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A network-based drug repositioning
infrastructure for precision cancer medicine
through targeting significantly mutated
genes in the human cancer genomes
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ABSTRACT
....................................................................................................................................................

Objective Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of
newly targeted cancer therapeutics.
Methods We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs
through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would
have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in
the human protein interaction network.
Results We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer
(repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer
samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-
tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing
drugs (adjusted P< .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril,
and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential
mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1,
and STIP1).
Conclusions In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential drug-
gable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics.

....................................................................................................................................................
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INTRODUCTION
The past several decades have seen massive advances in many scien-
tific, technological, and managerial efforts to raise the efficiency of
drug discovery and development. However, the number of new United
States Food and Drug Administration (US FDA) approved drugs has
nearly halved since 1950, and the cost of drug discovery and develop-
ment has grown fairly steadily.1 On the other hand, massive amounts
of drug and biological data have been released to the community.
Hence, scientists are seeking innovative technologies and approaches
to reduce the cost and raise the efficiency of drug discovery and devel-
opment. Recent advances in biotechnologies, such as massively paral-
lel high-throughput sequencing and genome-wide association studies
(GWAS), provide unprecedented opportunities in identifying potential
targets for drug discovery and development. A recent study revealed
that human genetic data generated from GWAS provide a valuable re-
source to select the best drug targets and indications in the develop-
ment of new drugs.2

Several national and international cancer genomics projects, such
as The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium, have enabled investigators to comprehensively
characterize the somatic mutational landscape and mutational signa-
tures in a large number of tumor samples.3–5 These abundant data
not only allow investigators to identify significantly mutated genes

(SMGs) in cancer through both computational and experimental
approaches,3,6,7 but also provide novel druggable targets and opportu-
nities for developing new molecularly targeted cancer therapies that
target SMGs.8 Griffith et al.9 developed a Drug-Gene Interaction data-
base to mine existing resources to generate hypotheses for the mu-
tated genes that might be therapeutic targets or prioritized for
anticancer drug development. The development of new computational
methods that efficiently integrate massive amounts of next-generation
sequencing data from TCGA and International Cancer Genome
Consortium projects provides new opportunities for the timely develop-
ment of molecularly targeted treatments, one of the major areas in
cancer precision medicine.

Tumor initiation, progression, and resistance to certain therapeutic
agents are often attributed to the accumulation of one or multiple
driver or actionable mutations that activate oncogenes or inactivate tu-
mor suppressor genes (TSGs), as well as their signaling pathways.10

Traditional cytotoxic agents targeting cell division and DNA replication
have achieved great success in molecular cancer therapy, but they of-
ten have severe side effects. Molecularly targeted agents (e.g., kinase
inhibitors) that target oncogenes or oncoproteins that drive tumor initi-
ation or progression show high selectivity for tumor cells, hence re-
ducing side effects. Therefore, targeting driver mutations (e.g.,
oncogenic mutations) is expected to provide valuable opportunities for
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precision cancer medicine.11 For example, p.Arg132His on isocitrate
dehydrogenase type I is the most frequent mutation in a subgroup of
gliomas and various other types of cancer.12 Schumacher et al.13

identified a new vaccine that selectively targets mutant isocitrate de-
hydrogenase type I (p.Arg132His), induces antitumor immunity, and
further halts growth of gliomas. Another example is somatic mutation
BRAF p.Val600Glu, which occurs in �50% of melanoma; vemurafenib
can effectively target this specific mutation.14 However, most targeted
agents often have some pitfalls; for example, all kinase inhibitors
eventually lead to drug resistance.15 Moreover, the attempt to activate
TSGs that have been inactivated by somatic mutations or deletions is
more challenging than targeting oncogenes. One of the reasons is that
mutations in TSGs are often truncated mutations scattered in the cod-
ing regions but with low recurrence. An alternative approach is to tar-
get pathways or subnetworks (e.g., neighbors in the protein
interaction network [PIN]) perturbed by the inactivation mutations in
TSGs.16 The development of innovative computational methods via tar-
geting oncogenic mutations in oncoproteins or proteins regulated by
inactivation mutations in TSGs is urgently needed for the development
of targeted therapeutic agents.

