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ABSTRACT

Objective: Identifying drug discontinuation (DDC) events and understanding their reasons are important for

medication management and drug safety surveillance. Structured data resources are often incomplete and lack

reason information. In this article, we assessed the ability of natural language processing (NLP) systems to un-

lock DDC information from clinical narratives automatically.

Materials and Methods: We collected 1867 de-identified providers’ notes from the University of Massachusetts

Medical School hospital electronic health record system. Then 2 human experts chart reviewed those clinical

notes to annotate DDC events and their reasons. Using the annotated data, we developed and evaluated NLP

systems to automatically identify drug discontinuations and reasons at the sentence level using a novel seman-

tic enrichment-based vector representation (SEVR) method for enhanced feature representation.

Results: Our SEVR-based NLP system achieved the best performance of 0.785 (AUC-ROC) for detecting discontinu-

ation events and 0.745 (AUC-ROC) for identifying reasons when testing this highly imbalanced data, outperforming

2 state-of-the-art non–SEVR-based models. Compared with a rule-based baseline system for discontinuation detec-

tion, our system improved the sensitivity significantly (57.75% vs 18.31%, absolute value) while retaining a high spe-

cificity of 99.25%, leading to a significant improvement in AUC-ROC by 32.83% (absolute value).

Conclusion: Experiments have shown that a high-performance NLP system can be developed to automatically

identify DDCs and their reasons from providers’ notes. The SEVR model effectively improved the system perfor-

mance showing better generalization and robustness on unseen test data. Our work is an important step toward

identifying reasons for drug discontinuation that will inform drug safety surveillance and pharmacovigilance.

Key words: natural language processing, drug surveillance, knowledge representation, supervised machine learning, electronic

health records
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INTRODUCTION

Drug discontinuation (DDC), the cessation of a drug treatment by

either the clinician or the patient,1 is a frequent event in patient care.

Comprehensive information on DDC is critical to medication man-

agement (eg, avoiding medication errors that could adversely affect

patient care)2 and drug safety surveillance (eg, ensuring high-fidelity

drug exposure measurement in population research).3 Drugs can be

discontinued in a myriad of circumstances, such as 1) naturally (eg,

antibiotics are discontinued when pneumonia resolves); 2) by

patients themselves (eg, when patients inappropriately stop taking

the medications against the physician’s instructions; or 3) with-

drawn from the market by pharmaceutical companies and/or regula-

tory organizations. Existing studies typically group DDC reasons

into 4 categories: 1) adverse events (AEs), 2) lack of treatment effec-

tiveness, 3) patient preference/nonadherence, and 4) medication be-

ing no longer necessary.4,5 The various categories contribute

differently. Studies on causes of anti-tumor necrosis factor discontin-

uation, for instance, showed that AEs were responsible for treatment

discontinuations in 48.7% of cases, and lack of treatment effective-

ness represented the most significant single cause for anti-tumor ne-

crosis factor treatment discontinuation (50%).5 Another study of

patients with human immunodeficiency viruses showed that the

leading causes of discontinuation were intolerance/toxicity (58.5%)

and poor adherence (24%).6 Therefore, effectively extracting DDC

events as well as understanding their reasons hold great potential for

efficient pharmacovigilance, effective patient management, as well

as improved patient safety and health care outcomes.

Existing pharmacovigilance methods often depend on structured

pharmacy claims data or primary care prescribing data as sources of

DDC information. However, those databases have limitations. For

example, research shows substantial disagreement between nonad-

herence information inferred from pharmacy data and that reported

by patients themselves.7–9 Drug discontinuations due to patient non-

adherence are rarely available in a structured database, and the lack

of information regarding the DDC reason in the structured database

makes it difficult to learn why a medication was discontinued. In

contrast, clinical narratives, such as the provider notes, were identi-

fied as the “most reliable and readily accessible source” for detecting

DDCs and determining reasons for them.10 This is consistent with

prior investigations which showed that a large portion of medical in-

formation is recorded only in narratives and not in the structured

data.11,12 However, manual chart reviews are time-consuming, la-

bor-intensive, and prohibitively expensive.

