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ABSTRACT
....................................................................................................................................................

Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on
data consistency and quality.
Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service
infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers.
Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1%
and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation.
Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital
databases for research purposes.
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Enhancing the Learning Health care System (LHS) is a national goal,1

where data obtained during care and operations contribute to the de-
velopment of knowledge and, in turn, translates into evidence-based
practice and health system improvements. Efforts to advance the LHS
have accelerated through the establishment of PCORnet2 (www.pcor-
net.org) via the Patient Centered Outcomes Research Institute with the
promise to deliver a national network for clinical outcomes research.
The objective is to improve outcomes by leveraging electronic health
records (EHRs) as a national research resource. However, to do so,
networks need to resolve issues of data governance, central for the
LHS and a crucial aspect of interoperability,3,4 so that large scale col-
laborative initiatives are not overwhelmed by the diversity and multi-
tude of clinical data along with competing stakeholder interests.5

Success of these and other LHS initiatives will be measured by the
speed with which new networks establish scalable multisite collabora-
tions for observational studies6 while not being overcome by data gov-
ernance and interoperability issues. We present a case report on the
design, deployment, and initial evaluation of a federated infrastructure
for a national pediatric network based on a virtual machine (VM)
framework that can be used in a LHS to addresses data governance
and interoperability.

Background
Data sharing via federated networks for the purpose of conducting
clinical studies include costly, complex, time consuming, and poten-
tially error-prone activities. Even after creating written protocols, clini-
cians must dedicate substantial time and effort collecting data and
communicating to achieve data consistency.7 Data governance is a
disciplined method through which resources are formally managed
with a focus on data consistency and quality.8 An approach that can

improve data governance has multiple implications for clinical
research, including an emphasis on the interoperability of clinical data
and the need for rigorous approaches to ensure the utility and validity
of clinical data used for research purposes.9 Interoperability, com-
posed of both syntactic and semantic components, has been identified
as a mechanism to support national health systems initiatives.10

Interoperability supports collaboration between organizations,11 having
demonstrated beneficial impact on clinical trials, EHR information sys-
tems,12,13 and maintenance of patient data across health care organi-
zations.14 There are multiple approaches to data governance and
interoperability, ranging from technologies that are data model agnos-
tic to locally focused models to globally constrained models.

The Mini-Sentinel network15,16 deploys a distributed query archi-
tecture based on submit-run-return procedures using the data model
agnostic PopMedNet17 (www.popmednet.org) technology. The Mini-
Sentinel approach does not employ a centralized database; instead,
members of the network are responsible for their own data that are
linked by PopMedNet. Queries are broadcast to PopMedNet client sites
and are then reviewed and run by site-level data stewards. The stew-
ards review the results and securely return them to the requesting
investigator. Multiple networks within PCORnet use the PopMedNet
query architecture.18,19

The Scalable Collaborative Infrastructure for a Learning Healthcare
System (SCILHS) was designed to avoid limitations of global top-down
solutions by using locally focused solutions with a vibrant user and
developer base.20 Components of SCILHS’s PCORnet instantiation
include the widely adopted Shared Health Research Information
Network (SHRINE)21 and Informatics for Integrating Biology and the
Bedside (i2b2).22 The i2b2 system stores data in a locally informed
star schema relational model to simplify query strategies.22 The
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SHRINE is composed of an aggregator/adaptor model that broadcasts
queries to adaptors at multiple sites.

The Translational Research Informatics and Data Management
Grid (TRIAD)23 uses a grid approach to create a homogenous view of
multisite data sources through a repository of object models, thus sup-
porting a global view instead of a strictly local one. TRIAD integrated

the caGrid middleware,24,25 a global model technology developed for
the Cancer Biomedical Informatics Grid (caBIG).26 A grid architecture
approach is essentially a federated collection of heterogeneous
and geographically dispersed information systems. The dangers of
integrating the caGrid architecture include limited adoption, lack of
end-user facing applications, external dependencies on National