In this study, we developed an integrative network-based infrastruc-
ture to prioritize druggable targets or potential new indications for exist-
ing drugs by directly targeting SMGs or their neighbors in the PIN.
Specifically, we assembled and curated 693 SMGs derived from large-
scale cancer genomics datasets in public domains and TCGA projects
for 29 cancer types. We found that 121 druggable proteins encoded by
SMGs were targeted by known anticancer drugs or repurposed drugs
through integrating the drug-target interactions from 3 well-known pub-
lic databases. Furthermore, we developed a network-based statistical
approach to prioritize new anticancer indications for the existing drugs
by integrating SMGs discovered in TCGA and public domains and drug-
gene signatures from the Connectivity Map (Figure 1). Collectively, this
study highlights the potential value of network-based approaches in
identifying potential druggable targets and new anticancer indications
for existing drugs by utilizing large-scale cancer somatic mutations to
aid in the timely development of precision cancer medicine.

MATERIALS AND METHODS
Manual curation of the significantly mutated genes discovered in
cancer genomes
We manually curated and assembled high-quality SMGs from 15
large-scale TCGA cancer genome analysis projects and other public
domains as briefly described below.11,17–29 For example, Lawrence
et al.19 identified 224 SMGs from 4742 human cancer genomes
across 21 cancer types using the MutSig method. Rubio-Perez et al.11

identified 459 SMGs acting in one or multiple cancer types by analyz-
ing 6792 tumor samples. The details are provided in online
Supplementary Table S1. We annotated all SMGs using gene Entrez
ID, chromosome location, and the official gene symbols from the
National Center for Biotechnology Information database.30 This pro-
cess resulted in a total of 693 manually curated, unique SMGs across
29 cancer types (online Supplementary Table S1).

Creation of protein interaction network
We used a large-scale, high-quality PIN by integrating 4 types of pro-
tein-protein interactions (PPIs) with complementary biological informa-
tion: physical interactions, PPIs with 3-dimensional structural data,
innate immunity-related PPIs, and kinase-substrate interactions mediat-
ing phosphorylation reactions, as described in our previous studies.31,32

In total, we compiled 29 475 PPIs connecting 625 proteins encoded by
SMGs and 7249 neighbors of SMG-encoded proteins in PIN.

Construction of drug-target interaction network
We collected drug-target interactions from 3 public databases:
Therapeutic Target Database,33 DrugBank (v3.0),34 and PharmGKB.35

Drugs are grouped using Anatomical Therapeutic Chemical classification
system codes36–38 and are further annotated using the Unified Medical
Language System and Medical Subject Headings vocabularies.39 All pro-
tein coding genes were mapped and annotated using the gene Entrez ID
and official gene symbol from the National Center for Biotechnology
Information database.30 In total, we obtained 17 490 drug-target inter-
actions connecting 4059 US FDA-approved or experimental drugs and
2746 human proteins. After mapping the proteins encoded by 693
SMGs into the above global network, we found 1396 drug-target inter-
actions connecting 121 proteins encoded by SMGs and 636 drugs, in-
cluding 342 US FDA-approved drugs and 267 experimental drugs under
preclinical or clinical studies (online Supplementary Table S2).

Collection and preparation of drug-gene signatures
We compiled drug-gene signatures from the Connectivity Map (CMap,
build 02).40 The CMap was composed of over 7000 gene expression
profiles from 4 human cultured cancer cell lines treated with 1309 bio-
active compounds covering 6100 individual instances at different con-
centrations. A measure amplitude (a) of the extent of differential
expression for a given probe set was defined in the original study,40

briefly described below:

a ¼ t � c
ðt þ cÞ=2

where t is the scaled and thresholded average difference value (a
measure of the relative level of a transcript monitored by a particular
probe set) for a compound treatment group and c is the thresholded
average difference value for the matching control group. The average
difference values were scaled and thresholded based on an MAS 5.0
(Affymetrix) approach.40 Based on the above definition, a¼ 0 indicates
no differential expression, a> 0 indicates increased expression (up-
regulation) by the drug treatment, and a< 0 indicates decreased ex-
pression (down-regulation) by the treatment. In CMap, an amplitude of
0.67 denotes a 2-fold induction. According to the original study,40 we
defined a gene signature as being up-regulated if its amplitude was
greater than 0.67 and down-regulated if its amplitude was less than
�0.67. Finally, we mapped probe sets into SMGs. In total, we com-
piled 380 969 up- or down-regulated drug-gene pairs from the CMap
connecting 6092 instances and 7476 SMGs (170) or their coding pro-
tein neighbors (7306) in PIN.

