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ABSTRACT

Background: Electronic medical record (EMR) computed algorithms allow investigators to screen thousands of

patient records to identify specific disease cases. No computed algorithms have been developed to detect all

cases of human immunodeficiency virus (HIV) infection using administrative, laboratory, and clinical documen-

tation data outside of the Veterans Health Administration. We developed novel EMR-based algorithms for HIV

detection and validated them in a cohort of subjects in the Duke University Health System (DUHS).

Methods: We created 2 novel algorithms to identify HIV-infected subjects. Algorithm 1 used laboratory studies

and medications to identify HIV-infected subjects, whereas Algorithm 2 used International Classification of Dis-

eases, Ninth Revision (ICD-9) codes, medications, and laboratory testing. We applied the algorithms to a well-

characterized cohort of patients and validated both against the gold standard of physician chart review. We

determined sensitivity, specificity, and prevalence of HIV between 2007 and 2011 in patients seen at DUHS.

Results: A total of 172 271 patients were detected with complete data; 1063 patients met algorithm criteria for HIV

infection. In all, 970 individuals were identified by both algorithms, 78 by Algorithm 1 alone, and 15 by Algorithm 2

alone. The sensitivity and specificity of each algorithm were 78% and 99%, respectively, for Algorithm 1 and 77%

and 100% for Algorithm 2. The estimated prevalence of HIV infection at DUHS between 2007 and 2011 was 0.6%.

Conclusions: EMR-based phenotypes of HIV infection are capable of detecting cases of HIV-infected adults with

good sensitivity and specificity. These algorithms have the potential to be adapted to other EMR systems, allow-

ing for the creation of cohorts of patients across EMR systems.
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BACKGROUND AND SIGNIFICANCE

The conversion from paper to electronic medical records (EMRs) by

health care systems and networks for clinical documentation is rap-

idly being done at medical centers and hospitals around the United

States. While useful for clinical documentation, this transition to

EMRs also yields an unprecedented opportunity to combine and an-

alyze large clinical and ancillary datasets across multiple health care

systems for research and quality improvement purposes. The ability

to automate this process builds upon traditional retrospective

methodology (so-called chart reviews), which involves manually
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reviewing individual files, often requiring multiple individuals col-

laborating over long periods of time.1 Compiling a large sample

with a given disease or characteristic could take months and hun-

dreds of person-hours using these traditional methods, limiting the

ability of researchers to conduct important clinical studies.1

With the advent and adoption of the EMR, researchers are now

able to rapidly identify potential disease cases for clinical studies.2–4

To do this effectively and fully leverage the benefits of an electronic

system, computable phenotype algorithms are needed that can

search across billing data, laboratory data, and clinical documenta-

tion in order to perform case detection. These computable pheno-

type algorithms can be conceived in a manner to have high

sensitivity and specificity for identifying individual subjects’ true dis-

ease status using methods borrowed from routine clinical care.2–4

HIV infection is one disease that lends itself to this algorithm-

based case detection, given the reliance on laboratory-based testing.5

Previous studies that have attempted to identify HIV-infected pa-

tients in large datasets have had significant limitations. Many have

focused on preselected populations, either Medicare and/or Medic-

aid enrollees6–9 or patients receiving care from the Veterans Health

Administration.10,11 Due to their design, these studies lack general-

izability outside the government health sector. Their utility is further

limited by the use of administrative data alone for case detection,

subjecting these studies to the systematic error inherent in this type

of data, including missing codes if HIV infection is not the primary

issue being addressed in an encounter, or inappropriate use of HIV-

related ICD-9 codes to cover diagnostic testing or HIV-prevention

counseling.12 Subsequent algorithms have improved on these meth-

odologic issues, but were targeted to identify specific subgroups of

patients, including foreign-born individuals who have known HIV

infection13 and only new cases of HIV infection in a dataset,8 or de-

termining which patients are not known to be infected with HIV but

are at risk of contracting the disease.14

In order to maximally utilize the features of the EMR to develop

a virtual cohort of HIV-infected patients in a large nongovernmental

dataset, we set out to develop novel computable phenotype algo-

rithms for case detection of these patients. We also sought to vali-

date the algorithms, determine their sensitivity and specificity, and

use them to determine the prevalence of HIV infection in a large pre-

existing cohort.

