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Domain adaptation for semantic role
labeling of clinical text
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ABSTRACT
....................................................................................................................................................

Objective Semantic role labeling (SRL), which extracts a shallow semantic relation representation from different surface textual forms of free text
sentences, is important for understanding natural language. Few studies in SRL have been conducted in the medical domain, primarily due to lack
of annotated clinical SRL corpora, which are time-consuming and costly to build. The goal of this study is to investigate domain adaptation tech-
niques for clinical SRL leveraging resources built from newswire and biomedical literature to improve performance and save annotation costs.
Materials and Methods Multisource Integrated Platform for Answering Clinical Questions (MiPACQ), a manually annotated SRL clinical corpus, was
used as the target domain dataset. PropBank and NomBank from newswire and BioProp from biomedical literature were used as source domain
datasets. Three state-of-the-art domain adaptation algorithms were employed: instance pruning, transfer self-training, and feature augmentation.
The SRL performance using different domain adaptation algorithms was evaluated by using 10-fold cross-validation on the MiPACQ corpus.
Learning curves for the different methods were generated to assess the effect of sample size.
Results and Conclusion When all three source domain corpora were used, the feature augmentation algorithm achieved statistically significant
higher F-measure (83.18%), compared to the baseline with MiPACQ dataset alone (F-measure, 81.53%), indicating that domain adaptation algo-
rithms may improve SRL performance on clinical text. To achieve a comparable performance to the baseline method that used 90% of MiPACQ
training samples, the feature augmentation algorithm required <50% of training samples in MiPACQ, demonstrating that annotation costs of clini-
cal SRL can be reduced significantly by leveraging existing SRL resources from other domains.

....................................................................................................................................................

Keywords: semantic role labeling, shallow semantic parsing, clinical natural language processing, domain adaptation, transfer learning

INTRODUCTION
Natural language processing (NLP) technologies are important for
unlocking information embedded in narrative reports in electronic
health record systems. Although various NLP systems have been de-
veloped to support a wide range of computerized medical applica-
tions, such as biosurveillance and clinical decision support,
extracting semantically meaningful information from clinical text re-
mains a challenge. Semantic role labeling (SRL)1 (also known as
shallow semantic parsing),2 which extracts semantic relations be-
tween predicates and their arguments from different surface textual
forms, is an important method for the extraction of semantic infor-
mation. State-of-the-art SRL systems have been developed and ap-
plied to information extraction in open domains and various
biomedical subdomains.3–12 However, very few SRL studies have
been conducted in the clinical domain,13,14 probably due to the lack
of large-scale annotated corpora. The creation of such clinical SRL
corpora would be both time-consuming and expensive.13

In this study, we approach SRL on clinical narratives as a domain
adaptation problem. The goal is to adapt existing the SRL corpora of
newswire text15,16 and biomedical literature17 to the clinical domain.
By transferring knowledge from existing corpora in other domains to
the clinical domain, we aim to improve the performance of clinical SRL
and reduce the cost of developing one de novo. We used three existing
SRL corpora outside the clinical domain and evaluated three state-of-
the-art domain adaptation algorithms on the task of SRL for clinical
text. Our results showed that domain adaptation strategies were effec-
tive for improving the performance or reducing the annotation cost of
SRL on clinical text. To the best of our knowledge, this is the first work
that has introduced domain adaptation algorithms for clinical SRL.

BACKGROUND
The task of SRL is to label semantic relations in a sentence as predi-
cate argument structures (PASs) to represent propositions.18 The defi-
nition of PAS originated from the predicate logic for proposition
representation in semantics theory.2 There is a large body of work on
extracting semantic relations in biomedical text.4–12,19–23 Many are
based on the sublanguage theory by Harris,24 which describes the
properties of language in closed domains. Typically, in a closed do-
main such as medicine, there are a limited number of primary seman-
tic types and a set of constraints that can determine how different
semantic types of the arguments can be linked to form semantic pred-
ications.25 Linguistic String Project (LSP)21 and Medical Language
Extraction and Encoding System (MedLEE),22 which use sublanguage
grammar, are two early NLP systems for the extraction of semantic re-
lations in the medical domain. SemRep is another biomedical seman-
tic relation extraction system, which extracts semantic predications
defined in the Unified Medical Language System Semantic Network
from biomedical literature.19,20 Recently, Cohen et al.26 examined the
syntactic alternations in the argument structure of domain-specific
verbs and associated nominalizations in the PennBioIE corpus, and
found that even in a semantically restricted domain, syntactic varia-
tions are common and diverse. Currently, many sublanguage-based
clinical NLP systems often recognize semantic relations24 by manually
extracted patterns using rule-based methods.22,27 SRL, however, fo-
cuses on unifying variations in the surface syntactic forms of semantic
relations based on annotated corpora. It is inspired by previous re-
search into semantic frames28,29 and the link between semantic roles
and syntactic realization.30 Although current SRL approaches are pri-
marily developed in open domains (thus, types of semantic roles or
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arguments may not be sufficient or appropriate for the medical do-
main), they can be refined and extended to the medical domain,13,14

thus providing alternative or complementary approaches for clinical
semantic relation extraction.

In SRL, a predicate usually refers to a word indicating a relation or
an attribute, and arguments refer to syntactic constituents acting as dif-
ferent semantic roles to the predicate. The core arguments represent
the essential arguments of a predicate, whereas adjunctive arguments
express general properties of a predicate such as time and location. For
example, in Figure 1, in the sentence “We resected the left carotid ste-
nosis 5 months ago,” “resected” is the predicate, “We” comprises the
role of agent (initiator/executor in the relation), indicating the surgeon
performing the action “resect”; “the left carotid stenosis” comprises the
role of patient (receptor in the relation), indicating the entity removed by
the action “resect,” and “5 months ago” is the time. The roles of agent
and patient are the core arguments and time is the adjunctive argument
of the predicate.