Predicting new anticancer indications for existing drugs
For each cancer type, we manually curated its SMGs from TCGA and
public domains. We also collected the up-/down-regulated genes for
each drug from CMap. Then, we assumed that a drug would have a
high potential for a specific anticancer indication if its up-/down-
regulated genes from CMap tended to be SMGs or their neighbors in
protein interaction network. For each drug-cancer pair, we conducted
Fisher’s exact test to calculate the significance of the enrichment of
SMGs in up-/down-regulated genes. The p-values were corrected by
using Benjamini-Hochberg false discovery rate41 for each drug-cancer
pair. Finally, we used the adjusted P-value (q) threshold< 0.05 to
identify the significant drug-cancer pairs and prioritize new potential
anticancer indications for existing drugs.

Collection and preparation of somatic mutations
We downloaded the somatic mutation data from 3 sources: (1) Sanger
website: (ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl, December
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16, 2013); (2) Elledge’s Laboratory website at Harvard University
(http://elledgelab.med.harvard.edu/?page_id¼689; accessed in March
2014)42; and (3) COSMIC: Catalogue of Somatic Mutations in Cancer
(v69) database (http://cancer.sanger.ac.uk/cosmic). Here, we only
used nonsynonymous somatic mutations with TCGA tumor-normal
matched sample IDs to ensure the quality of somatic mutation data. In
total, we compiled 808 042 nonsynonymous mutations, including mis-
sense mutations and small inserts/deletions (indels) in 5003 cancer
genomes for 16 cancer types. The detailed descriptions of somatic
data collection and preparation are provided in our previous study.43

Kaplan-Meier survival analysis
We used the online tool PREdiction of Clinical Outcomes from Genomic
profiles (https://precog.stanford.edu) to investigate the relationship be-
tween gene expression and survival rate. Currently, PREdiction of
Clinical Outcomes from Genomic consists of the overall survival data
of approximately 18 000 patients and measures the relationship be-
tween gene expression and survival rate using a univariate Cox re-
gression. The statistical associations were calculated using z-scores,
where a jz� scorej > 1.96 corresponds to a 2-sided P< .05. The
details are provided in a previous study.44

Network and statistical analysis
All statistical analysis was performed using the R platform (v3.01,
http://www.r-project.org/). Networks were visualized using Cytoscape
(v2.8.1).45

RESULTS
Overview of a network-based infrastructure
We proposed a network-based infrastructure to prioritize potential
druggable targets and identify potential new indications of existing
drugs for precision cancer medicine by identifying those that may spe-
cifically target SMGs or their neighbors in PIN. Previous studies have
revealed that most drugs have polypharmacological features.36,37,46

The hypothesis of our network-based drug repositioning approach is
that if a set of up- or down-regulated genes perturbed by a drug of in-
terest is overrepresented as SMGs or their neighbors in the PIN for a
particular cancer type, this drug has a high potential of having a new
indication for this cancer type. As shown in Figure 1, for oncogenes or
oncoproteins, we proposed to prioritize potential drugs (e.g., inhibitors)
to inhibit the function or expression of oncogenes. For TSGs, we pro-
posed to prioritize potential drugs targeting their neighbors in the PIN.
We defined a significant drug-cancer pair as one with a q< .05.
Finally, we performed network analysis and survival rate analysis to
explore the potential mechanism-of-action (MOA) of new predicted an-
ticancer indications for existing drugs.

A global drug-target interaction network through targeting SMGs
In this study, we curated and assembled 693 SMGs across 29 cancer
types (online Supplementary Table S1): acute lymphocytic leukemia (ALL),
bladder carcinoma (BLCA), breast carcinoma (BRCA), chronic lymphocytic
leukemia (CLL), colon or rectum adenocarcinoma (COAD/READ), diffuse
large B-cell lymphoma (DLBCL), esophageal carcinoma (ESCA),

