the Gap Between Theory and Practice. USA: Joint Commission International, A Division of Joint Commission Resources, Inc.; 2016. https://www.elsevier.com/_____data/assets/pdf_file/0007/190177/JCI-Whitepaper_cpgs-closing-the-gap. pdf. Accessed June 20, 2022.
- 11. McGlynn EA, Asch SM, Adams J, *et al.* The quality of health care delivered to adults in the United States. *N Engl J Med* 2003; 348 (26): 2635–45.
- Mangione-Smith R, DeCristofaro AH, Setodji CM, et al. The quality of ambulatory care delivered to children in the United States. N Engl J Med 2007; 357 (15): 1515–23.
- IOM (Institute of Medicine Medicine). The Healthcare Imperative: Lowering Costs and Improving Outcomes: Workshop Series Summary. Washington, DC: The National Academies Press; 2010: 828p.
- Woolf SH, Johnson RE. The break-even point: when medical advances are less important than improving the fidelity with which they are delivered. *Ann Fam Med* 2005; 3 (6): 545–52.
- 15. Edelstein P. Thought Leadership: Addressing the Greatest Threat to Healthcare. New York, NY: Elsevier; 2016.
- Shewart W. Economic Control of Quality of Manufactured Product. New York, NY: D. Van Nostrand Co., Inc. (republished in 1980, American Society for Quality Control, 230 W. Wells St, Milwaukee, Wisconsin 53203); 1931.

- 17. Deming W. *Out of the Crisis*. Cambridge, MA: Massachusetts Institute of Technology, Center for Advanced Engineering Study; 1986.
- Walton M. The Deming Management Method. New York, NY: Putnam Publishing Group (Perigee books); 1986.
- Morris AH, Stagg B, Lanspa M, *et al.* Enabling a learning healthcare system with automated computer protocols that produce replicable and personalized clinician actions. *J Am Med Inform Assoc* 2021; 28 (6): 1330–43.
- Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med 2015; 372 (23): 2229–34.
- Claure N, Gerhardt T, Everett R, Musante G, Herrera C, Bancalari E. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. *Pediatrics* 2001; 107 (5): 1120–4.
- 22. Abbod MF, Linkens DA, Mahfouf M, Dounias G. Survey on the use of smart and adaptive engineering systems in medicine. *Artif Intell Med* 2002; 26 (3): 179–209.
- 23. Wysocki M, Brunner JX. Closed-loop ventilation: an emerging standard of care? *Crit Care Clin* 2007; 23 (2): 223–40, ix.
- Lozano S, Möller K, Brendle A, *et al.* AUTOPILOT-BT: a system for knowledge and model based mechanical ventilation. *Technol Health Care* 2008; 16 (1): 1–11.
- Pauldine R, Beck G, Salinas J, Kaczka DW. Closed-loop strategies for patient care systems. J Trauma 2008; 64 (4 Suppl): S289–94.
- Kramer GC, Kinsky MP, Prough DS, *et al.* Closed-loop control of fluid therapy for treatment of hypovolemia. *J Trauma* 2008; 64 (4 Suppl): S333–41.
- Tehrani FT, Roum JH. Flex: a new computerized system for mechanical ventilation. J Clin Monit Comput 2008; 22 (2): 121–30.
- Salinas J, Drew G, Gallagher J, et al. Closed-loop and decision-assist resuscitation of burn patients. J Trauma 2008; 64 (4 Suppl): S321–32.
- Salinas J, Chung KK, Mann EA, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med 2011; 39 (9): 2031–8.
- Jernigan PL, Hoehn RS, Blakeman TC, *et al.* Portable mechanical ventilation with closed-loop control of inspired fraction of oxygen maintains oxygenation in the setting of hemorrhage and lung injury. *J Trauma Acute Care Surg* 2015; 79 (1): 53–9.
- Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA 2020; 323 (6): 509.
- Croskerry P. From mindless to mindful practice-cognitive bias and clinical decision making. N Engl J Med 2013; 368 (26): 2445–8.
- McLachlan S, Buchanan D, Lean S, *et al.* Learning health systems: the research community awareness challenge. *J Innov Health Inform* 2018; 25 (1): 38–40.
- 34. Coiera E. A new informatics geography. Yearb Med Inform 2016; 25 (1): 251–5.
- Singh H, Sittig DF. A sociotechnical framework for safety-related electronic health record research reporting: the SAFER reporting framework. *Ann Intern Med* 2020; 172 (11 Suppl): S92–100.
- Sutcliffe KM, Paine L, Pronovost PJ. Re-examining high reliability: actively organising for safety. *BMJ Qual Saf* 2017; 26 (3): 248–51.
- Wennberg JE, Gittelsohn A. Small area variation analysis in health care delivery. *Science* 1973; 142: 1102–8.
- Wennberg JE. Time to tackle unwarranted variations in practice. BMJ 2011; 342: d1513.
- Newth CJL, Sward KA, Khemani RG, et al. Variability in usual care mechanical ventilation for pediatric acute respiratory distress syndrome: time for a decision support protocol? *Pediatr Crit Care Med* 2017; 18 (11): e521–9.
- 40. Sward KA, Newth CJL, Khemani RG, et al.; Eunice Kennedy Shriver National Institute for Child Health and Human Development Collaborative Pediatric Critical Care Research Network (CPCCRN). Potential acceptability of a pediatric ventilator management computer protocol. Pediatr Crit Care Med 2017; 18 (11): 1027–34.