MATERIALS AND METHODS

Study setting
This study was performed within the Duke University Health System

in Durham, North Carolina, using an existing, previously described

cohort comprising all adults (18þ years old) who had encounters

with the health system between 2007 and 2011 and could be identi-

fied as Durham County residents at the end of 2011.15 Within this

cohort, a total of 4 408 919 unique patient encounters with an aver-

age of 881 784 encounters per year were identified. Data were ex-

tracted using the Duke Enterprise Data Unified Content Explorer

system, a proprietary, web-based tool designed to interface with the

health system’s central data repository.16 Accessible data included

clinical, billing, and demographic information for patients across

the health system’s 3 acute care hospitals as well as ambulatory pri-

mary care and specialty clinics. Information in the repository is

updated in an ongoing prospective fashion, and includes encounter

information preceding the implementation of Epic software as the

institution’s unified EMR. Data available after the cohort time pe-

riod were also included. Approval for the study was provided by the

Duke Institutional Review Board for Clinical Investigation

(Pro00057348).

EMR definition – multiple pathways
In order to maximize the utility and performance characteristics of

the algorithms, 2 separate algorithms utilizing complementary

approaches to HIV case detection were created. A panel of physi-

cians, including experts in the diagnosis and treatment of HIV infec-

tion, provided recommendations for the development of these

algorithms and approved their final versions. Algorithm 1 (Figure 1)

is a laboratory-based approach modified from the HIV diagnostic

algorithm in practice during the period of our cohort enrollment,

from 2007 to 2011.17 For Algorithm 1, the expert panel concluded

that a diagnosis of HIV could be reasonably applied if a patient had

Figure 1. Computable phenotype Algorithm 1. Modified from the most recent Centers for Disease Control algorithm for HIV diagnosis, this algorithm uses lab

tests to confirm the presence of HIV infection.
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1 of 2 additional features. The first was a positive nucleic acid test

(HIV RNA or DNA polymerase chain reaction [PCR]), Western

blot, or p24 antigen test, based on testing recommendations within

our cohort time frame.17 The second was HIV-specific medications

in the patient’s prescribed medication list. The addition of HIV-

specific medications was felt to represent evidence of contact with a

health care provider with expertise in HIV diagnosis and treatment.

Recognizing that some medications used to treat HIV infection are

also used today for hepatitis B, we looked for medication combina-

tions specific to HIV therapy (Table 1). Monotherapy with lamivu-

dine, emtricitabine, or tenofovir was thus not considered a positive

HIV medication unless prescribed in combination with an additional

drug. By excluding single drugs only, we recognize that we may

have included HIV-negative patients on dual therapy with emtricita-

bine and tenofovir for pre-exposure prophylaxis (PrEP) and post-

exposure prophylaxis (PEP). Additionally, we were unable to ex-

clude patients on triple therapy for PEP as we did not have access to

prescription records.

Algorithm 2 (Figure 2) was designed to detect those patients not

identified by Algorithm 1 due to incomplete medical records, be-

cause they had fragmented access to care or had diagnostic labs per-

formed outside of the study’s health system. Both of these scenarios

led to HIV-infected patients not having results for all labs required

for Algorithm 1 accessible within the study’s health system. Algo-

rithm 2, a complementary algorithm, includes a combination of

ICD-9 billing codes, laboratory investigations, and medication lists

to create a more “real-world” clinical approach to HIV case detec-

tion. Borrowing from traditional retrospective research methodol-

ogy, Algorithm 2 begins with an ICD-9 code for an HIV-related

illness (Table 2), followed by a confirmatory medication list (Table

1) or lab test (HIV antibody, HIV Western blot, or HIV PCR).