Advances in natural language processing (NLP) have enabled a

large-scale extraction of meaningful information from clinical narra-

tives.13 Several studies attempted to capture drug discontinuation

signals from clinical notes in the context of patient nonadherence de-

tection and medication reconciliation. For example, Turchin et al.

used several heuristic rules to extract patient nonadherence informa-

tion from physicians’ notes of hypertensive patients.14 Cimino et al.

utilized the off-the-shelf NLP system MedLEE to identify medication

concepts and detected drug discontinuation through the disappear-

ance of the medication concept in patient’s longitudinal notes.15

Neither approach, however, detected the reasons for discontinua-

tion. Morrison et al. applied the existing NLP tool TextMiner to

identify AEs from clinical narratives as reasons for drug discontinua-

tion; however, all the other reasons for discontinuation in that study

depended on structured data. These shortfalls point out that devel-

oping NLP tools for a comprehensive analysis of DDC reasons is

much needed.4

The objective of this study is to automatically identify and analyze

DDC events from rich clinical narratives. We formulated the problem

into a sentence-level classification task. Toward this end, we proposed a

drug discontinuation taxonomy or schema, comprising of 4 high-level

categories: “Adverse_Event,” “Drug_Modification,” “Non_Medical,”

and “Unknown.” Examples for each category are shown in Table 1.

We applied different machine learning models and explored dif-

ferent representation methods. We developed a simple but novel rep-

resentation method called semantic enrichment-based vector

representation (SEVR), which shows promising performance for

detecting drug discontinuation and reasons for discontinuation. The

main contributions of this research are summarized as follows:

• a pioneer study to explore machine learning approaches for auto-

matically identifying drug discontinuation events and reasons for

discontinuation from electronic health record (EHR) narratives;
• an expert-annotated EHR corpus for drug discontinuation events

and their reasons;
• a novel semantic enrichment-based vector representation;
• an evaluation of different approaches to the imbalanced data

challenge.

MATERIALS AND METHODS

Data, annotation schema, annotation
The data used for this study came from the University of Massachusetts

Memorial Health Care (UMMHC) EHR system. As cardiovascular dis-

ease and cancer are the largest contributors to the burden of chronic dis-

ease in the United States,16 we sampled clinical notes from March 26,

2017 through January 8, 2015 with diagnosis codes related to cancer

and cardiovascular conditions. With the approval of the institutional re-

view board of the University of Massachusetts Medical School, we con-

ducted an expert annotation of 1867 de-identified clinical notes through

manual chart review, which focused on identifying drug discontinuation

events and their reasons. The data contain 100 151 sentences,

1 237 103 words, and 2062 DDC events being annotated in 1978 sen-

tences. For sentences containing multiple DDC events, we use the first 1

for sentence-level classification.

The overall statistics of DDC data are shown in Supplementary

Table S1. The note length, sentence length, number of sentences,

and number of contained DDCs vary significantly across all notes.

Among 1867 notes, more than half of them (56.94%) don’t have

DDCs, and for those which do, 65% of them (526 out of 804) con-

tains only 1 or 2 DDCs. On the sentence level, only �2% of the sen-

tences from 1867 notes contain DDCs. Therefore, although DDC

events are common in patient care,4,17,18 they are sparsely docu-

mented in clinical narratives, making NLP-based DDC detection a

challenge.

For each DDC event, human experts also manually assigned a

reason category using the schema we defined in Table 1. The overall

inter-annotator agreement is 0.79 (kappa score) in this study.

Among the 4 categories, Non_Medical DDC instances are the most

common at 58%, and Adverse Event DDCs come in second at 26%,

followed by Drug_ Modification and Unknown at 8% each.

NLP for discontinuation identification
We break down the task of DDC into 2 classification tasks:

• Binary detection: we classify an input sentence into 2 categories

(DDC vs no DDC), referred to as “Discontinuation” hereafter.
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• Multi-class classification: we classify an input sentence into 5 cat-

egories (4 reason categories in Table 1 and a “Non_DDC” cate-

gory indicating no discontinuation event), referred to as

“Reason” hereafter.

Figure 1 depicts our system workflow where the solid frame indi-

cates the training process and the dashed frame represents the testing

process.

Preprocessing

We performed a series of preprocessing steps on the raw clinical nar-

ratives: 1) we removed all the line breakers which typically cut sen-

tences in the middle, 2) we conducted sentence and word

tokenization and removed symbols and/or punctuations within a

term, 3) morphological normalization was performed using the

NLTK toolkit (http://www.nltk.org/), including word lemmatization

and lowering cases. Finally, we filtered out sentences which con-

tained less than 4 words.