- 41. James B, Bayley KB. Cost of Poor Quality or Waste in Integrated Delivery System Settings. Agency for Healthcare research and Quality: RTI International; September 2006. Report No.: AHRQ Publication No. 08-0096-EF Contract No.: RTI Project No. 0207897.011.
- Young PL, Olsen L. Roundtable on Evidence-Based Medicine, Institute of Medicine. The Healthcare Imperative: Lowering Costs and Improving Outcomes: Workshop Series Summary. Washington, DC: The National Academies Press; 2010.
- Joynt Maddox KE, McClellan MB. Toward evidence-based policy making to reduce wasteful health care spending. *JAMA* 2019; 322 (15): 1460–2.
- 44. Shrank WH, Rogstad TL, Parekh N. Waste in the US Health Care System: estimated costs and potential for savings. *JAMA* 2019; 322 (15): 1501–9.
- Berwick DM. Elusive waste: the Fermi paradox in US Health Care. JAMA 2019; 322 (15): 1458–9.
- 46. Arkes H, Hammond K. Judgment and Decision Making: An Interdisciplinary Reader. Cambridge: Cambridge University Press; 1986.
- 47. Arkes H. Impediments to accurate clinical judgment and possible ways to minimized their impact. In: Arkes H, Hammond K, eds. Judgment and Decision Making: An Interdisciplinary Reader. Cambridge: Cambridge University Press; 1986: 582–92.
- Diamond GA, Pollock BH, Work JW. Clinician decisions and computers. J Am Coll Cardiol 1987; 9 (6): 1385–96.
- Kruger J, Dunning D. Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments. *J Pers Soc Psychol* 1999; 77 (6): 1121–34.
- Kruger J. Lake Wobegon be gone! The "below-average effect" and the egocentric nature of comparative ability judgments. *J Pers Soc Psychol* 1999; 77 (2): 221–32.
- Brunkhorst F, Engel C, Ragaller M, et al. Practice and perception—a nationwide survey of therapy habits in sepsis. Crit Care Med 2008; 36 (10): 1–6.
- Willson DF, Horn SD, Hendley JO, Smout R, Gassaway J. Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness. *Pediatrics* 2001; 108 (4): 851–5.
- 53. Tyson N. Signal versus noise. Nat History 1996; 105 (10): 72-6.
- Sackett DL. Why randomized controlled trials fail but needn't: 2. Failure to employ physiological statistics, or the only formula a clinician-trialist is ever likely to need (or understand!). *CMAJ* 2001; 165 (9): 1226–37.
- Russell LB. Electronic health records: the signal and the noise. *Med Decis Making* 2021; 41 (2): 103–6.
- 56. Thirunavukarasu M. Closing the treatment gap. Indian J Psychiatry 2011; 53 (3): 199–201.
- 57. Jansen S, White R, Hogwood J, *et al.* The "treatment gap" in global mental health reconsidered: sociotherapy for collective trauma in Rwanda. *Eur J Psychotraumatol* 2015; 6: 28706.
- Office of the Surgeon General. Facing Addiction in America The Surgeon General's Report on Alcohol, Drugs, and Health. Washington, DC: U.S. Department of Health and Human Services (HHS); 2016.
- Spivak ES, Kendall B, Orlando P, et al. Evaluation of outpatient parenteral antimicrobial therapy at a Veterans Affairs Hospital. Infect Control Hosp Epidemiol 2015; 36 (9): 1103–5.
- Silverman M, Povitz M, Sontrop JM, et al. Antibiotic prescribing for nonbacterial acute upper respiratory infections in elderly persons. Ann Intern Med 2017; 166 (11): 765–74.
- Sevransky JE, Nour S, Susla GM, Needham DM, Hollenberg S, Pronovost P. Hemodynamic goals in randomized clinical trials in patients with sepsis: a systematic review of the literature. *Crit Care* 2007; 11 (3): R67.
- Pronovost P, Urwin J, Beck E, *et al.* Making a dent in the trillion-dollar problem: toward zero defects. *NEJM Catal Innov Care Deliv* 2021; 2 (1): 1–23.
- Militello L, Sobolev M, Okeke F, Adler DA, Nahum-Shani I. Digital prompts to increase engagement with the headspace app and for stress regulation among parents: feasibility study. *JMIR Form Res* 2022; 6 (3): e30606.
- 64. National Research Council. *Frontiers in Massive Data Analysis*. Washington, DC: The National Academies Press; 2013: 190p.

- Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. *JAMA* 2014; 311 (24): 2479–80.
- Gligorijević V, Malod-Dognin N, Pržulj N. Integrative methods for analyzing big data in precision medicine. *Proteomics* 2016; 16 (5): 741–58.
- 67. McCue ME, McCoy AM. The scope of big data in one medicine: unprecedented opportunities and challenges. *Front Vet Sci* 2017; 4: 194.
- Guise JM, Savitz LA, Friedman CP. Mind the gap: putting evidence into practice in the era of learning health systems. *J Gen Intern Med* 2018; 33 (12): 2237–9.
- James CA, Wachter RM, Woolliscroft JO. Preparing clinicians for a clinical world influenced by artificial intelligence. *JAMA* 2022; 327 (14): 1333.
- Bradley VC, Kuriwaki S, Isakov M, Sejdinovic D, Meng X-L, Flaxman S. Unrepresentative big surveys significantly overestimated US vaccine uptake. *Nature* 2021; 600 (7890): 695–700.
- DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 2021; 3 (7): 610–9.
- 72. Hutson M. Artificial intelligence faces reproducibility crisis. *Science* 2018; 359 (6377): 725–6.
- 73. McDermott MBA, Wang S, Marinsek N, Ranganath R, Foschini L, Ghassemi M. Reproducibility in machine learning for health research: still a ways to go. *Sci Transl Med* 2021; 13 (586): eabb1655.
- Sendak MP, Ratliff W, Sarro D, *et al.* Real-world integration of a sepsis deep learning technology into routine clinical care: implementation study. *JMIR Med Inform* 2020; 8 (7): e15182.
- Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. *Lancet Digit Health* 2021; 3 (3): e195–203.
- Halamka J, Cerrato P. The digital reconstruction of health care. NEJM Catalyst 2020; 1 (6): 1–12. doi: 10.1056/CAT.20.0082.
- 77. Sandhu S, Lin AL, Brajer N, *et al.* Integrating a machine learning system into clinical workflows: qualitative study. *J Med Internet Res* 2020; 22 (11): e22421.
- Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. *Cancer Cell* 2021; 39 (7): 916–27.
- Marcus GM. Artificial Intelligence is Hitting a Wall: Nautilus. 2022. https://nautil.us/deep-learning-is-hitting-a-wall-14467/. Accessed June 20, 2022.
- Reyna MA, Nsoesie EO, Clifford GD. Rethinking algorithm performance metrics for artificial intelligence in diagnostic medicine. *JAMA* 2022; 328 (4): 329.
- Ehrmann DE, Gallant SN, Nagaraj S, *et al*. Evaluating and reducing cognitive load should be a priority for machine learning in healthcare. *Nat Med* 2022; 28 (7): 1331–3.
- Escobar GJ, Liu VX, Schuler A, Lawson B, Greene JD, Kipnis P. Automated identification of adults at risk for in-hospital clinical deterioration. *N Engl J Med* 2020; 383 (20): 1951–60.
- Saxton GA, Myers GA. Servomechanism for automatic regulation of pulmonary ventilation. J Appl Physiol 1957; 11 (2): 326–8.
- Sheppard L, Kirklin J, Kouchoukos N. Chapter 6-Computer-controlled interventions for the acutely ill patient. In: Waxman BD, Stacy RW, eds. *Computers in Biomedical Research*. vol. 4. New York, NY: Academic Press; 1974: 135–48.
- Sheppard LC, Kouchoukos NT. Automation of measurements and interventions in the systematic care of postoperative cardiac surgical patients. *Med Instrum* 1977; 11 (5): 296–301.
- Westenskow DR, Bowman RJ, Ohlson KB, Raemer DB. Microprocessors in intensive care medicine. *Med Instrum* 1980; 14 (6): 311–3.
- Sheppard L. Computer control of the infusion of vasoactive drugs. Ann Biomed Eng 1980; 8 (4–6): 431–4.
- East TD, Westenskow DR, Pace NL, Nelson LD. A microcomputer based differential lung ventilation system. *IEEE Trans Biomed Eng* 1982; 29 (11): 736–40.
- Ohlson KB, Westenskow DR, Jordan WS. A microprocessor based feedback controller for mechanical ventilation. *Ann Biomed Eng* 1982; 10 (1): 35–55.