Figure 1: Diagram of network-based infrastructure for prioritizing potential druggable targets and searching for the existing drugs target-
ing significantly mutated genes (SMGs) in cancer genomes. This infrastructure is designed for better development of newly targeted can-
cer therapies. (A) Manual curation of SMGs discovered in large-scale cancer genome data generated from The Cancer Genome Atlas and
public domains (see the Materials and Methods section). (B) Searching for new potential druggable anticancer targets via mapping the cu-
rated SMGs in A into drug-target interaction network collected from public databases: DrugBank, PharmGKB, and Therapeutic Target
Database. (C) Development of a network-based drug repositioning approach to prioritize new potential anticancer indications for existing
drugs. It incorporates drug-gene signatures from the Connectivity Map, the manually curated SMGs, and the protein-protein interaction
network using a statistical approach (see the Materials and Methods section). TSGs: tumor suppressor genes.
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glioblastoma multiforme (GBM), hepatocarcinoma (HC), head and neck
squamous carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),
acute myeloid leukemia (LAML), low grade glioma (LGG), lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LUSC), medulloblastoma
(MB), melanoma (MEL), multiple myeloma (MM), neuroblastoma (NB),
non-small cell lung cancer (NSCLC), ovarian serous cystadenocarcinoma
(OV), pilocytic astrocytoma (PA), pancreatic adenocarcinoma, prostate ad-
enocarcinoma (PAAD), small cell lung cancer (SCLC, cutaneous mela-
noma (SKCM or CM), stomach adenocarcinoma (STAD), thyroid
carcinoma (THCA), and uterine corpus endometrioid (UCEC). Figure 2A
shows that the average number of SMGs per cancer type is 90, with
ranges from 2 SMGs observed in PA to 250 SMGs observed in SKCM. We
next examined how many US FDA-approved drugs or experimental drugs
may target SMGs by integrating drug pharmacological data from 3 public
databases: DrugBank,34 Therapeutic Target Database,33 and PharmGKB35

(see the Materials and Methods section). As shown in Figure 2B,
we found 64 FDA-approved anticancer agents (drugs with Anatomical
Therapeutic Chemical first class code “L”) targeting 66 SMGs, 267
experimental anticancer agents under preclinical or clinical studies target-
ing 75 SMGs, and 278 FDA approved noncancer drugs targeting
54 SMGs. In total, there are 121 unique SMGs targeted by US FDA-
approved drugs or experimental drugs, indicating a potential for cancer
genomics data to aid in the development of molecularly targeted cancer
therapeutics. The detailed lists of approved or experimental drugs target-
ing SMGs in different cancer types are provided in online Supplemental
Table S2.

We further built a bipartite drug-target interaction network to visual-
ize the MOA of 64 approved anticancer drugs and 278 approved non-
cancer drugs targeting 113 SMGs (Figure 3). We found that approved
anticancer drugs, such as pazopanib, dasatinib, vandetanib, and bosuti-
nib, target multiple SMGs, consistent with the polypharmacological pro-
files of targeted agents (e.g., kinase inhibitors).47 In addition, we found
that several SMGs (such as TLR4 and SCN9A) can potentially be tar-
geted by FDA-approved noncancer drugs. For example, TLR4, encoding
toll-like receptor 4, was significantly mutated in the ERþ/HER2� sub-
group of breast cancer,18 and recent studies further revealed that TLR4
plays critical roles in breast cancer.48 Figure 3 reveals that a specific
opiate drug (naloxone) inhibits TLR4 signaling,49 which may be poten-
tially useful in breast cancer chemoprevention and treatment. In addi-
tion, SCN9A, encoding sodium channel protein type 9 subunit alpha,
was previously reported to be mutated in glioblastoma.21 Figure 3 re-
veals that several approved noncancer drugs, such as ranolazine50 and
zonisamide,51 block SCN9A function. This suggests that ranolazine and
zonisamide may provide potential indications for glioblastoma chemo-
prevention and targeted therapy.

Surveying benefit rates by the currently targeted cancer therapy
We examined how many cancer patients could potentially benefit from
the currently targeted molecular therapies by surveying 5003 tumor
genomes with unique TCGA sample IDs harboring nonsynonymous
mutations in specific SMGs across 16 cancer types. Figure 4 reveals
that the approved or experimental cancer drugs could potentially target
SMGs in 33.3% mutated cancer samples. For example, breast cancer
and lung cancer have a large number of SMGs, such as EGFR and
ERBB2, that are targeted by many available US FDA-approved targeted
agents (e.g., afatinib, lapatinib, gefitinib), as shown in Figure 3. The
number would increase to 68.0% if we utilized drug repositioning by
including noncancer (repurposed) drugs. Collectively, this information
makes the currently targeted agents more promising for cancer thera-
peutics. It is worth noting that our analysis of simply using percentage
patients for benefit rate in targeted cancer therapies may be biased

toward the frequency of SMGs and cancer types due to data
incompleteness.