Vector representation

Each input sentence is represented as a feature vector being fed into

a machine learning classification algorithm. We explored 4

approaches for vector representation in this study.

First, we applied an n-gram based vector space model

(NGram),19 which has been successfully used in many information

retrieval and text mining applications. Unigrams and bigrams were

included as features, and term frequency–inverse document fre-

quency (TDIDF) weighting was applied to reflect how discriminative

a feature is within the current sentence.

We then explored word embedding (W2V) which represents a

word as a fixed-length dense vector or embedding, so that semanti-

cally related words are close to each other in the embedding spaces.

Compared with one-hot representation of NGram vectors, W2V

overcomes the adverse effects of homonyms and the data sparsity is-

sue in high-dimensional space. We used skip-gram20 W2Vs to repre-

sent each word, and 3 aggregation approaches were tested at the

sentence level: 1) maximum (pooling max value for each dimension),

2) average (averaging each dimension), and 3) inverse document fre-

quency (IDF) weighted average (weighted averaging on each dimen-

sion based on IDF value of each word). As shown in Figure 1, we

pretrained W2V on a large amount of unlabeled clinical narratives

consisting of 180 000 clinical notes from UMMHC, and the dimen-

sion size for W2V was set at 200.

Next we implemented a word clustering approach21 for a

cluster-enriched vector representation (CEVR), where clusters are

first generated from W2Vs using the K-meansþþ22 clustering

method, and then NGram vectors are expanded by cluster IDFs of

words appearing in a sentence.

Finally, we proposed the SEVR approach, whereby the semantic

space of W2V was exploited to enrich the representativeness of orig-

inal NGram vectors. The idea is that if 1 word serves as a useful fea-

ture representing 1 category, then other words with similar

Table 1. Reason categories for drug discontinuation

DDC reason category Scope of coverage Example

Adverse_Event Adverse drug events leading to a DC, such as side effects, con-

traindication, toxicity, drug interactions, etc.

1. Her Bactrim was discontinued and her rash is slowly re-

solving.

2. I have asked him to discontinue his Percocet as he is ex-

ceeding the Tylenol limitations per day.

Drug_Modification Non-AE related drug modification demanded by physician,

such as drug switch due to ineffectiveness, or procedure ac-

commodation, etc.

1. He received a couple of doses in mid [**Date**] and

treatment with Rituxan was stopped when he had

obvious progression at that point.

2. She is about to undergo a herniorrhaphy, so I have writ-

ten instructions for how to transition from Suboxone to

morphine.

Non_Medical This category covers natural stop cases (eg, drug prescribed is

finished or not needed) or patient self-discontinuation (eg,

nonadherence or formulary change)

1. The patient received 6 courses of cyclophosphamide,

vincristine, and prednisone completed [**Date**].

2. She had refused Procrit shots of late.

Unknown No reason is mentioned N/A

Figure 1. System Workflow. The classification model trained on the training data is applied on unseen test data.
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semantics should have the same representative power for that cate-

gory. Thus, our hypothesis is that by inserting additional words with

similar semantics into the original NGram vectors, the representa-

tiveness of the training example through SEVR will be richer and

more beneficial for improved model training; this is especially true

when limited training data are available or category distribution is

imbalanced in multi-class classification. Compared with the CEVR

approach, SEVR is expected to have better noise control by selecting

only top semantically close terms in the embedding space. In addi-

tion, the weights of expanded elements are dynamically determined

by the semantic similarity in SEVR, whereas they are static and

treated equally in CEVR.