Automatic SRL was first introduced by Gildea and Jurafsky in
2002.31 Since then, SRL has attracted attention owing to its useful-
ness for multiple NLP tasks and applications, such as information ex-
traction and question answering.3,32,33 With public availability of large-
scale annotated corpora such as PropBank,18 and promotion by CoNLL
shared tasks,34,35 many data-driven approaches have been developed
for SRL in open domains such as newswire. This approach is stan-
dardized and divides SRL into several successive tasks. Argument
identification (AI) finds all syntactic constituents with semantic roles,
that is, arguments in the sentence. Argument classification (AC) deter-
mines the specific semantic role of an argument. Global inference re-
fines the output of preceding tasks using global constraints. These
tasks can be conquered individually36,37 or as a combined task.12,31

Other approaches include resolving syntactic parsing and SRL jointly
by integrating them into a single model,37 or by using Markov Logic
Networks as the learning framework.38

In the last few years, efforts have focused on building SRL systems
for biomedical literature. Wattarujeekrit et al.7 developed PASBio,
which analyzes and annotates the PASs of over 30 verbs for molecular
events. Kogan et al.8 annotated PAS in medical case reports. The
LSAT system, developed by Shah and Bork,9 used SRL to identify
information about gene transcripts. Bethard et al.10 extracted informa-
tion about protein movement by using an SRL system, in which 34
verbs and four semantic roles focusing specifically on protein move-
ment were defined and annotated in their corpus. Barnickel et al.11

presented a neural network–based SRL system for relation extraction

with emphasis on improving processing speed. Paek et al.12 semanti-
cally analyzed abstracts from randomized trials with SRL; however,
the predicate set only contained five verbs. The BIOSMILE system by
Tsai et al.17 was built on the BioProp corpus, in which PASs of 30
verbs were annotated following the PropBank guideline. Interestingly,
their results showed that the SRL system trained on PropBank alone
did not perform well on BioProp.

All the previously described SRL systems were built on annotated
corpora of biomedical literature, facilitating literature-based informa-
tion extraction applications.23 However, very few studies have been
conducted to investigate SRL techniques for clinical text from elec-
tronic health records.39 For example, Wang et al.14,40 analyzed and
annotated PASs of 30 predicates in operative notes following the
PropBank style, but they did not build an automatic SRL system. The
first clinical SRL system was reported by Albright et al.,13 who created
an annotated corpus, Multisource Integrated Platform for Answering
Clinical Questions (MiPACQ), containing multiple syntactic and seman-
tic layers including SRL information. The SRL dataset in MiPACQ con-
tains 1137 predicates and the SRL performance on that dataset was
79.91% by adopting an existing SRL method developed for news-
wire.13 The primary limitation for clinical SRL research is apparently
the lack of annotated SRL corpora in the medical domain. It is time-
consuming and expensive to create large annotated clinical corpora,
because this often requires manual review by domain experts such as
physicians. Moreover, medicine consists of different subdomains (e.g.,
internal medicine, pathology, and radiology) and the languages of dif-
ferent subdomains can be distinct,25 which makes it challenging to
transfer machine learning–based models from one subdomain to an-
other. For example, the MiPACQ dataset was a collection of Mayo
Clinic’s clinical notes (CNs) and pathology notes regarding colon can-
cer.13 When the SRL model built from MiPACQ was tested on two other
CN datasets of different genres and note styles, namely radiology notes
from the Strategic Health IT Advanced Research Projects and colon can-
cer clinical and pathology notes from Temporal Histories of Your Medical
Events, the performance dropped significantly.13 Therefore, to construct
high-performance SRL systems for each subdomain, we may have to
create annotated corpora for every specific subdomain, which would
require substantial effort and resources.

To address this limitation in clinical SRL development, we pro-
pose an investigation of domain adaptation techniques for SRL. The
task of domain adaption is to adapt a classifier that is trained on a
source domain to a new target domain. This improves performance
and reduces dependency of the classifier on large annotated

Figure 1. Syntactic parse tree annotated with semantic roles.
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datasets in the target domain.41,42 Transfer learning algorithms are
often employed for domain adaptation.43 Given a source domain, Ds,
and its learning task, Ts, a target domain, DT, and its learning task,
TT, transfer learning aims to improve the learning of the target pre-
dictive model in DT by using the knowledge from Ds and Ts.

39 Most
commonly used transfer learning algorithms can be categorized into
instance-level and feature-level approaches. Let LS denote the la-
beled dataset of DS, LT denote the labeled dataset of DT, and UT de-
note the unlabeled dataset of DT; here, instance-level transfer
learning algorithms aim to select or weight instances in LS for use in
the target domain.43 This does not depend on the machine learning
algorithm used for building classifiers, but requires a small gap be-
tween the source and target domains. Feature-level transfer learning
algorithms aim to find a new feature representation that reduces the
difference between features in DS and DT and highlights the similar-
ity between them. This has a moderate dependency on machine
learning algorithms, but is more tolerant of domain gap. Transfer
learning algorithms have been effective in solving the problem of
data scarcity in DT for several key bioinformatics areas, such as se-
quence classification and gene expression data analysis.44

Dahlmeier and Ng45 addressed SRL on BioProp by using domain ad-
aptation algorithms for the first time, with PropBank as the source
domain dataset. Their results demonstrated that the cost of develop-
ing an SRL system for interpreting molecular events could be signifi-
cantly reduced. Ferraro et al.46 also showed improved performance
of POS tagging on clinical narratives using the feature-level transfer
learning algorithm Easy Adapt. More recently, Laippala et al.47 inves-
tigated the use of “source only,” “target only,” and “sourceþ target”
in statistical parsing of clinical Finnish; however, no domain adapta-
tion algorithm was employed in their work.