Implementation
Once the 2 algorithms were finalized and approved by the physician

panel, individual components of each algorithm were converted into

programmable, searchable code. Given the evolving nature of data

storage in the central repository over time due to changes in HIV

testing technology and new medication development, a comprehen-

sive search of the metadata was necessary to identify all permuta-

tions of pertinent laboratory results and medications. The Duke

Enterprise Data Unified Content Explorer system was used for this

search, and a list of all permutations of pertinent laboratory test

names, ICD-9 codes, and medication names was compiled (Tables 1

and 2). ICD-9 codes were readily identified and implemented with-

out the need for manual chart review. In contrast, searches for medi-

cation names and laboratory test names yielded thousands of results

for a small number of pertinent items. The initial metadata search

results were manually reviewed by the study team to isolate perti-

nent test and medication names. By initially reviewing at the meta-

data level (as opposed to the clinical documentation level), we were

able to ensure that each unique lab value and medication label in

our data extract was reviewed by a trained clinician in an efficient

and systematic manner. In those cases where manual review of the

metadata was insufficient to conclude the name of a laboratory test

or medication, due either to misspelling during the clinical encounter

documentation or formatting issues when transferring from clinical

documentation to the data repository, manual chart review of the

clinical documentation was performed.

Following the initial review of laboratory names, the list of perti-

nent permutations required a second manual review by study per-

sonnel in order to codify the results. For HIV antibody testing, only

“positive” was considered to be positive, whereas “negative” and

“indeterminate” were considered to be negative and did not contrib-

ute to a diagnosis. In rare instances, this approach does have the po-

tential to introduce false negatives if the patient has acute HIV

infection, as a positive HIV PCR may not have been performed if a

negative or indeterminate HIV antibody test was recorded. For HIV

PCR testing, we included both quantitative measures of HIV viral

load and results from HIV genotyping and resistance pattern

Table 1. HIV-specific medications by generic and trade name with

example metadata permutations

Drug Class Generic Name Trade Name

Nucleoside reverse

transcriptase

inhibitor

Abacavir (ABC) Ziagen

Didanosine (DDI) Videx

Emtricitabinea,b,c (FTC) Emtriva

Lamivudinea,c (3TC) Epivir

Stavudine (D4T) Zerit

Tenofovir disoproxil

fumaratea,b,c (TDF)

Viread

Zidovudine (AZT)c Retrovir

Non-nucleoside

reverse

transcriptase

inhibitor

Efavirenz Sustiva

Etravirine Intelence

Nevirapine Viramune

Rilpivirinec Edurant

Protease

inhibitor (PI)

Atazanavirc Reyataz

Darunavirc Prezista

Fosamprec Lexiva

Indinavir Crixivan

Nelfinavir Viracept

Ritonavirc Norvir

Saquinavir Invirase

Tipranavir Aptivus

Integrase inhibitor Dolutegravirc Tivicay

Elvitegravir Vitekta

Raltegravirc Isentress

Fusion inhibitor Enfuvirtide Fuzeon

Entry inhibitor Maraviroc Selzentry

Booster Cobicistat Tybost

Combination pills Tenofovir/Emtricitabine

(TDF/FTC)a,c

Truvada

Tenofovir alafenamide/Emtricitabine

(TAF/FTC)c

Descovy

EfavirenzþTDF/FTC Atripla

RilpivirineþTDF/FTC Complera

RilpivirineþTenofovir

alafenamide/FTC

Odefsey

ElvitegravirþCobicistatþTDF/FTC Stribild

ElvitegravirþCobicistatþ
Tenofovir alafenamide/FTC

Genvoya

DolutegravirþABC/3TC Triumeq

ZidovudineþLamivudine

(AZT/3TC)c

Combivir

AbacavirþLamivudine (ABC/3TC) Epzicom

ABCþAZTþ 3TC Trizivir

Lopinavir/Ritonavirc Kaletra

Comprehensive list of the trade names and generic names of HIV-specific

medications. Please note that not all of these medications were available dur-

ing 2007–2011 but were included, as data outside the cohort time period

were utilized. Those medications with additional clinical uses including treat-

ment for hepatitis B as well as PEP and/or PrEP are noted as follows: amedica-

tions also used for hepatitis B virus; bmedications also used for PrEP;
cmedications also used for PEP.
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analyses as equivalent tests for case detection purposes. For viral

load, a detectable level was considered “positive” regardless of level,

and an undetectable level was considered “negative.” This definition

also has the potential to introduce false negatives, as an undetectable

viral load can be seen in patients on effective antiretroviral therapy

or in “elite controllers,” HIV-infected persons with undetectable vi-

remia off antiretrovirals. For genotyping, a reported result was con-

sidered to be “positive,” as this test can only be performed when

there is detectable HIV present.