Specifically, despite the size of the vocabulary, we exploited

W2Vs trained on a larger context to create a semantic association

matrix Md�d which indicated the semantic association between

words. For this purpose, 2 words are considered semantically associ-

ated if 1 appears in the top k similar terms of the other, and their co-

sine similarity in the W2Vs space are � 0.5. The diagonal values of

the association matrix were initialized as 1 and the rest as 0, and

then the following equation (1) was used to update nondiagonal val-

ues for semantically associated word pairs.

mij ¼
cosineSim Wemb

i ;Wemb
j

� �
if wi and wj are semantically

associated

0 otherwise

8>>><
>>>:

(1)

Then we transformed the original sentence vector vd into a seman-

tic-enriched vector sd through equation (2) before conventional

TFIDF weighting and normalization were applied.

sd ¼ vd þ vd �Md�d (2)

Figure 2 shows an illustrative example for semantic enrichment

on top of NGram representation. Given the input sentence “The

drug was stopped,” the original term-frequency–based NGram vec-

tor would v ¼ ½1; 1; 1;1; 0; 0�show that the last 2 words

“medication” and “switch” in the vocabulary are not present in this

sentence. This representation can potentially cause low generaliza-

tion for testing or under-represented semantics for training, in cases

where only 1 sentence or few sentences from the same category con-

tain “medication” and “switch.” However, as “drug” /

“medication” and “stop” / “switch” are 2 semantically associated

word pairs in the embedding space, their similarity scores p1 and p2

ð0 � p1; p2 � 1Þ were assigned in the corresponding cells in the se-

mantic association matrix respectively as shown in Figure 2. The

resulting semantic-enriched vector contains richer semantics repre-

senting its associated category with enlarged semantic signals from

possibly under-represented words (eg, “medication” and “switch”).

In other words, through enriched transformation, signals on the

same semantic dimension from different training sentences are effec-

tively reinforced.

Model training

For both discontinuation identification subtasks, we explored 1 of

the state-of-the-art classification models, Support Vector Machines

(SVMs), for model training. The SVM-based algorithm has shown

reliable performance in many classification tasks,23–25 and on cer-

tain tasks, it demonstrates better performance compared with com-

plex deep learning models.26 We also evaluated other classic

machine learning algorithms for comparative analysis.

Cost-sensitive training and resampling for imbalanced data

Imbalanced data occur when label classes are disproportionally

distributed. As shown in the Data section, discontinuation events

are documented sparsely in clinical narratives, which results in

highly imbalanced class distribution where negative events are

dominated by both Discontinuation and Reason tasks. In this

study, we evaluated 3 popular approaches to deal with imbalanced

data: 1) oversampling, the process of randomly duplicating obser-

vations from the minority class (ie, discontinuation sentences) so

that its influence can be enlarged during the training; 2) down-

sampling, which involves randomly removing observations from

the majority class (ie, nondiscontinuation sentences) to prevent its

signal from dominating the learning algorithm; and 3) cost-sensi-

tive training, which aims to increase the penalty on classification

errors from the minority class (ie, discontinuation class and dis-

continuation reason classes). This is implemented through class-

weighting in this study.

Figure 2. Illustrative example for semantic enrichment via word embeddings.
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Evaluation metrics

We exploited standard metrics to evaluate the classification perfor-

mance: Sensitivity (Sn), Specificity (Sp), and area under the curve

(AUC) metrics. For detecting discontinuation (a binary classifica-

tion), the results were reported with regard to positive DDC class;

whereas, for reason classification, the results are presented with the

macro-average across classes (ie, computing the metric indepen-

dently for each class and then averaging). Compared with the micro-

average metrics (ie, aggregating the contributions of all classes

weighted by the number of instances from each class) macro-

average avoids the dominating effects from the majority class when

the data are imbalanced, as in our case.

RESULTS

We randomly selected 200 notes (10.71%) as held-out test data and

the remaining 1668 notes as training data. The results reported a

10-fold cross-validation on training data and performance on test

data.

Comparison of different classification algorithms
We evaluated several machine learning models, namely, SVMs with

linear kernel, K nearest neighbors (KNN), multi-layer perceptron

neural network (NN), random forest (RF), gradient boosting (GB),

and extremely randomized trees (ET). For implementation, we used

scikit-learn toolkit27 where grid search was performed for parameter

tuning. The selected parameters are listed in Supplementary Table

S2. Each sentence is represented by TFIDF-weighted NGram (unig-

rams and bigrams) vector representations for this set of experiments.

We also developed a rule-based baseline system for the binary Dis-

continuation task, which identifies DDC sentences based on whether

they contain any inflectional variants of 4 terms (“discontinue,”

“stop,” “switch,” and “hold”). The 10-fold cross-validation results

for the classification tasks on the training data are shown in Table 2.