Figure 5 shows the nonsynonymous mutation spectrum for 66
druggable SMGs targeted by US FDA-approved anticancer agents.
Those 66 SMGs were selected for presentation based on their high
frequencies in the total samples. The 5 most commonly mutated drug-
gable SMGs are BRAF, EGFR, MTOR, EPHA3, and KIT. For example,
45% of the patients (117/259) in SKCM harbored a mutation in BRAF.
Specifically, among 325 patients, 183 (56%) TCHA patients had the
mutation at the BRAF V600 site. Although there are only a few targeted
agents available for thyroid carcinoma (Figure 4), some approved
drugs (e.g., vemurafenib) targeting BRAF V600E may provide new off-
label indications for thyroid cancer therapy.52 In addition, several new
SMGs, such as SMO, have been investigated or used for targeted can-
cer therapy. For example, vismodegib, developed by Genentech, an
SMO inhibitor halting the hedgehog signaling pathway (Figure 3),
was approved for adult basal cell carcinoma treatment on January
30, 2012.34 Collectively, Figure 5 may provide useful information

Figure 2: Survey of significantly mutated genes (SMGs) and
druggable targets in various types of cancer. (A) Distribution
of the number of SMGs across 29 cancer types (see online
Supplementary Table S1). (B) Venn diagram showing the
druggable proteins encoded by SMGs targeted by US FDA-
approved anticancer drugs, experimental anticancer drugs,
and noncancer drugs. Due to space limitations, when the
number of genes is more than 10 in Venn diagram, only the
top 10 cancer targets with the largest number of approved
drugs are listed. The detailed lists of genes shown in Figure
2 are provided in online Supplementary Table S2. The abbre-
viations for cancer types are provided in the main text.
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for the development and application of off-label uses for cancer
therapies.

Prioritizing new anticancer indications through targeting SMGs
Here, we proposed a network-based statistical approach to prioritize
new potential indications for existing drugs by incorporating drug-
gene signatures from CMap into 693 manually curated SMGs and their
neighbors in the PIN across 29 cancer types (Figure 1). Based on the
notion of systems pharmacology, our network-based statistical ap-
proach prioritizes existing agents that target oncoproteins or network
neighbors regulated by TSGs for further development of targeted can-
cer therapy (Figure 1). Using the threshold of q< .05, we identified
284 significant drug-cancer pairs connecting 28 cancer types (gold

squares) with 48 existing drugs (circles) in Figure 6 and online
Supplementary Table S3. We did not find any significant drug-cancer
pairs for 1 rare cancer type (pilocytic astrocytoma), which had only 2
SMGs (Figure 2B). To verify the performance of predicted results,
we systematically searched existing literature for the predicted
indications on these 48 drugs. Among the 48 predicted drugs,
32 drugs (32/48¼ 66.7% success rate) were previously reported to
have potential anticancer indications in literature data (online
Supplementary Table S4). In the next paragraphs, we selected 4 drugs
(niclosamide, valproic acid, captopril, and resveratrol) that have more
experimentally validated data in the literature as example drugs to il-
lustrate their anticancer profiles and MOA.

Niclosamide is approved for the treatment of tapeworm infection
and acts by inhibiting oxidative phosphorylation, glucose uptake, and

Figure 3: Global drug-target interaction network connecting 113 proteins (denoted by Vee shape) encoded by SMGs and 342 US FDA-ap-
proved drugs (denoted by circle, 64 anticancer drugs and 278 noncancer drugs). All drugs were grouped using the Anatomical
Therapeutic Chemical classification system codes, as described in a previous study.35 Drug targets are denoted by Vee shapes: (i) orange
Vees denote both known cancer and repurposed (noncancer) drug targets (SMGs targeted by both known anticancer drugs and noncancer
drugs); (ii) red Vees denotes known cancer drug targets (SMGs targeted by known anticancer drugs); (iii) green Vees denote repurposed
(noncancer) cancer drug targets (SMGs targeted by known noncancer drugs). The size of nodes (circles and Vees) reflects their degree
(connectivity) in the network.
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anaerobic metabolism.53 Figure 6 shows that niclosamide is predicted
to have potential indications for multiple cancer types, such as STAD
(q¼ 1.1� 10�6), SKCM (q¼ 2.1� 10�5), LUAD (q¼ 4.1� 10�5),
and colon or rectum adenocarcinoma (q¼ 6.9� 10�3). Two recent
studies suggested that niclosamide had high tumor suppression activity
in human sporadic colorectal cancer54 and glioblastoma55 by inhibiting
the Wnt/beta-catenin pathway. Valproic acid, a fatty acid with an anti-
convulsant profile, is approved for the treatment of epilepsy. Figure 6
shows that valproic acid is predicted to have potential anticancer indi-
cations for several cancer types, such as esophageal carcinoma
(q¼ 1.1� 10�4), bladder carcinoma (q¼ 1.8� 10�4), and LUAD
(q¼ 2.7� 10�4). Recent studies reported that valproic acid has anti-
cancer (e.g., lung cancer) and anti-virus properties as an HDAC inhibi-
tor.56–58 Captopril, a competitive inhibitor of angiotension-converting
enzyme, was approved for the treatment of hypertension. In our analy-
sis, we predicted that captopril has new indications for NSCLC
(q¼ 0.021) and low-grade glioma (q¼ 0.048). A recent study reported
that captopril is a promising agent for inhibiting lung tumor growth and
metastasis in a xenografts model.59 Collectively, our network-based
approach demonstrated high performance in prioritizing new anticancer
indications for existing drugs (e.g., niclosamide, valproic acid, and cap-
topril), as indicated in Figure 6.