Once all components of the 2 algorithms were codified, we ap-

plied the algorithms to the data for our study population. Data col-

lected outside of the 5-year enrollment period for the cohort were

included in the analysis for those subjects enrolled in the cohort.

Validation
Following implementation of our computed algorithms, a validation

step was performed to determine test characteristics, including sensitiv-

ity and specificity. Additional information, including potential

strengths and weaknesses of each algorithm, were also identified. The

gold standard used for comparison in the validation step was physician

manual chart review. Because the prevalence of HIV infection in the

general population is low, simple random sampling from the entire

population would require a prohibitively large sample size. In order to

decrease the required sample size for a precision of 0.05% around our

estimates, we stratified our population. We believe that the algorithms

will perform differently across strata, and this performance variability

drives the sampling scheme. Patients were stratified by the number of

algorithms positive (both, one, or none), and those with no algorithm

positive were further stratified by meeting any algorithm components

as well as high vs low risk for HIV. High-risk individuals were defined

as those with an ICD-9 code for hepatitis C, any sexually transmitted

infection, or tuberculosis (see Supplementary Table A1). We then

made assumptions for the true positive fraction and false positive frac-

tion for each stratum. Our true positive fraction estimates were 0.975

for both algorithms positive and 1 algorithm positive strata, and 0.000

for single component positive, high-risk, and no component positive

strata. Our false positive fraction estimates were 0.000 for both algo-

rithms positive, 0.950 for 1 algorithm positive, 0.010 for single compo-

nent positive and high risk, and 0.00000001 for no component

positive strata. This estimate for 1 algorithm positive is high, signifying

a strong belief in the independence of the algorithms to correctly iden-

tify HIV-infected individuals. Using these estimates, a stratified ran-

dom sample size of 171 charts was selected to provide an overall point

estimate for prevalence of HIV infection of 60.05%. Our sampling

Figure 2. Computable phenotype Algorithm 2. This algorithm is designed to capture individuals lacking components of Algorithm 1 required for lab-based diag-

nosis. Should a confirmatory test be required, the algorithm returns to this common confirmation pathway outlined in Algorithm 1.

Table 2. ICD-9 Codes for HIV-related illnesses

ICD-9

Code

Description

042 Human immunodeficiency virus (HIV) disease

042.0 HIV and specific infection

042.1 HIV causing other infection

042.2 HIV with neoplasm

042.9 Unspecified acquired immunodeficiency syndrome (AIDS)

043 HIV causing condition necrotizing enterocolitis (NEC)

043.0 HIV lymphadenopathy

043.1 HIV causing central nervous system (CNS) disease

043.2 HIV causing other disorders involving the

immune mechanism

043.3 HIV causing disease NEC

043.9 AIDS-related complex not otherwise specified (NOS)

044 Other HIV infection

044.0 HIV with acute infection

044.9 HIV infection NOS

079.53 HIV, type 2

795.78 Positive serologic findings; HIV

V08 Asymptomatic HIV infection status

795.71 Nonspecific serologic evidence of HIV

Comprehensive list of HIV-specific ICD-9 codes and their descriptions used

by Algorithm 2 for case detection.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 2 153



approach, designed to optimize estimation of sensitivity and specificity,

naturally induces verification bias,18 which we accounted for when es-

timating the operating characteristics of each phenotype by using

methods from Begg and Greenes.19 By reweighing our estimates at the

stratum level to correspond to the weights derived in our sampling

scheme, we corrected for the selection bias that we introduced. Simula-

tion studies have been performed on these approximations for sample

sizes of 100, 500, and 1000, with the coverage probabilities being close

to the nominal level, which we expect should cover a sample size such

as ours within this range.19

Seven physician study team members participated in the review.