In this study, we explored both instance-level and feature-level do-
main adaptation algorithms for SRL on clinical narratives. We used
PropBank, NomBank, and BioProp as source domain datasets and
MiPACQ as the target domain dataset. Dahlmeier and Ng45 previously
conducted a domain adaptation study on biomedical literature using
BioProp as the target dataset and PropBank as the source dataset,
and they obtained promising results on molecular event interpretation.
Our study design is similar to the work of Dahlmeier and Ng.45

However, we focus on clinical text instead of biomedical literature on
molecular events. Previous studies have shown that clinical reports
and biomedical literature are two very different sublanguages in terms
of semantic relation types and complexity.25 Their differences were
also demonstrated in various other NLP tasks, such as word sense
disambiguation and medical term identification.48,49 Furthermore,
BioProp only contains semantic roles of 30 verb predicates with 1962
PASs; MiPACQ has 722 verb predicates and 415 nominal predicates
with 12 575 PASs. Therefore, it is important to assess domain adapta-
tion methods on the larger clinical SRL corpus, in addition to biomedi-
cal literature. Moreover, we investigated the effect of additional
external corpora (i.e., BioProp and NomBank) and their combinations
on clinical SRL, which was not reported in Dahlmeier and Ng’s work.
To the best of our knowledge, this is the first work that has introduced
domain adaptation algorithms for clinical SRL. Our evaluation showed
that domain adaptation algorithms can improve performance or reduce
annotation costs for clinical SRL.

METHODS
Datasets
We used four annotated SRL datasets in our study, three as source
domain datasets and one as the target dataset, as described in the
following.

Source domain datasets
The PropBank corpus18 is the most widely used corpus for developing
SRL systems.45 The corpus is built from news articles of the Wall
Street Journal and is available through the Linguistic Data Consortium
(http://www.ldc.upenn.edu). Semantic roles of verb predicates are an-
notated in this corpus. The PropBank corpus has 25 sections, denoted
as sections 00–24. We used the standard training set of sections
2–21 as the source domain dataset.

The NomBank corpus16 contains annotated semantic roles of nom-
inal predicates. Similar to PropBank, it is built from news articles of
the Wall Street Journal, based on the Penn TreeBank. It is available
online at http://nlp.cs.nyu.edu/meyers/NomBank.html. Following
PropBank, the standard training set of sections 2–21 was used as the
source domain dataset.50

The BioProp corpus17 is annotated based on the GENIA
Treebank.51 The GENIA Treebank facilitates information extraction
from biomedical literatures about proteins. It is available for download-
ing from the GENIA project web site (http://www.nactem.ac.uk/genia/
genia-corpus/treebank). Specifically, BioProp was created from 500
MEDLINE abstracts. The articles were selected based on the keywords
“human,” “blood cells,” and “transcription factor.” Semantic roles of
verb predicates are annotated in BioProp.

Target domain dataset
MiPACQ is built from randomly selected CNs and pathology notes
of Mayo Clinic related to colon cancer.13 Annotations of layered
linguistic information including part of speech tagging, PAS for SRL,
named entities, and semantic information from Unified Medical
Language Systems are available for building NLP components.
The predicate–argument semantic annotations follow PropBank
guidelines. Both verb and nominal predicates are annotated in
MiPACQ.

Table 1 displays the statistics of the four corpora. MiPACQ contains
722 verb predicates with 9780 PAS and 415 nominal predicates with
2795 PASs. PropBank and BioProp (PB) have only verb predicates;
NomBank has only nominal predicates. Among the 722 verb predi-
cates in MiPACQ, 644 are common with PropBank and 15 are com-
mon with BioProp. Among the 415 nominal predicates, 265 are
common with NomBank. As displayed in Table 1, among the three
source domain datasets, the sizes of PropBank/NomBank are signifi-
cantly larger than BioProp (�50 times more PASs). Moreover, the size
of BioProp is much smaller than MiPACQ, with a ratio of 1:38 for
predicates.

Domain Adaptation Algorithms
The three transfer-learning algorithms employed in this study are de-
scribed in detail in the following.
Instance pruning. Instance pruning (InstancePrune) trains a classi-
fier on LT and uses this classifier to predict class labels for LS.52 The
top p instances that are predicted wrongly, ranked by prediction con-
fidence, are removed from LS. The intuition here is that instances
that are very different from the target domain will affect the predic-
tion ability of the classifier model. The remaining instances, L0S, are
added to LT as training data.

Transfer self-training. Transfer self-training (TransferSelf) borrows
the idea of self-training from the framework of semisupervised learn-
ing into transfer learning.53 It iteratively trains the classifier by trans-
ferring a subset of L0S with high similarity to instances in DT from LS

to enrich LT as the training data.54 First, a classifier trained using LT
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is applied to LS. For each category in LS, the top n correctly classified
instances ranked by prediction confidence are selected and added
into LT as the training data. The classifier is then retrained on the
enriched training data and applied to LS–L0S again to select more
instances. The iteration terminates when the prediction confidence
of instance in LS–L0S is less than a specified threshold or the maxi-
mum allowed iterations is exceeded. The final classifier is obtained
by training on the combination of LT and L0S.

Both InstancePrune and TransferSelf are instance-level transfer
learning algorithms. The differences between them include: (1)
InstancePrune attempts to remove wrongly predicted source instances
of high confidence; TransferSelf selects correctly predicted source
instances of high confidence into the training set; and (2) the source
instance selection in InstancePrune is conducted only once;
TransferSelf adds source instances iteratively into the training set,
thus leveraging selected source instances in previous iterations. In
Dahlmeier and Ng,45 another instance level transfer learning algorithm
named instance weighting52 was employed for domain adaptation.