The results show that SVM and NN models perform compara-

tively well, with SVM yielding the best AUC score of 0.796 for Dis-

continuation and both obtaining the best macro- average AUC score

of 0.716 for Reason. Student’s t tests for comparing performance

from other models with SVM are calculated and shown in Table 2.

The SVM model significantly outperformed the rule baseline system

(0.796 vs 0.568 AUC) in 10-fold cross-validation, improving the

sensitivity 4 folds (59.86% vs 13.65%) while maintaining the high

specificity of 99.42%. We can see for the Discontinuation task that

some algorithms achieved better specificity (99.88% and 99.87%

for RF and KNN) but at the cost of much lower sensitivity (38.54%

and 35.08%, respectively).

For the Reason task, KNN and RF achieved the lowest macro-

average performance on all 3 metrics, whereas NN yielded the best

sensitivity of 52.21% and SVM obtained the best specificity of

91.24. GB and ET, 2 representative ensemble approaches, per-

formed in the middle range among different approaches in both

tasks. We observed that both tasks yielded overall high specificity

values, which is related to our data imbalance issue; ie, for each class

except Non_DDC, the number of negative examples is much larger

than the positive ones, so that the classifier tends to focus more on

the majority negative class, leading to relatively high specificity (true

negative rate).

Comparison of different vector representation methods
In this section, we focus on evaluating different vector representa-

tion methods described earlier. Whereas SVM achieved similar per-

formance to NN, the training time for the latter is much slower than

SVM, so we chose the SVM learning framework for subsequent

experiments (C parameters are tuned through grid search toward

optimal performance). The 5 representation variants are considered

as follows:

• NGram: NGram vector space model with TFIDF weighting in-

cluding unigrams and bigrams (optimal C of SVM is 50)
• CEVR: clustering-enriched NGram vector representation with

TFIDF weighting. We empirically tuned the number of clusters

and chose 500 based on 10-fold cross-validation performance

(optimal C of SVM is 50)
• W2V_avg: word embedding aggregated through averaging over

words in the sentence (optimal C of SVM is 1 for Discontinua-

tion and 10 for Reason)
• W2V_idfavg: word embedding aggregated through EDF-

weighted averaging over words in the sentence (optimal C of

SVM is 0.5)
• W2V_maxmin: word embedding aggregated through maximum

and minimum pooling respectively over words and then

concatenated together (optimal C of SVM is 0.5 for Discontinua-

tion and 1 for Reason)
• SVER: semantically enriched NGram vector representation via

W2V. We experimented with different k values (top k similar

words), and chose the optimal value 2 for this experiment (opti-

mal C of SVM is 50)

Table 3 shows that SEVR, CEVR, and NGram performed much

better than other counterparts for both tasks, where SEVR outper-

formed NGram on both Discontinuation (Sensitivity of 61.06% vs

59.86% and AUC of 0.803 vs 0.796) and Reason (Sensitivity of

52.35% vs 51.92% and AUC of 0.719 vs 0.716) at the statistical

level of P < .05 and P < .1, respectively. Compared with CEVR,

Table 2. Comparison among different classification algorithms

BaseLine SVM KNN NN RF GB ET

Discontinuation Sn(%) 13.65 59.86 35.08 58.52 38.54 49.77 46.78

Sp(%) 99.93 99.42 99.87 99.47 99.88 99.47 99.04

AUC 0.568* 0.796 0.622* 0.79 0.692* 0.746* 0.729*

Reason Sn(%) – 51.92 42.73 52.21 43.81 47.54 45.11

Sp(%) – 91.24 87.06 91.03 87.81 88.77 87.77

AUC – 0.716 0.649* 0.716 0.658* 0.682* 0.664*

SVM: support vector machines; DT: decision tree; KNN: K nearest neighbors; NN: neural network; RF: random forest; GB: gradient boosting; ET: extremely

randomized tree * indicates the statistical significance level of P < .001 for Student’s t test on AUC measures (compared with SVM).
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SEVR also yields slight performance gain on both tasks but is not

statistically significant (P < .1 for Discontinuation and P ¼ .11 for

Reason). Among 3 word-embedding representations, W2V_maxmin

performed best with AUC score of 0.626 and 0.605 for Discontinua-

tion and Reason, respectively, and W2V_idfavg and W2V_avg pre-

sented comparable performance.