- Ying H, McEachern M, Eddleman DW, Sheppard LC. Fuzzy control of mean arterial pressure in postsurgical patients with sodium nitroprusside infusion. *IEEE Trans Biomed Eng* 1992; 39 (10): 1060–70.
- Jouvet P, Farges C, Hatzakis G, *et al.* Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. *Pediatr Crit Care Med* 2007; 8 (5): 425–32.
- 92. Tehrani FT. Automatic control of mechanical ventilation. Part 2: the existing techniques and future trends. *J Clin Monit Comput* 2008; 22 (6): 417–24.
- Stewart ZA, Wilinska ME, Hartnell S, et al. Closed-loop insulin delivery during pregnancy in women with type 1 diabetes. N Engl J Med 2016; 375 (7): 644–54.
- Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med 2019; 381 (18): 1707–17.
- 95. Platen P, Pomprapa A, Lachmann B, Leonhardt S. The dawn of physiological closed-loop ventilation—a review. *Crit Care* 2020; 24 (1): 121.
- Boughton CK, Hovorka R. New closed-loop insulin systems. *Diabetologia* 2021; 64 (5): 1007–15.
- Wendel Garcia PD, Hofmaenner DA, Brugger SD, *et al.* Closed-loop versus conventional mechanical ventilation in COVID-19 ARDS. *J Intensive Care Med* 2021; 36 (10): 1184–93.
- Ware J, Allen JM, Boughton CK, *et al*. Randomized trial of closed-loop control in very young children with type 1 diabetes. *N Engl J Med* 2022; 386 (3): 209–19.
- Saria S. Individualized sepsis treatment using reinforcement learning. Nat Med 2018; 24 (11): 1641–2.
- 100. Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Internet Res 2020; 22 (7): e18477.
- 101. East T, Morris A, Wallace C, et al. Chapter 23: a strategy for development of computerized critical care decision support systems (adapted from an article in the Int J Clin Monit Comput 8: 263–9, 1991. Reprinted with permission of Kluwer Academic Publishers). In:Shabot M, Gardner R, eds. Computers and Medicine: Decision Support Systems in Critical Care. New York: Springer-Verlag; 1993: 343–53.
- 102. Morris AH. Paradigms in management. In: Pinsky M, Dhainaut J, eds. Pathophysiologic Foundations of Critical Care Medicine. Baltimore: Williams and Wilkens; 1993: 193–206.
- 103. Morris A, Wallace C, Menlove R, *et al.* Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for ARDS [erratum 1994;149(3, Pt 1):838, Letters to the editor 1995;151(1):255-256, 1995;151(4):1269-1270, and 1997;156(3):1016-1017]. *Am J Respir Crit Care Med* 1994; 149 (2 Pt 1): 295–305.
- 104. East T, Morris A, Gardner R. Chapter 101-Computerized management of mechanical ventilation In: Ayres S, Grenvik A, Holbrook P, Shoemaker W, eds. *Textbook of Critical Care.* 3 ed. Philadelphia, PA: W. B. Saunders Company; 1995: 895–911.
- 105. East T, Heermann L, Bradshaw R, et al. Efficacy of computerized decision support for mechanical ventilation: results of a prospective multicenter randomized trial. Proc AMIA Symp 1999: 251–5.
- Morris A. Developing and implementing computerized protocols for standardization of clinical decisions. *Ann Intern Med* 2000; 132 (5): 373–83.
- 107. McKinley BA, Moore FA, Sailors RM, et al. Computerized decision support for mechanical ventilation of trauma induced ARDS: results of a randomized clinical trial. J Trauma 2001; 50 (3): 415–24; discussion 25.
- 108. Morris A. The importance of protocol-directed patient management for research on lung-protective ventilation In: Dreyfuss D, Saumon G, Hubamyr R, eds. Ventilator-Induced Lung Injury. Lung Biology in Health and Disease. Vol. 215. New York: Taylor & Francis Group; 2006: 537–610.
- 109. Morris AH, Orme J Jr, Truwit JD, et al. A replicable method for blood glucose control in critically ill patients. Crit Care Med 2008; 36 (6): 1787–95.
- 110. Morris AH, Orme J, Rocha BH, *et al.*; for the Reengineering Critical Care Clinical Research Investigators. An electronic protocol for transla-

tion of research results to clinical practice: a preliminary report. J Diabetes Sci Technol 2008; 2 (5): 802–8.