Figure 1: The picuGrid architecture was designed using a chaperoned Application Program Interface (API); firewall
settings were controlled by the centers with picuGrid being instantiated between the external and internal firewall of the
site, and local IT departments could set additional security restrictions to limit connections to the VM. Secure data trans-
mission between the sites and the DCC was enforced through caGrid credentials within each VM that were validated by
a third party credentialing service. Unlike traditional grid architecture, we limited the system so that only the DCC could
access data and clinical sites and the other Clinical Centers could not view or access other sites. All data up to and
including the shadow database were under the direct control of the local site personnel. The shadow database had a
dictionary table for updating value sets for each site. The DCC could pull data using the chaperoned API but could not
access the shadow database directly. The solid arrow shows data pulled from the administration database to a comma
separated values (CSV) file and then pushed past the internal firewall and into the picuGrid shadow database. Many clin-
ical research studies use data from the active EHR or the enterprise data warehouse (EDW). Pulling data such as labora-
tory test results or vital signs would be beneficial to most of the network clinical studies. The dotted lines from the EHR
and EDW represent those desired future data sources. Since each site has a MySQL database, the training needed to
access the data is the standard querying of databases (ie, Structured Query Language, SQL). Each site received a user
guide to facilitate installation and support of the system.
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Cancer Institute systems, and concerns of scalability of the technol-
ogy.23 The demonstrated ability to support data governance in feder-
ated applications12 and securely manage data transmission are
strengths of the grid architecture. A method for easily deploying the
caGrid infrastructure was elusive, and the complexity of the grid archi-
tecture increased the difficulty of deployment. Hence, the traditional
resource intensive process was cost prohibitive for all but a handful of
well-funded projects.

We believed that the costs and complexity of grid deployment
could be overcome through virtualization technology. In this paper, we
describe the development and assessment of open-source secure
web services, built using the caGrid middleware used by TRIAD,23

deployed at 8 children’s hospitals in the Collaborative Pediatric Critical
Care Research Network (CPCCRN).27 A root problem in the traditional
caGrid deployment was the tight coupling of the local data sources,
such as administrative databases or EHRs, with the complex web
service. Each site needed to link their data elements to interoperable
components and then build a grid service. This was a complex, multi-
step process that required collaboration between domain experts,
informaticists, and software engineers. To overcome this, we devel-
oped a new approach using VMs running the full caGrid technology
stack, along with a database (the shadow database) that served as a
limited version of an institution’s data.

METHODS
Using caGrid tools, experienced informaticists and domain experts
built a platform-independent virtualized secure web service called the
Pediatric Intensive Care Unit Grid (picuGrid). The system was designed
to support an ongoing CPCCRN observational study called the Core
Clinical Data Project (CCDP), conducted with Institutional Review
Board approval and data sharing agreements. The data consist of
descriptive elements such as patient demographics, length of hospital
and Pediatric Intensive Care Unit (PICU) stays, procedure codes, and
diagnosis codes. The data are typically aggregated on an annual basis
and describe the characteristics of PICU stays at the CPCCRN Clinical
Centers. Annual CCDP data supports hypothesis generation, prelimi-
nary power analyses, and patient recruitment projections for CPCCRN
studies.27

The virtualized system was developed, tested, and deployed at the
CPCCRN Data Coordinating Center (DCC) at the University of Utah. The
system, depicted in figure 3, was then deployed at the following 8
CPCCRN Clinical Centers: Children’s Hospital Los Angeles, Children’s
Hospital of Michigan, Children’s Hospital of Philadelphia, Children’s
National Medical Center, Mattel Children’s Hospital at UCLA, Phoenix
Children’s Hospital, CS Mott Children’s Hospital at the University of
Michigan, and University of Pittsburgh Medical Center. We evaluated
consistency and data quality of the data set to assess potential effects
of the picuGrid virtualized environment.

Evaluation
Since the extraction, transform, and load (ETL) process that populates
the shadow database used the 2011 CCDP data set, we assessed the
process using the 2012 data obtained via picuGrid in parallel with the
traditional CCDP file submission process. The total evaluation set
across the 8 sites consisted of 18 551 rows. A row was flagged by the
ETL process as having an error if the row did not load properly
because of at least 1 of the 54 fields having a format inconsistency
(ie, format misalignment) and/or a nonvalid dictionary value.

RESULTS
The results focus on (1) an overview of the picuGrid implementations,
(2) comparing field format misalignments using the traditional

approach with field format misalignments using the picuGrid
approach, (3) examining levels of curation needed to load the 2012
data into the shadow database (reflecting the extent to which ETL
scripts need to be modified), and (4) an analysis of scalability of the
VM client and server grid architecture.

picuGrid deployment overview
The picuGrid VMs were successfully deployed to all CPCCRN site hospi-
tals; deployment took roughly 3 hours for each site. Establishing the
ETL process to load 2011 data into the shadow database ranged from
1 to 4 hours per site. The sites reused the 2011 ETL processes and did
not require a new ETL script for the 2012 CCDP data set. Successful
secure data transfer was demonstrated for all 8 CPCCRN sites.