Reviewers were given full access to the clinical EMRs of all patients,

which included access to results posted prior to EMR implementa-

tion, as well as data linked to other health care systems via Epic’s

Care Everywhere function and to records scanned in from outside fa-

cilities that may not have been accessible by the algorithms. Charts

were coded as definitely HIV-infected (positive HIV antibody or

PCR), possibly HIV-infected (HIV on problem list plus HIV medica-

tion or 2þ infectious disease clinic notes with HIV as a diagnosis), or

HIV-negative (not meeting the criteria for definite or possible). These

criteria were approved by our physician panel in order to maximize

specificity and minimize false positives. Each chart was reviewed sep-

arately by 2 investigators blinded to both the results of the algorithms

and the decision of the other reviewer. All cases of disagreement were

adjudicated by a third reviewer blinded in similar fashion to algo-

rithm results and individual reviewer responses but unblinded as to

status as a third reviewer for adjudication. Final HIV status was deter-

mined by the third reviewer in cases of disagreement. For the purpose

of statistical analysis, a binary construct of “HIV-positive” and

“HIV-negative” was created, with definitely and possibly HIV-

infected results being combined into the “HIV-positive” category.

The sensitivity and specificity of each algorithm was calculated with

the chart review being treated as the gold standard.

RESULTS

Algorithms
We identified 172 271 individual patients with complete data, com-

prising our study population (Figure 3). An additional 1232 individ-

uals had insufficient data to be included in the pool of participants.

After applying the finalized algorithms to our data extract, we iden-

tified 1063 patients who met the criteria for the HIV-infected case

definition. Seventy-eight were positive by Algorithm 1 alone, 15

were identified using Algorithm 2 alone, and 970 met the criteria for

HIV infection by both algorithms. An additional 459 patients, as

outlined in Figure 4, had at least some positive component of the

HIV algorithms but did not meet the full definition for being HIV-

infected by either algorithm. Performance of each component of the

2 algorithms is outlined in Figure 4, and details of the 459 patients

with only a component positive are described in Table 3. When uti-

lized to detect cases of HIV infection in our cohort of subjects in

DUHS, we found an estimated HIV prevalence of 0.6%.

Validation process
Comparing the results of our algorithms to the gold standard of cli-

nician manual chart review, we identified a sensitivity and specificity

of 78% (95% confidence interval [CI], 71.7-83.6%) and 99% (95%

CI, 99.9-100%), respectively, for Algorithm 1 and 77% (95% CI,

70.7-82.9%) and 100% (95% CI, 100-100%) for Algorithm 2. We

subsequently reviewed all cases that were misclassified by our algo-

rithms. In total, there were 12 false negatives and 6 false positives

(Table 4). Those individuals misclassified as HIV-negative by both

algorithms (false negatives) were missed due the critical diagnostic

components of their records not being accessible to our algorithms,

due to data being stored either in scanned form from an outside fa-

cility or in an outside EMR identified manually through Epic’s Care

Everywhere feature. Other misclassified results were due to incom-

plete metadata in our algorithms, with some individual HIV PCR re-

sults missed by our algorithm. Those individuals incorrectly

classified as HIV-infected by the algorithms (false positives) were

identified as such based on misclassification of medications pre-

scribed for hepatitis B or PEP/PrEP as HIV treatment medications

(Table 5).