Case study: discovery of potential anticancer mechanism-of-action
for resveratrol
We next investigated the potential MOA of resveratrol for its predicted
anticancer indications. Resveratrol is a naturally derived stilbene that
exists in various foods and beverages. In 1997, Jang et al.60 first re-
ported the possible anticancer indication of resveratrol in a 2-stage
mouse skin model. Now, resveratrol has been widely used and tested
in preclinical or clinical studies to examine its chemopreventive and
antitumor activities.61,62 So far, the molecular mechanism of

resveratrol’s anticancer indication remains to be elucidated prior to its
clinical approval as an anticancer agent.62 In this study, resveratrol
was predicted to have multiple anticancer indications (Figure 6):
SKCM (q¼ 4.2� 10�4), LUSC (q¼ 1.2� 10�3), STAD
(q¼ 1.5� 10�3), kidney renal clear cell carcinoma (q¼ 2.0� 10�3),
head and neck squamous carcinoma (q¼ 4.0� 10�3), uterine corpus
endometrioid (q¼ 5.8� 10�3), BRCA (q¼ 8.9� 10�3), acute

Figure 4: Distribution of the available agents targeting signifi-
cantly mutated genes (SMGs) and the number of mutated pa-
tients harboring nonsynonymous mutations in drug-targeting
SMGs across 15 cancer types from The Cancer Genome
Atlas. One cancer type (PAAD: pancreatic adenocarcinoma)
did not have any SMGs targeted by approved drugs, so it was
not included. All drugs were grouped using the Anatomical
Therapeutic Chemical (ATC) classification system codes, as
labeled in the figure. The X-axis shows the type of cancer.
The abbreviations for cancer types are provided in the main
text.

Figure 5: Frequencies of nonsynonymous mutations in 66
selected significantly mutated genes (SMGs) targeted by US
FDA-approved anticancer agents across 15 cancer types in
approximately 5000 cancer genomes. These 66 SMGs were
presented here because they harbored the largest number of
nonsynonymous somatic mutations in pancancer samples
collected from The Cancer Genome Atlas. One cancer type
(PAAD: pancreatic adenocarcinoma) was not included, as ex-
plained in Figure 4’s legend. The color keys (heatmap) reflect
the number of nonsynonymous somatic mutations counted in
each cancer type or pancancer samples. The abbreviations
for cancer types are provided in the main text.
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lymphocytic leukemia (q ¼ 0.011), and NSCLC (q¼ 0.011). This is
consistent with the previous studies,61,62 but our work provides de-
tailed information on a total of 9 cancer types.

We constructed a resveratrol-gene network to investigate the MOA
of resveratrol targeting SMGs in beast cancer (Figure 7A) and lung
cancer (Figure 7B) by integrating network analysis and survival analy-
sis. As shown in Figure 7, the color of the node represents the z-score
of association between gene expression and survival rate measured
by univariate Cox regression, as described in a previous work.44 The
size of the gene node represents the amplitude (a) of differential ex-
pression with resveratrol, as described in CMap.40 As shown in
Figure 7, we asserted that if the high expression (or low expression) of
a down-regulated gene (or up-regulated gene) by resveratrol was as-
sociated with poor survival rate in a particular cancer type, this gene
would be more likely to explain the MOA for its anticancer therapeutic
effect by resveratrol, based on a previous study.63 Figure 7A reveals
that several SMGs (such as ASPM, EIF4G1, and STIP1) in BRCA are
down-regulated by resveratrol. Furthermore, high expression of
EIF4G1 (P¼ .017, log-rank test, GES2917464), ASPM
(P¼ 1.2� 10�3, GES349465), and STIP1 (P¼ 1.5� 10�5, Van de
Vijver et al.66) was significantly associated with poor survival rate in
breast cancer. EIF4G1, encoding eukaryotic translation initiation factor