However, the experimental results were not promising.45 In our pilot
study, we tried another instance weighting algorithm called
TrAdaBoost55 and it did not perform well either. Hence, we did not
employ instance weighting in our study.

Feature augmentation. For feature augmentation (FeatureAug),
Daumé III56 proposed a domain adaptation algorithm that maps feature
vectors into a higher dimension. This algorithm is also called Easy
Adapt, because it can be implemented simply with a few lines of Perl
script.56 Denote Xs and XT as the original feature vectors for source and
target domain, respectively, then mapping is conducted as follows:

XS ¼< XS; XS; 0 >

XT ¼< XT; 0; XT >

where 0 is a zero vector of length jXj. By this transformation, the
feature spaces of both DS and DT are augmented. Three versions of
features are generated from each original feature vector, namely,
“general,” “source-specific,” and “target-specific” versions. The intu-
ition of this algorithm is to leverage the aggregation of the three fea-
ture space versions to learn an efficient feature representation for DT.
Common features between DS and DT are assigned with higher
weights in instances of both domains; whereas features unique to DS

or DT are assigned with higher weights only in instances of DS or DT. A
standard machine-learning algorithm will assign weights differently to
features in each version. Effective features for DT will be emphasized
from the general and target-specific versions.

Experiments
System description
Figure 2 shows the study design of the domain adaptation–based
SRL. The SRL system can be viewed as consisting of the training
stage and the testing stage. In the training stage, SRL is split into
two subtasks: the AI and AC subtasks. First, a binary nonargument
versus argument classifier is built as the argument identifier on the
entire dataset for all predicates, instead of building one model per
predicate. For AC, a multiclass classifier is built to assign semantic
roles to arguments of all predicates. In the testing stage, for each
predicate, the argument candidates first pass through the argument
identifier. If one candidate is identified as an argument, it will go
through the argument classifier that assigns the semantic role.

Table 1: Corpus statistics for MiPACQ, PropBank,
NomBank, and BioProp

MiPACQ PropBank NomBank BioProp

Sentences 6145 36 090 41 964 1635

Unique
Predicate

1137 3257 4706 30

PAS 12 575 112 917 114 574 1962

ARG0 5633 66 329 49 823 1464

ARG1 10 343 92 958 80 102 2124

ARG2 3080 20 547 34 850 325

ARG3 162 3491 7611 8

ARG4 134 2739 494 5

ARG5 2 69 23 0

ALL_ARGM 8793 60 962 25 166 1762

Figure 2: Overview of the study design of domain adaptation based semantic role labeling. Experimental processes are
indicated in blue.
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Features and machine-learning algorithm
Similar to the work of Tsai et al.17 and Dahlmeier and Ng,17,45 we
adopted common features used in current state-of-the-art SRL sys-
tems. These features include seven baseline features from the original
work of Gildea and Jurafsky31 and additional features taken from
Pradhan et al.57 All were extracted from the syntactic parse tree, and
are shown in Figure 3. The “Voice” feature is not used for nominal
predicates.

We used the open source toolkit Liblinear58 for implementations of
machine-learning algorithms. The logistic regression algorithm was
applied to select confidence-based source domain training instances
for InstancePrune and TransferSelf, because it outputs predictions
with their probabilities, which can serve as the prediction confidence.52

The linear support vector machine algorithm was used to build SRL
models owing to its high generalization ability for new data.59

Experimental setup
Following the work of Dahlmeier and Ng,45 we used the gold-stand-
ard parsing annotations of PropBank, NomBank, BioProp, and
MiPACQ in our SRL experiments. In addition to separately using each
source domain dataset, the combination of PropBank and NomBank
(PN), PB, and all three source datasets (PNB) are used as Ds in our
experiments to examine the influence of multiple sources on domain
adaptation. Only the PASs with at least one argument were used. For
each implemented method, all parameters were tuned for optimal
performance.

Experiments and systematic analysis were conducted as discussed
in the following.

1. Algorithms for domain adaptation: InstancePrune, TransferSelf,
and FeatureAug were employed in this study, as described in the

“Methods” section. To examine the effectiveness of these algo-
rithms, three baseline methods were also developed for compari-
son: the “Source Only” method uses only Ds to train a classifier;
the “Target Only” method uses only DT to train a classifier; the
“Source & Target” method directly combines both DS and DT to
train a classifier.

2. Influence of sample size on domain adaptation: To determine the
effect of sample size on SRL performance, classifiers were also
trained using varying sample sizes of DS and DT. We examined the
performance of FeatureAug as the representative of the three
domain adaptation algorithms, and used combinations of three
sources as the DS, because FeatureAug with combined sources
showed optimal SRL performance in our study.

3. Domain adaptation for different predicate types: As described in
the “Datasets” section, MiPACQ contains both verb and nominal
predicates. PB have verb predicates only and NomBank has nomi-
nal predicates only. Among the 722 verb predicates in MiPACQ,
644 are common with PropBank and 15 are common with
BioProp. Among the 415 nominal predicates, 265 are common
with NomBank. The effects of domain adaptation on the perform-
ance of the common/uncommon predicates between DS and DT as
well as the performance of the verb/nominal predicates were
examined.