- 111. McKinley BA, Moore LJ, Sucher JF, *et al.* Computer protocol facilitates evidence-based care of sepsis in the surgical intensive care unit. *J Trauma* 2011; 70 (5): 1153–67.
- 112. Blagev DP, Hirshberg EL, Sward K, *et al.* The evolution of eProtocols that enable reproducible clinical research and care methods. *J Clin Monit Comput* 2012; 26 (4): 305–17.
- Agus MSD, Wypij D, Hirshberg EL, *et al.* Tight glycemic control in critically ill children. N *Engl J Med* 2017; 376 (8): 729–41.
- 114. Henderson S, Crapo R, Wallace C, East T, Morris A, Gardner R. Performance of computerized protocols for the management of arterial oxygenation in an intensive care unit. *Int J Clin Monit Comput* 1992; 8 (4): 271–80.
- 115. Karbing DS, Spadaro S, Dey N, *et al.* An open-loop, physiologic modelbased decision support system can provide appropriate ventilator settings. *Crit Care Med* 2018; 46 (7): e642–8.
- 116. Thompson B, Orme J, Zheng H, et al.; for the Reengineering Critical Care Clinical Research Investigators. Multicenter validation of a computer-based clinical decision support tool for glucose control in adult and pediatric intensive care units. J Diabetes Sci Technol 2008; 2 (3): 357–68.
- 117. Breton MD, Beck RW, Wadwa RP; DCLTRG i, iDCL Trial Research Group. A randomized trial of closed-loop control in children with type 1 diabetes. Reply. N Engl J Med 2020; 383 (25): 2484.
- 118. Thibault R, Abbasoglu O, Ioannou E, *et al.* ESPEN guideline on hospital nutrition. *Clin Nutr* 2021; 40 (12): 5684–709.
- 119. Heidenreich PA, Bozkurt B, Aguilar D, et al. AHA/ACC/HFSA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145 (18): e895–1032.
- Chawla R, Todi S. ICU Protocols: A Stepwise Approach. 2nd ed. New York: Springer Nature Singapore Pte Ltd; 2020: xxvi879p.
- Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA 2019; 321 (1): 31–2.
- 122. Freeman K, Geppert J, Stinton C, *et al.* Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. *BMJ* 2021; 374: n1872.
- 123. McKinley BA, Valdivia A, Moore FA. Goal-oriented shock resuscitation for major torso trauma: what are we learning? *Curr Opin Crit Care* 2003; 9 (4): 292–9.
- 124. McKinley BA, Sucher JF, Todd SR, *et al.* Central venous pressure versus pulmonary artery catheter-directed shock resuscitation. *Shock* 2009; 32 (5): 463–70.
- 125. Balogh Z, McKinley BA, Cocanour CS, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 2003; 138 (6): 637–42; discussion 42–3.
- Bertalanffy L. General System Theory. New York: George Braziller; 1968: 295p.
- 127. Blesser W. A Systems Approach to Biomedicine. New York: McGraw-Hill Book Company; 1969.
- 128. Brunner JX. Principles and history of closed-loop controlled ventilation. *Respir Care Clin N Am* 2001; 7 (3): 341–62, vii.
- 129. Tehrani FT. Automatic control of mechanical ventilation. Part 1: theory and history of the technology. *J Clin Monit Comput* 2008; 22 (6): 409–15.
- 130. Arnal JM, Garnero A, Novotni D, *et al.* Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes. *Minerva Anestesiol* 2018; 84 (1): 58–67.
- Miller RA. Evaluating evaluations of medical diagnostic systems. J Am Med Inform Assoc 1996; 3 (6): 429–31.
- Rees SE, Allerod C, Murley D, *et al.* Using physiological models and decision theory for selecting appropriate ventilator settings. *J Clin Monit Comput* 2006; 20 (6): 421–9.
- 133. Pielmeier U, Andreassen S, Juliussen B, Chase JG, Nielsen BS, Haure P. The Glucosafe system for tight glycemic control in critical care: a pilot evaluation study. J Crit Care 2010; 25 (1): 97–104.