Performance on test data
Based on the 10-fold cross-validation results on training data, we

applied 3 best representation settings with the SVM classifiers to

evaluate system performance on unseen test data—namely NGram,

CEVR, and SEVR. The results in Table 4 suggest very good general-

izability for all 3 representation methods, significantly outperform-

ing the rule baseline on Discontinuation (AUC score of 0.779 vs

0.591). Among those 3, SEVR achieved the best performance on un-

seen test data for both Discontinuation (AUC score of 0.779) and

Reason (macro-average AUC score of 0.72).

To obtain a better understanding of how different models per-

form on each individual category for Reason, we present the perfor-

mance per each reason category on test data in Supplementary Table

S3. All 3 models performed the same on Drug_Modification, and

both CEVR and SEVR achieved very close performance on Un-

known. For the other 3 categories, SEVR yielded the best AUC

scores of 0.805, 0.75, and 0.772, respectively. Among those catego-

ries, Drug_Modification and Unknown are shown to be relatively

challenging to identify (AUC score of 0.553 and 0.719, respectively)

due to much lower sensitivity on those 2 categories.

Performance of re-sampling and cost-sensitive training
We evaluated 3 strategies to overcome the highly imbalanced data

based on SEVR representation. Specifically, we randomly sampled

positive examples with repeat so that the total number of positive

examples becomes m times the number of original positive examples

for oversampling, and randomly sampled negative examples without

repeat so that the total number of negative examples becomes n

times the number of the positive examples for down-sampling. For

cost-sensitive training, we experimented with different weight set-

tings so that the class weight of minority class is set w times larger

than the 1 of the majority class. Overall, the down-sampling method

didn’t work well, and we only reported the results for oversampling

and cost-sensitive training.

The results in Supplementary Table S4 show that oversampling

slightly improved the performance on both tasks, leading to the best

AUC score of 0.785 for Discontinuation and 0.722 for Reason when

oversampling parameter m equals 8 and 10, respectively.

Similarly, cost-sensitive training also yielded minor improve-

ments on both tasks as shown in Supplementary Table S5, achieving

the best AUC score of 0.78 on Discontinuation and 0.723 on Reason

compared with the baseline of 0.779 and 0.72, respectively.

Based on these observations, we experimented with combining

oversampling with cost-sensitive training, and the performance

trends of AUC scores on 2 tasks are shown in Figure 3. The combi-

nation of cost-sensitive training with oversampling resulted in fur-

ther performance gain on the Reason task, yielding the best AUC

score of 0.745. Compared with the rule-based baseline for Discon-

tinuation, the best system improved the sensitivity more than 3-fold

(57.75% vs 18.31%) while maintaining the high specificity of

99.25%.

We then investigated the impact of oversampling and class-

weighting on each reason category, respectively, as shown in Supple-

mentary Table S6. We can see that through oversampling and class-

weighting, the sensitivity of each reason category is significantly im-

proved across the board (except for Drug_Modification), at the cost

of a tiny number of specificity drops. The minor category Unknown

benefits most from data imbalance handling strategies, improving

sensitivity scores by 28.57% (56.25% vs 43.75%). We can see that

Adverse_Event category achieves the best performance among all

reason categories with the sensitivity of 62.96% and an AUC score

of 0.814.

Error Analysis
The reason category of Drug_Modification imposes more challenges

compared to the other categories. A possible reason is that the

Drug_Modification category covers a wide spectrum of semantics

consisting of various distinct modification concepts as well as possi-

ble overlap with the Adverse_Event category (eg, dosage change or

drug switch due to AEs). For other challenging categories, such as

Non_Medical and Unknown, each of them is likely to be expressed

in different language variations leading to divergent semantics. By

defining more refined categories, we could potentially improve the

overall Reason performance, but this may require more annotated

data.

In addition, overwhelming negative examples (the ratio of nega-

tive vs positive is 50.55 on the training data) may contain overlap-

ping and ambiguous semantics among different reason categories.