Evaluation
Precision (P), recall (R), and F1 measure were used as evaluation met-
rics for AI and combined SRL tasks. Precision measures the percent-
age of correct predictions of positive labels made by a classifier.
Recall measures the percentage of positive labels in the gold standard
that were correctly predicted by the classifier. F1 measure is the har-
monic mean of precision and recall. During the process of AC, the

Figure 3: Feature list for semantic role labeling.
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boundaries of candidate arguments are already identified by the AI
step. Therefore, the accuracy of the classifier was used for evaluation,
which is defined as the percentage of correct predictions with refer-
ence to the total number of candidate arguments correctly recognized
in the AI step.

Ten-fold cross-validation was employed for performance evalua-
tion. Nine folds of MiPACQ were merged with DS as the training set
and one fold was used for testing. In experiments evaluating the influ-
ence of source domain sample size, nine folds of MiPACQ were

merged with an increasing percentage of PropBank to generate the
training set. In experiments evaluating the effect of target domain
sample size, an increasing percentage of the nine-fold MiPACQ was
added to the entire PropBank as the training set.

RESULTS
Table 2 lists the results of the implemented methods using both indi-
vidual and combined source domain corpora as DS. Training on

Table 2: Performance with and without domain adaptation using PropBank, NomBank, BioProp, and their combinations (%)

Data Methods AI AC AIþ AC

P R F1 Accuracy P R F1

MiPACQ Target Only 93.24 92.81 93.02 87.65 81.72 81.34 81.53

PropBankþ
MiPACQ

Source Only 86.54 76.36 81.13 72.57 62.80 55.41 58.87

Source & Target 93.99 90.36 92.14 86.60 81.39 78.25 79.79

InstancePrune 94.22 92.70 93.45 86.95 81.93 80.60 81.26

TransferSelf 93.23 92.77 93.00 87.68 81.74 81.33 81.54

FeatureAug 94.08 93.82 93.95 88.17 82.95 82.71 82.83*

NomBankþ
MiPACQ

Source Only 84.20 11.03 19.50 60.18 50.68 6.65 11.75

Source & Target 95.59 85.46 90.24 86.53 82.71 73.95 78.08

InstancePrune 94.53 90.28 92.35 87.18 82.41 78.71 80.52

TransferSelf 93.21 92.49 92.85 87.94 81.98 81.34 81.66

FeatureAug 93.31 92.70 93.00 88.01 82.13 81.59 81.86

BioPropþ
MiPACQ

Source Only 53.48 30.62 38.95 53.06 28.38 16.25 20.67

Source & Target 93.43 92.07 92.74 88.07 82.28 81.08 81.68

InstancePrune 93.43 92.68 93.05 88.07 82.28 81.62 81.95

TransferSelf 93.41 92.77 93.09 87.82 82.04 81.48 81.75

FeatureAug 93.13 92.83 92.98 87.79 81.76 81.50 81.63

PNþMiPACQ Source Only 91.04 78.42 84.26 75.56 68.79 59.26 63.66

Source & Target 95.37 90.39 92.82 86.28 82.28 77.99 80.08

InstancePrune 95.13 92.68 93.89 87.16 82.59 80.47 81.51

TransferSelf 93.15 92.42 92.78 87.96 81.93 81.29 81.61

FeatureAug 94.50 93.89 94.19 88.27 83.41 82.87 83.14*

PBþMiPACQ Source Only 90.33 75.68 82.36 72.96 65.91 55.22 60.09

Source & Target 94.38 89.44 91.84 86.95 82.07 77.77 79.86

InstancePrune 93.75 91.71 92.72 87.38 81.92 80.14 81.02

TransferSelf 92.37 91.23 91.80 87.70 81.01 80.01 80.50

FeatureAug 94.06 93.54 93.80 88.20 82.96 82.50 82.73*

PNBþMiPACQ Source Only 91.30 78.25 84.27 75.65 69.07 59.20 63.75

Source & Target 95.37 90.27 92.75 86.41 82.40 78.00 80.14

InstancePrune 94.70 92.57 93.62 87.30 82.67 80.81 81.73

TransferSelf 93.20 92.42 92.81 87.87 81.90 81.21 81.55

FeatureAug 94.43 93.85 94.14 88.35 83.43 82.92 83.18*

*Statistically significant with p-value<0.05 by the Wilcoxon signed-rank test.
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MiPACQ alone, that is, the “Target Only” baseline (via 10-fold cross
validation) yielded a combined F1 measure of 81.53%. When only
source domain corpora were used for training (i.e., the “Source Only”
baseline), the performance of SRL systems on MiPACQ was poor
(58.87% for PropBank, 11.75% for NomBank, and 20.67% for
BioProp). Simply merging PropBank with MiPACQ, i.e., the
“Source&Target” baseline, dropped the combined F1 to 79.79%.
However, the use of domain adaptation algorithms increased the per-
formance compared to the Target Only baseline. Among the three,
FeatureAug with PropBank achieved the highest combined F1 value of
82.83%, an increase of 1.3% over the Target Only baseline, which
was statistically significant, as determined by the Wilcoxon signed-
rank test60 (p< 0.05). Using NomBank as DS, the best performance
was achieved by FeatureAug, with F1 of 81.86%. The performances of
InstancePrune with NomBank were worse than the Target Only base-
line (80.52% versus 81.53%). The “Source & Target” baseline using
BioProp as DS obtained a combined F1 of 81.68%. InstancePrune out-
performed the other two domain adaptation algorithms, with a com-
bined F1 value of 81.95%. However, the performance of FeatureAug
with BioProp dropped slightly from the Source & Target baseline
(81.63% versus 81.68%), making domain adaptation ineffective.
When multiple sources were combined as DS, FeatureAug consistently
performed the best among the three algorithms; it was significantly
better than the Target Only baseline, with a p< 0.05 (83.14% for PN,
82.73% for PB, 83.18% for PNB). The highest combined F1 measure
was 83.18% when FeatureAug algorithm was applied to the Ds con-
sisting of all three sources.