- 134. Sintchenko V, Coiera E. Decision complexity affects the extent and type of decision support use. *AMIA Annu Symp Proc* 2006: 724–8.
- 135. Coiera E. Medical informatics. BMJ 1995; 310 (6991): 1381-7.
- Friedman CP. A "fundamental theorem" of biomedical informatics. J Am Med Inform Assoc 2009; 16 (2): 169–70.
- 137. Miller RA, Masarie FE Jr. The demise of the "Greek Oracle" model for medical diagnostic systems. *Methods Inf Med* 1990; 29 (1): 1–2.
- 138. Bates DW, Kuperman GJ, Wang S, et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc 2003; 10 (6): 523–30.
- 139. Han YY, Carcillo JA, Venkataraman ST, *et al.* Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system [published correction appears in Pediatrics. 2006;117:594]. *Pediatrics* 2005; 116 (6): 1506–12.
- 140. Heath C, Heath D. Switch: How to Change Things When Change Is Hard. 1st ed. New York: Broadway Books; 2010: 305p.
- 141. Maslow AH, Frager R. Motivation and Personality. 3rd ed. New York: Harper and Row; 1987: xli, 293p.
- 142. Greenes RA. *Clinical Decision Support: The Road Ahead*. Amsterdam; Boston: Elsevier Academic Press; 2007: xv, 581p.
- 143. Weir CR, Taber P, Taft T, Reese TJ, Jones B, Del Fiol G. Feeling and thinking: can theories of human motivation explain how EHR design impacts clinician burnout? J Am Med Inform Assoc 2021; 28 (5): 1042-6.
- 144. Ostbye T, Yarnall KS, Krause KM, Pollak KI, Gradison M, Michener JL. Is there time for management of patients with chronic diseases in primary care? *Ann Fam Med* 2005; 3 (3): 209–14.
- 145. Fraser AG, Dunstan FD. On the impossibility of being expert. BMJ 2010; 341: c6815.
- 146. Downing NL, Bates DW, Longhurst CA. Physician burnout in the electronic health record era: are we ignoring the real cause? Ann Intern Med 2018; 169 (1): 50–1.
- 147. Kroth PJ, Morioka-Douglas N, Veres S, et al. Association of electronic health record design and use factors with clinician stress and burnout. JAMA Netw Open 2019; 2 (8): e199609.
- 148. Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc 2011; 122: 48–58.
- 149. Friedman C, Rubin J, Brown J, et al. Toward a science of learning systems: a research agenda for the high-functioning Learning Health System. J Am Med Inform Assoc 2015; 22 (1): 43–50.
- East TD, Morris AH, Wallace CJ, et al. A strategy for development of computerized critical care decision support systems. Int J Clin Monit Comput 1991; 8 (4): 263–9.
- 151. Hulley S, Cummings S, Warren S, Grady D, Hearst N, Newman T. Designing Clinical Research. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2001: 336p.
- 152. Vestbo J, Anderson JA, Calverley PMA, *et al.* Bias due to withdrawal in long-term randomised trials in COPD: evidence from the TORCH study. *Clin Respir J* 2011; 5 (1): 44–9.
- 153. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. *Science* 1974; 185 (4157): 1124–31.
- 154. Stein MM, Hrusch CL, Gozdz J, *et al.* Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med 2016; 375 (5): 411–21.
- 155. A. Akerlof G, Michaillat P. Persistence of false paradigms in low-power sciences. Proc Natl Acad Sci USA 2018; 115 (52): 13228–33.
- 156. Kassin SM, Dror IE, Kukucka J. The forensic confirmation bias: problems, perspectives, and proposed solutions. J Appl Res Memory Cogn 2013; 2 (1): 42–52.
- 157. Brooks A, Schouten B, Troje NF, Verfaillie K, Blanke O, van der Zwan R. Correlated changes in perceptions of the gender and orientation of ambiguous biological motion figures. *Curr Biol* 2008; 18 (17): R728–9.
- Wijdicks EFM, Hwang DY. Predicting coma trajectories: the impact of bias and noise on shared decisions. *Neurocrit Care* 2021; 35 (2): 291–6.
- 159. Matheny M, Thadaney Israni S, Ahmed M, Whicher D, eds. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril.

Washington, DC: National Academy of Medicine, National Academies Press; 2019.

- 160. Friedman CP, Flynn AJ. Computable knowledge: an imperative for learning health systems. *Learn Health Syst* 2019; 3 (4): e10203.
- 161. Greenes RA. Clinical Decision Support: The Road to Broad Adoption. 2nd ed. Amsterdam Boston: Academic Press; 2014: xxxix, 887p.
- 162. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18): 1301–8.
- Atkins H. The three pillars of clinical research. Br Med J 1958; 2 (5112): 1547–53.
- 164. Coiera E, Ammenwerth E, Georgiou A, Magrabi F. Does health informatics have a replication crisis? J Am Med Inform Assoc 2018; 25 (8): 963–8.
- 165. Coiera E, Tong HL. Replication studies in the clinical decision support literature–frequency, fidelity, and impact. J Am Med Inform Assoc 2021; 28 (9): 1815–25.
- 166. Editorial. Replicating scientific results is tough—but crucial. *Nature* 2021; 600 (7888): 359–60.
- 167. List JA. The Voltage Effect. 1st ed. New York: Currency; 2022.
- Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? JAMA 2000; 283 (20): 2701–11.
- McGinnis JM, Fineberg HV, Dzau VJ. Advancing the learning health system. N Engl J Med 2021; 385 (1): 1–5.
- 170. McDonald C, Overhage J. Guidelines you can follow and trust: an ideal and an example. *JAMA* 1994; 271 (11): 872–3.
- 171. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ; GRADE Working Group. What is "quality of evidence" and why is it important to clinicians? *BMJ* 2008; 336 (7651): 995–8.
- 172. Christensen R, Singh JA, Wells GA, Tugwell PS. Do "evidence-based recommendations" need to reveal the evidence? Minimal criteria supporting an "evidence claim". J Rheumatol 2015; 42 (10): 1737–9.
- 173. Dunn AG, Bourgeois FT. Is it time for computable evidence synthesis? J Am Med Inform Assoc 2020; 27 (6): 972–5.
- 174. Israel E. Implementing the guidelines: what do you do when the rubber hits the road? *J Allergy Clin Immunol* 2020; 146 (6): 1271–4.
- 175. Mandl KD, Mandel JC, Murphy SN, *et al.* The SMART Platform: early experience enabling substitutable applications for electronic health records. *J Am Med Inform Assoc* 2012; 19 (4): 597–603.
- Hammond WE. Health Level 7: an application standard for electronic medical data exchange. *Top Health Rec Manage* 1991; 11 (4): 59–66.
- 177. Watzlaf VJ, Zeng X, Jarymowycz C, Firouzan PA. Standards for the content of the electronic health record. *Perspect Health Inf Manag* 2004; 1: 1.
- 178. Byrne CM, Mercincavage LM, Bouhaddou O, *et al.* The Department of Veterans Affairs' (VA) implementation of the Virtual Lifetime Electronic Record (VLER): findings and lessons learned from Health Information Exchange at 12 sites. *Int J Med Inform* 2014; 83 (8): 537–47.
- 179. Del Fiol G, Curtis C, Cimino JJ, et al. Disseminating context-specific access to online knowledge resources within electronic health record systems. Stud Health Technol Inform 2013; 192: 672–6.
- 180. Bell PD. Standards and the integrated electronic health care record. Health Care Manag (Frederick) 2000; 19 (1): 39-43.
- 181. Li YC, Detmer DE, Shabbir SA, et al. A global travelers' electronic health record template standard for personal health records. J Am Med Inform Assoc 2012; 19 (1): 134–6.
- 182. Semler MW, Self WH, Wanderer JP, *et al.*; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. *N Engl J Med* 2018; 378 (9): 829–39.
- Self WH, Semler MW, Wanderer JP, *et al.*; SALT-ED Investigators. Balanced crystalloids versus saline in noncritically ill adults. *N Engl J Med* 2018; 378 (9): 819–28.
- 184. RECOVERY Collaborative Group;Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2020; 384 (8): 693–704.
- Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med 2017; 377 (1): 62–70.