DISCUSSION

The widespread adoption of EMRs for clinical documentation in the

United States has led to unprecedented opportunities for large-scale

Figure 3. Flow diagram of case detection through the study. Of the 172 271 subjects with complete data, 1063 met criteria by 1 or both algorithms for HIV case de-

tection. The contribution of each algorithm to overall HIV case detection is outlined.
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epidemiologic research. Traditional retrospective studies that

previously took months or years to complete can now be performed

in a fraction of the time. EMR-based computed phenotypes allow

for rapid identification of patients, and have the added benefit of be-

ing adaptable to different health care systems, allowing for the de-

velopment of multicenter cohorts of patients for research, clinical

care, and public health initiatives. Computed phenotypes for disease

case detection have been previously published for diabetes, cardio-

vascular disease, and asthma, with robust results.2–4 In order to opti-

mally utilize the benefits of these new systems for HIV research, we

have developed novel computable phenotype algorithms to detect

HIV-infected patients within a single institution. Our combined al-

gorithms leverage the strengths of current guideline-based clinical

diagnostic strategies while improving upon traditional chart review

methodologies for case-finding by applying a multistep diagnostic

approach. Implementing our algorithms to health system data iden-

tified a local estimated prevalence of HIV of 0.6%. This is consistent

with the official estimate of HIV prevalence in Durham County,

North Carolina, which in 2011 was reported to be 0.5%.20,21

Our novel algorithmic approach to the identification of HIV in-

fection in an EMR system contributes to the current literature in sev-

eral ways. Our objective of developing algorithms that can be

applied to an entire nongovernmental health care system to create a

virtual cohort of all individuals living with HIV infection is an ap-

proach with unique implications for research and clinical care. Simi-

larly, our methodology of using a 2-step confirmation process

instead of relying on administrative data alone improved the perfor-

mance of our algorithms, as seen in Table 4. Finally, combining a

current guideline-based clinical approach with a non–laboratory-

based 2-step confirmation pathway is unique to the published litera-

ture in the area and allowed for detection of cases in our cohort that

would otherwise have been missed, representing an important popu-

lation of individuals with fragmented health care access patterns.

When we compare the results of our current study to previous

work by Goetz et al., our sensitivity for HIV case detection is lower.

This was an intentional tradeoff for much higher specificity, which

was the goal for our algorithms in the development phase.8 This

may also reflect differences in the objectives of each study. The

Goetz study aimed to identify new diagnoses of HIV infection in a

Veterans Health Administration cohort, whereas the goal of this

study was to identify all patients with HIV infection in a nongovern-

ment setting.8

Applying our algorithms sequentially, we identified several issues

that contribute to the misclassification of HIV infection status. The

most common circumstance leading to mischaracterization of a

patient as HIV-negative was incomplete metadata, where some med-

ications and lab results were present in the chart but not identified

by our algorithms. A secondary source of false negative results was

identified if the diagnosis was obtained outside of our institution

and listed solely in the narrative notes. This data could only be iden-

tified by manual extraction of data from the records. We also found

that 4.2% of patients (6 out of 143) were misclassified as HIV-

infected when they were actually HIV-negative. This was mainly

secondary to antiretroviral medications used to treat hepatitis B or

PEP, falsely categorizing patients as HIV-infected (Table 5).

Our overall approach and final algorithms have several

strengths. First, both an international guideline-based diagnostic ap-

proach and a more traditional ICD-9 code and billing information

component were incorporated into the algorithm. Doing so allowed

us to identify subjects that would have been missed by either algo-

rithm alone. Second, the individual data components of our algo-

rithm should be readily accessible for use in other health systems

that have access to and experience using clinical data repositories by

adapting individual algorithm components to local systems. The in-

dividual component domains of our algorithms (medications, ICD-9

codes, laboratory results) have been used by others in collaborative

research, such as the Phenotype KnowledgeBase (PheKB) project

from eMERGE creating EMR phenotypes for a variety of diseases.22

It should be possible to take the individual components of our algo-

rithm and build a PheKB HIV infection phenotype, which could

then be implemented at partnering PheKB sites. Translation of our

algorithms into a common data standard, either Observational

Health Data Sciences and Informatics or an equivalent, may be nec-

essary to permit portability between institutions. Finally, our study

was performed in a large academic institution with experience in

collecting data pre- and post-implementation of the Epic EMR. This

setting allows for greater generalizability to other nongovernment

health care systems that may use a similar medical record system.