Table 3 lists the performance of core arguments and adjunctive
arguments with the highest frequencies. The remaining adjunctive
arguments are listed in “ARGM-Others.” The scores listed in the
parenthesis stand for the F1 value improvement by domain adaptation,
which measures the extent of increase over using the target domain
dataset only. Denoting the F1 values of using MiPACQ only and
after domain adaptation as F MiPACQ

1 and F DomainAdapt
1 , respectively, the

F1 value improvement by domain adaptation is calculated by

ðF DomainAdapt
1 � F MiPACQ

1 Þ=F MiPACQ
1 . For example, FeatureAug with

PropBank increases the F1 of ARG0 by 1.20% over using MiPACQ
only. As shown in the table, FeatureAug with PropBank increased the
performance of each argument. For NomBank, FeatureAug decreased
the performance of ARG0, ARG3-5, ARGM-MOD, and ARGM-NEG, but
increased the performance of the other arguments. For BioProp,
InstancePrune increased performance on most arguments, but
decreased the performance of ARG0, ARG3-5, ARGM-MNR, and
ARGM-MOD.

Figure 4 shows learning curves that plot the F1 value on the com-
bined SRL task with increasing percentages of MiPACQ samples used
for training when PropBank, NomBank, and BioProp were combined
as DS. The Source Only baseline is a horizontal line. For other meth-
ods, increasing the sample size of the target domain (MiPACQ) leads
to a consistent performance enhancement. However, the domain
adaptation method (FeatureAug) clearly shows better performance
than baselines of Target Only and Source & Target. Similarly, Figure 5
shows the learning curves obtained by increasing the source domain
(PNB) sample size for training. Without domain adaptation, increasing
the sample size of DS progressively decreased the performance.
Nevertheless, a monotone increasing curve is clear when augmented
with the domain adaptation algorithm (FeatureAug).

Table 4 displays the SRL performance of optimized domain adap-
tation methods for each source, for overlapping versus nonoverlapping
predicates or verb versus nominal predicates, respectively. The scores
listed in parentheses in the last column of Table 4 indicate the
improvements in F-measures between the baseline (Target Only) and
domain adaptation methods, which are calculated in the same way as
those in Table 3. As illustrated in Table 4, the employed domain adap-
tation algorithms improved SRL on not only overlapping predicates
(PropBank 1.48%, NomBank 1.66%, and BioProp 0.83%), but also
nonoverlapping predicates (PropBank 1.14%, NomBank 1.44%, and
BioProp 0.47%). Our results also suggested that the employed domain
adaptation algorithms improved SRL performance on not only verb
predicates, but also nominal predicates (Table 4). For example, when

Table 3: Combined SRL Performance for each Argument using MiPACQ only, FeatureAug with PropBank, FeatureAug with
NomBank, and InstancePrune with BioProp (%)

Argument MiPACQ PropBank_FeatureAug NomBank_FeatureAug BioProp_InstancePrune

P R F1 P R F1 P R F1 P R F1

ARG0 87.55 87.32 87.44 88.25 88.72 88.49 (1.20) 87.30 87.28 87.29 (�0.16) 87.19 86.93 87.06 (�0.43)

ARG1 84.06 87.48 85.74 84.82 88.39 86.57 (0.97) 84.44 87.81 86.09 (0.41) 83.97 88.10 85.98 (0.29)

ARG2 79.28 75.80 77.50 80.42 76.58 78.46 (1.23) 81.71 76.75 79.15 (2.12) 80.78 76.42 78.54 (1.34)

ARG3-5 77.07 53.02 62.82 80.00 57.72 67.06 (6.74) 77.11 52.01 62.12 (�1.11) 75.98 52.01 61.75 (�1.70)

ARGM-ADJ 55.19 57.32 56.23 55.77 58.94 57.31 (1.92) 55.54 62.20 58.68 (4.35) 56.32 59.76 57.99 (3.12)

ARGM-ADV 66.15 69.03 67.56 68.69 70.79 69.72 (3.20) 65.85 69.87 67.80 (0.35) 66.14 70.48 68.24 (1.01)

ARGM-LOC 77.22 78.49 77.85 78.89 81.61 80.23 (3.05) 79.24 78.33 78.78 (1.19) 79.22 80.13 79.67 (2.34)

ARGM-MNR 74.51 69.30 71.81 75.95 69.86 72.78 (1.35) 77.31 68.85 72.84 (1.42) 74.60 68.28 71.30 (�0.71)

ARGM-MOD 98.87 86.72 92.40 99.27 89.57 94.17 (1.92) 96.84 87.38 91.86 (�0.58) 99.36 85.29 91.79 (�0.66)

ARGM-NEG 91.07 89.47 90.27 95.51 89.47 92.39 (2.36) 88.81 90.53 89.66 (�0.67) 91.55 89.30 90.41 (0.16)

ARGM-TMP 88.52 87.63 88.07 90.22 88.82 89.52 (1.64) 89.73 87.47 88.58 (0.59) 89.41 87.78 88.59 (0.59)

ARGM-Others 63.83 55.64 59.45 66.20 56.83 61.16 (2.87) 66.24 54.59 59.85 (0.67) 66.93 54.31 59.96 (0.85)
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FeatureAug was used for PropBank (containing verb predicates only),
the F1 value of nominal predicates in MiPACQ was also improved by
1.16%.

DISCUSSION
In this study, we leverage existing annotation corpora from newswire
and biomedical literature to improve the performance of clinical SRL by

using domain adaptation algorithms. Our results showed that domain
adaptation algorithms such as FeatureAug could improve the SRL task
in the clinical domain by utilizing existing open domain corpora such as
PropBank. In addition, we demonstrated that combining multiple sour-
ces from external domains further improved clinical SRL systems. To
the best of our knowledge, this is the first study that has compared
different domain adaptation algorithms for SRL in the medical domain.