- 186. Huang DT, McCreary EK, Bariola JR, et al. The UPMC OPTIMISE-C19 (OPtimizing Treatment and Impact of Monoclonal antIbodieS through Evaluation for COVID-19) trial: a structured summary of a study protocol for an open-label, pragmatic, comparative effectiveness platform trial with response-adaptive randomization. *Trials* 2021; 22 (1): 363.
- 187. Reitz KM, Seymour CW, Vates J, et al. Strategies to Promote ResiliencY (SPRY): a randomised embedded multifactorial adaptative platform (RE-MAP) clinical trial protocol to study interventions to improve recovery after surgery in high-risk patients. BMJ Open 2020; 10 (9): e037690.
- Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. JAMA 2015; 313 (16): 1619–20.
- 189. Angus DC, Berry S, Lewis RJ, et al. The REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) study. Rationale and design. Ann Am Thorac Soc 2020; 17 (7): 879–91.
- 190. Platt R, Simon GE, Hernandez AF. Is learning worth the trouble?—improving health care system participation in embedded research. N Engl J Med 2021; 385 (1): 5–7.
- 191. The Editors. OHRP and standard-of-care research. N Engl J Med 2014; 371 (22): 2125–6.
- Lantos JD, Spertus JA. The concept of risk in comparative-effectiveness research. N Engl J Med 2014; 371 (22): 2129–30.
- 193. Institute of Medicine. *Initial National Priorities for Comparative Effectiveness Research*. Grossmann C, Powers B, McGinnis JM, eds. Washington, DC: The National Academies Press; 2009: 253p.
- 194. Hawe P, Shiell A, Riley T. Complex interventions: how "out of control" can a randomised controlled trial be? BMJ 2004; 328 (7455): 1561–3.
- 195. Dojat M, Brochard L, Lemaire F, Harf A. A knowledge-based system for assisted ventilation of patients in intensive care units. *Int J Clin Monit Comput* 1992; 9 (4): 239–50.
- 196. Ioannidis JPA. Coronavirus disease 2019: the harms of exaggerated information and non-evidence-based measures. *Eur J Clin Invest* 2020; 50 (4): e13222.
- 197. Itaya T, Isobe Y, Suzuki S, Koike K, Nishigaki M, Yamamoto Y. The fragility of statistically significant results in randomized clinical trials for COVID-19. JAMA Netw Open 2022; 5 (3): e222973.
- 198. Jaeschke R, Cook D, Sackett DL. The potential role of single-patient randomized controlled trials (N-of-1 RCTs) in clinical practice [editorial; comment]. J Am Board Fam Pract 1992; 5 (2): 227–9.
- 199. Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, Schork NJ. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? *Per Med* 2011; 8 (2): 161–73.
- 200. Zucker DR, Ruthazer R, Schmid CH, et al. Lessons learned combining N-of-1 trials to assess fibromyalgia therapies. J Rheumatol 2006; 33 (10): 2069–77.
- 201. Duan N, Kravitz RL, Schmid CH. Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered comparative effectiveness research. J Clin Epidemiol 2013; 66 (8 Suppl): S21–8.
- 202. Walton A, Nahum-Shani I, Crosby L, Klasnja P, Murphy S. Optimizing digital integrated care via micro-randomized trials. *Clin Pharmacol Ther* 2018; 104 (1): 53–8.
- 203. Moon K, Sobolev M, Kane JM. Digital and mobile health technology in collaborative behavioral health care: scoping review. *JMIR Ment Health* 2022; 9 (2): e30810.
- 204. Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med 2022; 28 (4): 809–13.
- 205. Fan E, Laupacis A, Pronovost PJ, Guyatt GH, Needham DM. How to use an article about quality improvement. JAMA 2010; 304 (20): 2279–87.
- 206. Chassin MR. Improving the quality of health care: what's taking so long? *Health Aff (Millwood)* 2013; 32 (10): 1761–5.
- 207. Chassin MR, Loeb JM. High-reliability health care: getting there from here. *Milbank* Q 2013; 91 (3): 459–90.
- 208. Writing Group for the CHECKLIST-ICU Investigators and the Brazilian Research in Intensive Care Network (BRICNet); Cavalcanti AB, Bozza FA, Machado FR, Salluh JI, Campagnucci VP, Vendramim P, et al. Effect of a quality improvement intervention with daily round checklists, goal

setting, and clinician prompting on mortality of critically ill patients: a randomized clinical trial. *JAMA* 2016; 315 (14): 1480–90.