gamma 1, plays crucial roles in breast cancer.67 Previous studies re-
ported that resveratrol inhibited human breast cancer cell migration
and invasion,68 so down-regulation of EIF4G1, ASPM, and STIP1 by
resveratrol may provide a potential MOA for its chemoprevention and
therapeutic properties in breast cancer.

As shown in Figure 7B, resveratrol down-regulated FOXP1 gene
expression, while high expression of FOXP1 was significantly associ-
ated with poor survival in LUSC (P¼ 5.2� 10�3, GES314169). FOXP1,
encoding forkhead box P1, is a member of the forkhead box transcrip-
tion factor family and plays important roles in lung cancer.70 In addi-
tion, resveratrol up-regulated ARNTL expression, but down-regulated
CTTN expression (Figure 7B). Interestingly, low expression of ARNTL
was significantly associated with poor survival (P¼ .038, Roepman
et al.71), while high expression of CTTN was significantly associated
with poor survival (P¼ 5.2� 10�3, GES457372) in LUSC. A recent
study showed that ARNTL plays a potential tumor suppressor role in
ovarian cancer.73 CTTN, which encodes cortactin, was previously re-
ported to mediate progression of NSCLC74 and other cancer types.75

Taken together, down-regulation of CTTN and FOXP1 and up-
regulation of ARNTL may be a potential MOA for the anti–lung cancer
effects of resveratrol.61,62 The aforementioned analysis lends itself to
proper experimental validation in the future.

Figure 6: Drug-cancer indication network for 284 predicted drug-cancer pairs (adjusted P-value [q]< .05, online Supplementary Table
S3) connecting 48 existing drugs (circles) and 28 cancer types (orange squares). The thickness of links represents the q values calculated
by our statistical approach (online Supplementary Table S3). The color of links represents significance categories of q values: red,
q< 10�9; orange, 10�9< q< 10�8; yellow, 10�8< q< 10�7; blue, 10�7< q< 10�6; cyan, 10�6< q< 10�5; and gray,
10�5< q< 0.05. The text size of 4 drugs (resveratrol, captopril, niclosamide, and valproic acid) was made larger because they were se-
lected as example drugs and discussed in the main text. The abbreviations for cancer types are provided in the main text.
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DISCUSSION
Massive amounts of next-generation sequencing data generated
from thousands of tumor genomes enabled the development of
precision cancer medicine by the identification of new drugs or ex-
isting drugs via targeting cancer driver events or SMGs discovered
in cancer genomes. In this study, we manually curated 693 SMGs
from large-scale cancer genomics studies and found 121 drug-
gable proteins encoded by SMGs. We found that 33.1% of patients
could potentially benefit from current US FDA-approved targeted
agents, and this number increased to 68.0% when utilizing drug
repositioning strategies, suggesting that cancer genomic data

forms a strong foundation for precision cancer medicine in the fu-
ture. Furthermore, we proposed a network-based drug reposition-
ing statistical framework with moderately high accuracy (66.7%
success rate) to prioritize new potential indications for existing
drugs by integrating SMGs, drug-gene signatures, and the PPI net-
work. We also identified a potential MOA for the putative antican-
cer effects of resveratrol in breast and lung cancer. In summary,
this study demonstrated the potential application of our network-
based approach in identifying existing drugs for precision cancer
medicine by integrating large-scale cancer genomics and drug
pharmacological data.