Figure 4: Learning curves of the SRL systems that used all three sources (PNB), with increasing percentage of the target
domain dataset. The x-axis denotes the percentage of target domain instances that are used for training. The y-axis
denotes the averaged combined F1 value using 10-fold cross-validation. “Target Only” denotes the baseline of using only
the target domain dataset for training. “Source Only” denotes the baseline of using only the source dataset for training.
“FeatureAug” denotes the SRL system implemented with the FeatureAug domain adaptation algorithm.

Figure 5: Learning curves of the SRL systems with increasing percentage of the combined source domain dataset (PNB).
The x-axis denotes the percentage of source domain instances that are available during training. The y-axis denotes the
averaged F1 value, using 10-fold cross-validation. “Source & Target” denotes the method that simply combines source and
target domain corpora. “FeatureAug” denotes the feature augmentation domain adaptation algorithm.
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The performance enhancement and cost reduction by domain adap-
tation for the clinical domain SRL task are illustrated more explicitly in
Figure 4. It is not surprising that increasing the MiPACQ dataset for train-
ing constantly enhances the performance. An F1 value of 81.67% was
be achieved using 50% of MiPACQ dataset with domain adaptation
(FeatureAug on the PNB corpora). This was higher than the baseline
method (81.53%), which used 90% MiPACQ dataset for training (via
10-fold cross-validation), indicating a 40% reduction in annotation cost.

The SRL performance of the Source Only baseline indicates the
direct influence of source domain datasets on MiPACQ without any
domain adaptation algorithm. As illustrated in Table 2, the Source Only
performance of all three source domain datasets was much lower
than the Target Only performance. Specifically, the recall of Source
Only with NomBank, which shared 265 nominal predicates with
MiPACQ, was extremely low, with only 11.03% for AI and 6.65% for
the combined task. On the other hand, BioProp achieved better recalls
than NomBank using the Source Only method, with recalls of 30.62%
and 16.25% for AI and the combined task, respectively. A possible
explanation for the low recall with NomBank is that the high overlap of
predicates between source and target domain datasets does not nec-
essarily guarantee a high recall for SRL. The similarity of PASs
between source domain and target domain datasets makes the major
contribution.1,31,57 As illustrated in Table 4, the recall of the combined
SRL task for the nonoverlapping predicates was also improved by lev-
eraging the source domain datasets. Another possible reason for the
low recall when NomBank was used in the Source Only method was
that the PAS distribution of nominal predicates in MiPACQ is low.
MiPACQ only contains 2795 (22.22%) PASs of noun predicates, in
contrast to 9780 (77.78%) PASs of verb predicates.

We noticed that when a single source domain dataset is employed,
domain adaptation algorithms performed differently for different
source domain datasets. For example, although the dataset size of
BioProp is much smaller than PropBank/NomBank, it achieved better

performance than PropBank/NomBank using InstancePrune
(Combined task F1: BioProp 81.95%, PropBank 81.26%, NomBank
80.52%); whereas PropBank/NomBank outperformed BioProp using
the FeatureAug algorithm (Combined task F1: BioProp 81.63%,
PropBank 82.83%, NomBank 81.86%). This is probably attributable to
the essential difference among the DS. PropBank/NomBank are built
from the general English domain, while BioProp is built from biomedi-
cal literature. Based on our manual analysis of PASs in BioProp and
MiPACQ, instance-level domain adaptation algorithms work better for
BioProp, probably because the instances of BioProp selected by the
InstancePrune algorithm have similar PASs, with a portion of instances
in the target domain (MiPACQ). Feature-level algorithms have a better
tolerance for domain gap,28 which is probably why FeatureAug worked
best for PN. In addition, PropBank and NomBank are much larger and
have higher dimensions of features, which provide the potential to
contribute more useful features, as determined by the feature weight-
ing mechanism in FeatureAug. The impact of BioProp seems trivial
(PNBþMiPACQ versus PNþMiPACQ) or even negative (PBþMiPACQ
versus PropBankþMiPACQ) when multiple source domain datasets
are combined directly for domain adaptation. It is necessary to further
investigate how to select source data instances efficiently when multi-
ple source domain datasets are used. These findings may provide val-
uable insights for selecting source domain datasets and domain
adaptation algorithms.

To identify which knowledge was transferred from the source
domains to improve the performance, we examined the SRL results of
individual instances. We found that most of the improvement was
obtained by syntactic structural information learned from the source
domains. As illustrated in Figure 6(a), due to the complex syntactic
structure, the MiPACQ-only baseline failed to recognize “Because her
dementia is progressive and, therefore, a terminal illness” as the
ARGM-CAU (cause) argument of the predicate “favor” in the argument
recognition stage. This argument was recognized correctly with the

Table 4: Combined SRL Performance of verb and nominal predicates using MiPACQ only, FeatureAug with PropBank,
FeatureAug with NomBank, and InstancePrune with BioProp (%)

MiPACQ PropBank_FeatureAug

P R F1 P R F1

Overlapping verb 83.89 83.11 83.50 84.97 84.52 84.74 (þ1.48)

Nonoverlapping verb 86.72 86.87 86.80 87.90 87.68 87.79 (þ1.14)

Nominal 69.50 70.13 69.81 70.31 70.94 70.62 (þ1.16)

MiPACQ NomBank_FeatureAug

P R F1 P R F1

Overlapping Nominal 68.85 69.24 69.04 69.55 70.84 70.19 (þ1.66)