- 209. Almirall D, Nahum-Shani I, Sherwood NE, Murphy SA. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. *Transl Behav Med* 2014; 4 (3): 260–74.
- Noto MJ, Domenico HJ, Byrne DW, et al. Chlorhexidine bathing and health care-associated infections: a randomized clinical trial. JAMA 2015; 313 (4): 369–78.
- 211. Janz DR, Semler MW, Lentz RJ, et al.; Facilitating EndotracheaL intubation by Laryngoscopy technique and apneic Oxygenation Within the ICU Investigators and the Pragmatic Critical Care Research Group. Randomized trial of video laryngoscopy for endotracheal intubation of critically ill adults. Crit Care Med 2016; 44 (11): 1980–7.
- 212. Casey JD, Janz DR, Russell DW, et al.; PreVent Investigators and the Pragmatic Critical Care Research Group. Bag-mask ventilation during tracheal intubation of critically ill adults. N Engl J Med 2019; 380 (9): 811–21.
- Tukey JW. Some thoughts on clinical trials, especially problems of multiplicity. *Science* 1977; 198 (4318): 679–84.
- Gilbert JP, McPeek B, Mosteller F. Statistics and ethics in surgery and anesthesia. *Science* 1977; 198 (4318): 684–9.
- Horwitz RI. The experimental paradigm and observational studies of causeeffect relationships in clinical medicine. J Chronic Dis 1987; 40 (1): 91–9.
- 216. Guyatt G, Sackett D, Taylor D, Chong J, Roberts R, Pugsley S. Determining optimal therapy–randomized trials in individual patients. *N Engl J Med* 1986; 314 (14): 889–92.
- 217. Feinstein AR. Meta-analysis: statistical alchemy for the 21st century. J *Clin Epidemiol* 1995; 48 (1): 71–9.
- 218. McAlister FA. Applying evidence to patient care: from black and white to shades of grey. *Ann Intern Med* 2003; 138 (11): 938–9.
- 219. Evans RS. Electronic health records: then, now, and in the future. *Yearb Med Inform* 2016; Suppl 1: S48–61.
- 220. Johnson KB, Stead WW. Making electronic health records both SAFER and SMARTER. JAMA 2022; 328 (6): 523.
- 221. Laubscher TP, Frutiger A, Fanconi S, Brunner JX. The automatic selection of ventilation parameters during the initial phase of mechanical ventilation. *Intensive Care Med* 1996; 22 (3): 199–207.
- 222. Centers for Medicare & Medicaid Services. National Health Expenditures 2020 Highlights. Baltimore, MD: US Department of Health and Human Services; 2021.
- 223. Braithwaite J, Glasziou P, Westbrook J. The three numbers you need to know about healthcare: the 60-30-10 Challenge. *BMC Med* 2020; 18 (1): 102.
- 224. Sox HC, Greenfield S. Comparative effectiveness research: a report from the Institute of Medicine. *Ann Intern Med* 2009; 151 (3): 203–5.
- 225. Platt R, Kass NE, McGraw D. Ethics, regulation, and comparative effectiveness research: time for a change. *JAMA* 2014; 311 (15): 1497.
- 226. Morris A. Ethical implications of standardizing clinical decisions with computerized protocols. In: Vincent J-L, ed. Yearbook of Intensive Care and Emergency Medicine 1999. Berlin: Springer, 1999: 691–7.
- 227. Faden RR, Kass NE, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. An ethics framework for a learning health care system: a departure from traditional research ethics and clinical ethics. *Hastings Cent Rep* 2013; 43 (s1): S16–27.
- 228. Kass NE, Faden RR, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. The research-treatment distinction: a problematic approach for determining which activities should have ethical oversight. *Hastings Cent Rep* 2013; 43 (s1): S4–15.
- 229. Hamberger E. Transdisciplinarity: a scientific essential. Ann N Y Acad Sci 2004; 1028 (1): 487–96.
- Moses H, III, Matheson DM, Dorsey E, George BP, Sadoff D, Yoshimura
 The anatomy of health care in the United States. *JAMA* 2013; 310 (18): 1947–64.
- Cohn KH, Berman J, Chaiken B, et al. Engaging physicians to adopt healthcare information technology. J Healthc Manag 2009; 54 (5): 291–300.
- 232. Sox HC. Resolving the tension between population health and individual health care. *JAMA* 2013; 310 (18): 1933–4.

- 233. Elish MC, Watkins EA. *Repairing Innovation: A Study of Integrating AI in Clinical Care.* New York, NY: Data & Society Research Institute, Inc.; 2020.
- Wasson JH, Sox HC, Neff RK, Goldman L. Clinical prediction rules. Applications and methodological standards. N Engl J Med 1985; 313 (13): 793–9.
 Hammond KR. Human Judgment and Social Policy: Irreducible Uncer-
- tainty, Inevitable Error, Unavoidable Injustice. New York: Oxford University Press; 1996: xi, 436p.
- 236. Kleinmuntz B. Why we still use our heads instead of formulas: Toward an integrative approach. In: Connolly T, Arkes HR, Hammond KR, eds. Judgment and Decision Making: An Interdisciplinary Reader. 2nd ed. Cambridge, U.K.; New York: Cambridge University Press; 2000: 681–711.
- 237. Kahneman D, Rosenfield A, Gandhi L, Blaser T. NOISE: how to overcome the high, hidden cost of inconsistent decision making. *Harv Bus Rev* 2016; 94 (10): 38–46.
- 238. Henrich JP. The WEIRDest People in the World: How the West Became Psychologically Peculiar and Particularly Prosperous. New York: Farrar, Straus and Giroux; 2020.
- 239. Deans KJ, Minneci PC, Suffredini AF, et al. Randomization in clinical trials of titrated therapies: unintended consequences of using fixed treatment protocols. *Crit Care Med* 2007; 35 (6): 1509–16.
- 240. Campbell EM, Sittig DF, Ash JS, Guappone KP, Dykstra RH. Types of unintended consequences related to computerized provider order entry. J Am Med Inform Assoc 2006; 13 (5): 547–56.
- Ash JS, Sittig DF, Campbell EM, Guappone KP, Dykstra RH. Some unintended consequences of clinical decision support systems. *AMIA Annu Symp Proc* 2007: 26–30.
- 242. Werner RM, Asch DA. The unintended consequences of publicly reporting quality information. JAMA 2005; 293 (10): 1239–44.
- 243. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. *JAMA* 2017; 318 (6): 517–8.
- 244. Byrne L, Obonyo NG, Diab SD, et al. Unintended consequences: fluid resuscitation worsens shock in an ovine model of endotoxemia. Am J Respir Crit Care Med 2018; 198 (8): 1043–54.
- 245. Lipsitz LA. Understanding health care as a complex system: the foundation for unintended consequences. *JAMA* 2012; 308 (3): 243–4.
- 246. Hoffman SJ, Baral P, Rogers Van Katwyk S, et al. International treaties have mostly failed to produce their intended effects. Proc Natl Acad Sci U S A 2022; 119 (32): e2122854119.
- 247. Holden RJ, Karsh B-T. A theoretical model of health information technology usage behaviour with implications for patient safety. *Behav Inf Technol* 2009; 28 (1): 21–38.
- 248. Holden RJ, Scanlon MC, Patel NR, *et al.* A human factors framework and study of the effect of nursing workload on patient safety and employee quality of working life. *BMJ Qual Saf* 2011; 20 (1): 15–24.
- 249. Morris AH, Lanspa M, Fan E. Widespread adoption of guidelines will require automated clinician decison support. *Crit Care Med* 2019; 47 (3): 469–71.
- 250. Reid PP, Compton WD, Grossman JH, Fanjiang G. Building a Better Delivery System—A New Engineering/Health Care Partnership. Washington, DC: National Academy of Engineering; Institute of Medicine; National Academies Press; 2005: xxi414p.
- 251. Eddy DM, Schlessinger L. Archimedes: an analytical tool for improving the quality and efficiency of health care. In: Reid PP, Compton WD, Grossman JH, Fanjiang G, eds. *Building a Better Delivery System—A New Engineering/Health Care Partnership*. Washington, DC: National Academy of Engineering; Institute of Medicine; National Academies Press; 2005: 167–72.
- 252. Eddy D, Cohen M-D. Description of the Archimedes Model ARCHes Simulator 2.3. San Francisco, CA: Archimedes Quantifying Healthcare; 2011. https://storage.googleapis.com/plos-corpus-prod/10.1371/journal. pone.0066454/1/pone.0066454.s002.pdf?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20220825%2Fauto%2Fstorage%2Fgoog4_request &X-Goog-Date=20220825T154932Z&X-Goog-Expires=86400&X-Goog-SignedHeaders=host&X-Goog-Signature=9a5e92582bf66dbc2 cc295e80eae5b753e50408f7457644f00ac6355ab3e021dda268855b f94f9c9f3fb8e62ddc5ba09b121f57c3be89c910882af7eb1696ac6927faa6f9f036cdde5939d3b4c343f122147d8e0a7340bdafc5149d5c6e23