Figure 7: Potential mechanism-of-action (MOA) for resveratrol’s predicted anticancer indications in breast and lung cancers. (A and B)
The networks connecting resveratrol and significantly mutated genes in breast (A) and lung (B) cancer, respectively. In (A) and (B), the
color of nodes represents the z-score of the association between gene expression and survival rate calculated by univariate Cox regres-
sion as described in a previous study.44 The size of gene nodes denotes the amplitude (a) value of differential expression by the treatment
of resveratrol using the Connectivity Map data.40 The red edges denote up-regulation and blue edges denote down-regulation. (C)
Kaplan-Meier survival curves show 6 overlapped genes (selected based on the most significant z-scores) between the significantly mu-
tated genes in breast and lung cancer and the resveratrol down/up-regulated genes from the Connectivity Map. The curves were prepared
by an online tool, PREdiction of Clinical Outcomes from Genomic profiles: https://precog.stanford.edu.
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Limitations and future work
There are several possible limitations in the current network-based in-
frastructure. First, the data is still incomplete and biased. For example,
we examined potential molecular mechanisms of resveratrol’s anti-
cancer effects in breast cancer and lung cancer by integrating drug-
gene signatures and clinical analysis (Figure 7). However, CMap data,
while innovative and powerful, suffer from the lack of control on the
selection of the optimal drug dose, which should be subtoxic to pro-
duce informative expression profile data.40 Second, the current CMap
2.0 version included drug-gene signatures identified in only 4 different
cancer cell lines.40 However, we studied more than 20 different cancer
types in this work. We could not perform individual cancer type analy-
ses using 4 different cancer cell lines versus over 20 different cancer
types, but this would be possible when a future version of CMap is re-
leased to cover many cancer types. Third, compounds used at higher
concentrations can lead to widespread effects due to off-target and
secondary effects that are difficult to control in a high-throughput set-
ting. Hence, experimental validations of the predicted MOA are war-
ranted in the future. In addition, we could integrate high-quality,
comprehensive drug-gene signatures from LINCSCLOUD (http://www.
lincscloud.org) into our network-based approach for more precise anti-
cancer drug repositioning in the future. Fourth, cancer is highly hetero-
geneous and each cancer may have its subtypes with unique
molecular signatures. We will further explore these limitations in the
future. Despite the above limitations, our work effectively utilizes the
largest-ever cancer genomic dataset, thus providing a robust frame-
work to identify potential existing drug candidates for drug reposition-
ing in cancer.

As shown in Figure 1, we hypothesized that if SMGs or their coding
protein neighbors in the PIN were overrepresented in the set of genes
up- or down-regulated by a drug of interest for a particular cancer
type, this drug would have a high potential of a new indication for this
cancer type. This strategy is effective because it weights not only mu-
tational effect but also related biological regulation in the molecular
network.76 However, accurately distinguishing oncogenes from TSGs
in particular cancer types is a very difficult task. In the current study,
we combined oncogenes and TSGs as a union of SMGs, which may
cause some data bias or potential false positive discoveries. In the fu-
ture, we will build more reliable network-based approaches by consid-
ering agonists for TSGs to restore gene function or inhibitors for
oncogenes to inhibit their oncogenic potential. In addition, we will im-
plement more robust statistical algorithms, such as Kullback-Leibler
divergence, for prioritizing new drugs to inhibit the function of neigh-
bors of TSGs in a transcriptional regulatory network by integrating
comprehensive gene expression profiles perturbed by drug
treatment77 using the data identified from functional RNAi and
CRISPR-Cas9 screens.78,79 In addition to SMGs derived from cancer
genomics data, we may integrate some cancer susceptibility genes
generated from GWAS2 or phenome-wide association studies,80 like
the data from GWAS Catalog81 and phenome-wide association studies
Catalog,82 into our network-based framework to identify new potential
druggable targets or new indications for existing drugs, which will aid
in the timely development of precision medicine in broad phenotypes.

CONCLUSION
In this study, we proposed an integrative network-based infrastructure
that has the potential to advance the field of precision cancer medicine
by prioritizing druggable targets and new indications for existing drugs
through targeting cancer driver genes. Based on large-scale cancer
genomics data across over 5000 cancer genomes from TCGA, we
found that 33.1% of patients could benefit from currently targeted

agents, and the benefit rate increased to 68.0% when utilizing a drug
repositioning approach. Moreover, we developed a statistical frame-
work for anticancer drug repositioning to integrate drug-gene signa-
tures, manually curated cancer drivers, and the PPI network. We
identified 284 potential indications connecting 28 cancer types and 48
existing drugs with a 66.7% success rate validated by literature data.
Finally, we showcased a potential MOA for resveratrol anticancer ef-
fects through targeting several SMGs (e.g., ARNTL, ASPM, CTTN,
EIF4G1, FOXP1, and STIP1) in breast and lung cancers via integrative
network analysis and survival rate analysis. In summary, we demon-
strated a promising network-based infrastructure to identify potential
targets and anticancer drug repositioning candidates for precision can-
cer medicine by targeting cancer driver genes that can be discovered
in massive amounts of cancer genomics data.
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