Figure 2: (A) A field was defined as being misaligned
if at least 1 row had incorrectly formatted values.
Format misalignments were measured as the percent-
age of incorrectly formatted fields out of a total of 54
fields specified by the research protocol. (B) We
assisted sites to load their 2012 data into the picuGrid
system. If the row of 2012 data loaded with no ETL
process content errors, then the record was counted
as “Reused ETL: Low Curation.” If the dictionary table
in the picuGrid shadow database needed to be
updated to account for a new value, then the record
was counted as “Dictionary: Moderate Curation.” If a
human needed to clarify and potentially change the
data in the data file, then the record was labeled as
“Clarification: High Curation.” We assisted 1 site in
reconfiguring their ETL process. This change was nec-
essary due to a field being conjoined from 2 fields in
the 2012 data set. The fields were separated and
loaded through a simple change to the ETL process.
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Syntactic and semantic interoperability: field format misalignments
and data curation
A field format misalignment occurred when data were submitted in a
format that differed from that specified by the research protocol.
Figure 2A displays 4 years of format misalignment data for the 8
Clinical Centers, for their traditional submission process (solid line
with square symbols). Over the 4 years, the average format misalign-
ments drift upward from 44% to 65%.

The picuGrid’s web service resulted in substantially reduced for-
mat misalignments (1% for 2012 across all Centers, “X” symbol on
figure 2A). That reduction primarily resulted from the picuGrid ETL
process correcting formatting before the data file was loaded into the
database and submitted to the DCC.

We categorized rows in the dataset as needing low, moderate, or
high levels of curation depending upon the maximum level of curation
associated with any field in the row (figure 2B). Using the 2011
picuGrid ETL process, 91% of the rows in the 2012 data sets loaded
correctly into the shadow database. An additional 8% of the rows of
data needed moderate levels of curation that were addressed by
updating the dictionary. Specifically, fields for race, ethnicity, admis-
sion type, discharge disposition, and payer had new values that were
not in the 2011 dictionary. Adding the value for a new payer at one
site accounted for 2% of the total data being correctly loaded, and
updating an ethnicity value at another site accounted for 4% of the
total data. The final 1% required clarification related to diagnosis
codes and zip codes; values had to be examined by a human curator
and corrected.

Virtual system scalability
A concern with the grid architecture is its ability to scale.23 Given an
open-source code base that can be replicated as needed without

licensing costs, an advantage is the ability to cost-effectively create
multiple clients and servers to scale the amount of data that can be
queried. Figure 3 demonstrates the ability to improve response time
through parallelization by increasing the number of virtualized servers
and clients28 for the picuGrid architecture.

DISCUSSION
We successfully leveraged machine virtualization to ease the deploy-
ment of complex grid technologies. The virtualized picuGrid system
reduced the deployment time from months to hours, thus allowing
hospital deployment teams to have, within minutes, a fully operational
secure grid web service. Traditional caGrid implementation has been
hampered by the direct connection between the logical model and the
hospital databases as well as the informatics expertise required to
generate the Application Program Interface (API). Virtualization and
using a shadow database enabled us to eliminate many of the infor-
matics requirements at the individual hospitals. By decoupling the
web service from direct interactions with the organization’s data, we
also decoupled the need for the local hospital information technology
team to learn the complex traditional grid deployment processes.
In picuGrid, the API was centrally developed and eliminated the need
for hospital technology teams to learn how to navigate the complex
ecosystem of caGrid applications.

Limitations
This was a single point in time feasibility evaluation. While significant
benefits have been hypothesized, the challenges and benefits of directly
transferring data to the DCC from the Clinical Center environments were
not evaluated. Although many of the caBIG tools were integrated into the
new National Cancer Informatics Program and remain available as
open-source code, future sustainability could be problematic with the

Figure 3: The red line is the time for whole table queries to return for 1 to 6 virtual clients requesting data from 1 virtual
server with each client requesting 4000 rows of data. The time increases linearly with the number of clients. The blue line
consists of 1, 2, or 3 pairs of virtual clients requesting 8000 rows of data from 2 virtual servers. The green line consists of
1 or 2 virtual client triplets requesting 12 000 rows of data from 3 virtual servers. There is an initial cost to establishing the
caGrid connection of around 50 seconds, which is a time lag that is more acceptable for picuGrid’s batch architecture
instead of a real-time system.
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retirement of the caBIG program in 2012; an alternative for sustainability
is the public private partnership of TRIAD.29

CONCLUSIONS
Using virtualization and open-source software, we were able to quickly
and easily deploy a complex technology solution. We demonstrated
the feasibility of securely moving data within the CPCCRN research
network. Using semantically and syntactically interoperable secure
web services, we showed potential improvements in data quality and
data governance implications for LHS and PCORnet implementations.

Multisite research networks typically implement complex study
protocols that involve abstraction of extensive data, including labora-
tory values, vital signs, demographics, medication, and study-specific
data, with reentry of those values into a research database. The
abstraction and data reentry process requires personnel and time and
contributes to the costs of clinical observational and interventional
studies. Use of virtualized secure web service technology with strong
data governance could enable direct electronic data abstraction from
hospital databases and speed adoption of the Learning Healthcare
System.
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