 $1b0dea0658e0fbaad1e1a817c4adcf4bcbbe4982d371e0607cf112b7f-fa5be4afa760cee63e9f5d66be00bd989545849f45b0ceafbcf70b6833\\1886f8d41d622b841b909d59e6103a4a39471f5ded50541fb6f47a8e\\6c6870323c0967551f46cc93bb327025f403252e5ee21031ba843b37\\b9cae7eaa6122d989490bb58fbdb98cdc94a98fd370de969c4931b67\\958ae74940637791d95f820e30876c2bc4033cc3.$

- 253. Dorsey ER, Ritzer G. The McDonaldization of medicine. *JAMA Neurol* 2016; 73 (1): 15–6.
- 254. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol 2019; 28 (2): 73–81.
- 255. Emanuel EJ, Wachter RM. Artificial intelligence in health care: will the value match the hype? *JAMA* 2019; 321 (23): 2281–2.
- 256. Arnold MH. Teasing out artificial intelligence in medicine: an ethical critique of artificial intelligence and machine learning in medicine. *J Bioeth Inq* 2021; 18 (1): 121–39.
- 257. Kim MO, Coiera E, Magrabi F. Problems with health information technology and their effects on care delivery and patient outcomes: a systematic review. J Am Med Inform Assoc 2017; 24 (2): 246–50.
- 258. Hartzband P, Groopman J. Off the record–avoiding the pitfalls of going electronic. N Engl J Med 2008; 358 (16): 1656–8.
- 259. Dhillon NK, Francis SE, Tatum JM, *et al*. Adverse effects of computers during bedside rounds in a critical care unit. *JAMA Surg* 2018; 153 (11): 1052–3.
- Evans EL, Whicher D. What should oversight of clinical decision support systems look like? AMA J Ethics 2018; 20 (9): E857–63.
- 261. Grote T, Berens P. On the ethics of algorithmic decision-making in healthcare. J Med Ethics 2020; 46 (3): 205–11.
- Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect mediators, and mitigators. J Am Med Inform Assoc 2012; 19 (1): 121–7.
- Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med 2018; 378 (11): 981–3.
- Goldhahn J, Rampton V, Spinas GA. Could artificial intelligence make doctors obsolete? *BMJ* 2018; 363: k4563.
- 265. Karches KE. Against the iDoctor: why artificial intelligence should not replace physician judgment. *Theor Med Bioeth* 2018; 39 (2): 91–110.
- Hoff T. Deskilling and adaptation among primary care physicians using two work innovations. *Health Care Manage Rev* 2011; 36 (4): 338–48.
- 267. Prasad M, Holmboe ES, Lipner RS, et al. Clinical protocols and trainee knowledge about mechanical ventilation. JAMA 2011; 306 (9): 935–41.
- Sollecito WA, Johnson JK. McLaughlin and Kaluzny's Continuous Quality Improvement in Health Care. 4th ed. Burlington, MA: Jones & Bartlett Learning; 2013: xxvi619p.
- 269. Girard TD, Alhazzani W, Kress JP, et al.; ATS/CHEST Ad Hoc Committee on Liberation from Mechanical Ventilation in Adults. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically III Adults. Rehabilitation Protocols, Ventilator Liberation Protocols, and Cuff Leak Tests. Am J Respir Crit Care Med 2017; 195 (1): 120–33.
- Whitehead AN. An Introduction to Mathematics. London: Williams and Norgate; 1911. 256p.
- Russell B. Education and the Good Life. New York: Boni & Liveright; 1926: vi319p.
- 272. Christensen CM. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Boston, MA: Harvard Business Review Press; 2013: xxvii, 252p.
- 273. Christensen CM, Grossman JH, Hwang J. The Innovator's Prescription: A Disruptive Solution for Health Care. New York: McGraw-Hill; 2009. li, 441p.
- 274. Reinhardt U. Divide et impera: protecting the growth of health care incomes (COSTS). *Health Econ* 2012; 21 (1): 41–54.
- 275. Berwick DM. The toxic politics of health care. *JAMA* 2013; 310 (18): 1921–2.
- Chin MH. Uncomfortable truths—what covid-19 has revealed about chronic-disease care in America. N Engl J Med 2021; 385 (18): 1633–6.
- 277. Baily MA. Harming through protection? N Engl J Med 2008; 358 (8): 768–9.