Nonoverlapping nominal 71.36 72.74 72.04 72.20 73.98 73.08 (þ1.44)

Verb 84.53 83.96 84.24 84.86 83.97 84.41 (þ0.20)

MiPACQ BioProp_InstancePrune

P R F1 P R F1

Overlapping verb 77.90 78.13 78.01 80.42 76.99 78.66 (þ0.83)

Nonoverlapping verb 84.63 84.04 84.34 85.15 84.34 84.74 (þ0.47)

Nominal 69.50 70.13 69.81 70.32 70.52 70.42 (þ0.87)
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effort of domain adaptation. Taking the sentence in Figure 6(b) as
another example, the prepositional phrase “with his home psy-
chiatrist” should be a core argument ARG1 (entity contacted) of the
nominal predicate “contact.” However, the MiPACQ-only baseline
labeled its role as an adjunctive argument, “ARGM-ADJ” (adjective).
Although the PropBank dataset only annotated PAS for verb predi-
cates, the similar syntactic structure for the verb “contact” still trans-
ferred successfully and correctly labeled the semantic role as ARG1.
This explains the reason why the performance of nominal predicates
in MiPACQ was also improved by PropBank.

Although knowledge transferred from source domains can be
adapted to the clinical domain, the unique characteristics of clinical
text require domain specific resources and solutions for further SRL
improvement. One type of salient attribute is the clinical lexicons and
semantic relations between them. In the phrase “an advanced oro-
pharynx cancer treated with radiation therapy and chemotherapy,” “an
advanced oropharynx cancer” is annotated as ARG2 (illness or injury)
in the gold standard. However, it is labeled as ARG1 by our SRL sys-
tem. Additionally, in the phrase “erectile dysfunction,” “erectile” is
annotated as ARG1 (job, project) of “dysfunction,” which is mistakenly
labeled as ARGM-ADJ (adjective). Clinical domain knowledge needs to
be employed to precisely interpret these semantic relations. Another

unique characteristic of clinical text is the high frequency of frag-
ments; that is, grammatically incomplete sentences. Figure 6(c) illus-
trates the syntactic parsing result of the fragment sentence “Sigmoid,
mass at 22 cm, endoscopic biopsy (AE46-395890; 09/06/65):
Invasive, grade 2 of 4 adenocarcinoma identified.” In this sentence,
there is no semantic relation between “biopsy” and the temporal
phrase “09/06/65,” which is difficult to identify even when using the
current open-domain state-of-the art features. Clinical domain fea-
tures like specific syntactic patterns of CNs need to be further
explored.

State-of-the-art SRL systems usually employ a rich feature set57

and/or a global inference phase to further refine the output with global
constraints.61 To verify the effects of global inference and domain
adaptation, we developed a rule-based global inference module fol-
lowing important constraints defined in Punyakanok et al.61 The global
inference phase improved SRL performance: the baseline Target Only
method was improved from 81.53% to 82.12%. We then integrated
the best domain adaption method FeatureAug with PNB with the
improved SRL system (with global inference). Our results showed that
FeatureAug with PNB further improved the SRL performance, with a
combined F1 of 83.88% (compared with the improved baseline of
82.12%). This indicates that domain adaptation and global inference

Figure 6: Syntactic parsing results of three sample instances.
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are complementary. For optimized SRL systems with a global infer-
ence phase, domain adaptation methods may further improve the per-
formance. The performance of integrating the global inference
constraints with each of the methods implemented in our study can be
found in Supplementary Appendix Table S1. Common features used in
current state-of-the-art open domain SRL systems were adopted in
our study.31,57 The previous work of domain adaptation on the BioProp
dataset (Dahlmeier and Ng, 2010)45 also employed a similar feature
set to our work. In this study, we built our SRL system by following
the study in Dahlmeier and Ng.45 The current performance of our SRL
system on PropBank is not state-of-the-art. Using the same datasets
as in Punyakanok et al.,61 our SRL system achieved an F1 of 82.77%,
which is lower than the state-of-the-art performance of 86.81% F1 in
Punyakanok et al.,61 probably due to the different feature sets,
machine learning algorithms, and global constraints used in the study.
We can further optimize the SRL performance by feature engineering57

in our future work. It is notable that domain adaptation made another
contribution to significantly reduce the data annotation cost of the tar-
get dataset to achieve a comparable performance. As illustrated in
Figure 4, it required <50% of training samples in the target dataset to
achieve a comparable performance to the target-only baseline using
90% of the target dataset.

One potential limitation of our work is the coverage in the target
domain dataset. MiPACQ is built from Mayo Clinical CN and Mayo
Clinical pathology notes related to colon cancer, which may contain
limited clinical findings. In addition, clinical text consists of diverse
narrative types, such as discharge summaries and clinic visit notes.
Therefore, the SRL systems built on MiPACQ may need further adapta-
tion for use in other clinical subdomains. In this study, we employed
common features used in current state-of-the-art open domain SRL
systems for the SRL task. However, the contribution of each feature
type needs to be further examined for the SRL tasks in the clinical
domain. Furthermore, instead of directly combining multiple source
domain datasets, we plan to investigate more sophisticated multi-
source domain adaptation algorithms, such as weighting on source
datasets with different distributions,62,63 which may allow us to more
effectively employ multisource datasets.

CONCLUSIONS
Our study investigates domain adaptation techniques for SRL in clini-
cal text. Three state-of-the-art domain adaptation algorithms were
employed and evaluated by using existing SRL resources built from
newswire, biomedical literature, and clinical text. Experimental results
showed that domain adaptation significantly improved the SRL per-
formance on clinical text, indicating its potential to reduce annotation
costs when building clinical SRL systems.
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