There are limitations to our current approach. The initial review

of the metadata failed to identify several laboratory results and medi-

Table 3. Details of single component positive patients

Component Positive Number of Patients Explanation

ICD-9 code 432 ICD-9 code for HIV present, but no confirmatory test or medications identified in metadata

HIV antibody 17 Antibody result identified and positive, but no confirmatory component identified in metadata

Western blot 10 Western blot result identified and positive, but no confirmatory component identified in metadata

Results of the 459 patients who were identified to have a positive component of the algorithms but did not meet the full criteria for a positive algorithm.

Figure 4. Venn diagram of the contribution of each component of the 2 final

algorithms to the case detection of HIV-infected patients in the complete co-

hort. Areas of overlap highlight complementary data components, where

nonoverlapping regions emphasize areas for further refinement. The total

number of subjects with no components positive in the dataset was 170 749

individuals.
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cations, yielding an inaccurate output that underestimated the preva-

lence of disease. A subsequent manual review of the data and software

development was required to identify all pertinent lab and medication

results missed. Moreover, there was difficulty interpreting the meta-

data output of laboratory tests due to confusion related to reference

lab results, where multiple lines of redundant text were uploaded into

the system and had to be manually reviewed and refined prior to being

interpreted with our algorithm. Both of these issues may be unique to

our local EMR implementation, and generalizability to other health

care systems should be investigated. A further limitation involves our

validation step results. Because of the small number of false negatives

identified in our manual chart review, there is the potential to overesti-

mate sensitivity with small changes in the number of false negatives. A

final limitation is the changes in clinical practice since our cohort

closed for enrollment in 2011. Since that time, billing has transitioned

from ICD-9 to ICD-10, and new clinical diagnostic algorithms for

HIV testing have been published.5 Both of these changes should be ac-

counted for as these algorithms are put into practice.

Efforts are now being made to merge complementary diagnostic

algorithms for other chronic diseases with our novel algorithms for

HIV to develop a multitiered case finding system. By developing a

repository of EMR phenotypes for different diagnoses with their as-

sociated test characteristics, we will be able to rapidly identify large

cohorts of subjects with specific diagnoses accurately. Given the pro-

liferation of EMRs across the United States, we anticipate that the

process we have outlined can be readily adapted to other sites as

well by using our completed algorithms as macro programs for sta-

tistical analysis software packages.

CONCLUSIONS

In this study, we have developed and validated novel HIV case-

detection algorithms with good sensitivity and specificity. These

novel algorithms allow for rapid case detection of HIV-infected in-

dividuals in large datasets using methodology that can be extrapo-

lated to other health care systems, allowing for collaborative, cross-

institution cohort creation. While this represents a significant step

forward, future studies should focus on applying these algorithms

to multiple datasets and determining their test characteristics in

different settings.
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Table 4. Validation results

Source Strata N (172 271) N (171) Results

Dþ D�

Rþ R� Rþ R�

Algorithm 1 Both algorithms positive 970 12 12 0 0 0

One algorithm positive 93 10 3 1a 6a 0

Component only positive 459 21 0 12a 0 9

High-risk individuals 2881 119 0 0 0 119

No components positive 167 868 9 0 0 0 9

Algorithm 2 Both algorithms positive 970 12 12 0 0 0

One algorithm positive 93 10 1 3a 0 6

Component only positive 459 21 0 12a 0 9

High-risk individuals 2881 119 0 0 0 119

No components positive 167 868 9 0 0 0 9

Results of the validation step. Manual review of 171 charts (n) selected at random from each of 5 strata was performed, with the results listed according to the

algorithm used. Results are listed according to algorithm result Rþ or R� as well as gold standard result Dþ or D�.
aFalse negative and false positive results.

Table 5. False positive and false negative results

Result Algorithm N Explanation

False positive Algorithm 1 6 2 results were unexplainable

2 subjects on PEP following a needle-stick injury

1 subject on therapy for hepatitis B

1 subject with inaccurate clinical documentation of AZT/3TC (Combivir) prescription

Algorithm 2 0

False negative Algorithm 1 13 10 subjects misclassified due to incomplete metadata

Remaining subjects misclassified due to results only available in outside records or documentationAlgorithm 2 15

Explanation of false positive (6) and false negative (16) results from validation step, by algorithm.
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