We summed up the confusion matrix during 10-fold cross-validation

and calculated row-wise percentage as shown in Supplementary

Table 3. Comparison among different vector representations

NGram CEVR W2V_avg W2V_idfavg W2V_maxmin SEVR

Discontinuation Sn(%) 59.86 59.97 14.4 19.02 25.47 61.06

Sp(%) 99.42 99.44 99.93 98.67 99.74 99.43

AUC 0.796** 0.776* 0.572* 0.588* 0.626* 0.803

Reason Sn(%) 51.92 51.82 28.25 28.15 36.01 52.35

Sp(%) 91.24 91.18 83.44 83.29 85.07 91.43

AUC 0.716*** 0.715 0.558* 0.557* 0.605* 0.719

*, ** and *** indicate the statistical significance level of P < .001, P < .05 and P < .1, respectively, for Student’s t test on AUC metric (compared with SVM).

Table 4. Performance on test data

Baseline NGram Cluster SEVR

Discontinuation Sn (%) 18.31 54.46 55.4 56.34

Sp(%) 99.88 99.45 99.43 99.36

AUC 0.591 0.770 0.774 0.779

Reason Sn(%) – 51.14 51.67 53.11

Sp(%) – 90.48 90.39 90.86

AUC – 0.708 0.710 0.720
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Table S7. We can see the relatively poor sensitivity of all reason cat-

egories are all related to “Non_DDC”—especially for the Drug_Mo-

dification and Unknown categories. Causes of errors can be roughly

categorized into the following groups:

1. Incomplete semantics. There are cases where larger context be-

yond the current sentence is needed. For example, “She wants to

TAPER off of her paroxetine and wants to do this using liquid

form. We will have her take a solution of paroxetine 5 mg/ml.”

By looking at only the second sentence, it is hard to determine

whether it is a discontinuation event due to Drug_Modification

or the doctor just started the drug.

2. Annotation error. For example, “He had severe pancytopenia”

was labeled as a discontinuation event with the reason of Adver-

se_Event. But in the current context, there is no evidence show-

ing this is an AE associated with a discontinued drug. The

annotation errors are very rare (less than 1%) from what we

have observed during the error analysis.

3. Mixed semantics. For example, “Diabetes was uncontrolled and

patient is taken off metformin due to worsening renal function

and started on Novolog and Lantus.” This sentence contained

both drug-stop and drug-start events which confused the system.

4. Implicit semantics. For example, “The patient was given 1 liter

normal saline.” The implication is that after “1 liter” the treat-

ment was stopped naturally (Non_Medical), which lacks explicit

discontinuation indicators.

DISCUSSION

Principal finding
To the best of our knowledge, this is the first study in applying ma-

chine learning-based NLP approaches to drug discontinuation detec-

tion and reason identification. We examined the performance of

different algorithms and vector representation methods and found

the automated system performs reasonably well. We also observed

that each learning algorithm shows different advantages and disad-

vantages in different metrics, opening opportunities to integrate

them in an intelligent way for future work.

The simple but effective SEVR approach was successfully applied

on drug discontinuation detection and reason identification, showing

marginally better performance on held-out unseen test data for both

Discontinuation and Reason tasks compared with the traditional

NGram and CEVR approaches. In addition, SEVR specifically achieved

better sensitivity and AUC score for the AE reason category on Reason

task, demonstrating its superior ability to pick up more AE signals due

to enriched representations. Note that in equation (2) of the SEVR

method we added the original n-gram frequency to the semantically

enriched vector, which put more weights on the former. We performed

empirical experiments regarding different enrichment mechanisms and

found that the addition of original n-grams achieved better performance

than directly using the enriched vector. That is possibly because the

model prefers focusing more on the original n-grams but still benefits

from the enriched semantics, which also makes it more robust to poten-

tially introduced noises.

Intuitively, binary drug discontinuation detection would be con-

sidered an easy task and a simple key word matching may get good

enough performance. However, we found that the rule-based base-

line system suffers from a very low sensitivity of 18.31%, leading to

an AUC score of 0.591 on the test data. It demonstrates that binary

DDC detection from clinical narratives is actually a challenging

task, and our learning model significantly improved the perfor-

mance 4 folds in 10-fold cross-validation.

Resampling and Cost-Sensitive Training
Highly imbalanced data made both tasks very challenging. How-

ever, we observed that oversampling and cost-sensitive training are

both helpful in mitigating this problem and combining them to-

gether can achieve further performance gain. Minor categories bene-

fit more significantly from the imbalance handling strategies, such

as Unknown. We also noticed that different reason categories prefer

different sample rates and class weights, which indicates that opti-

mizing the sample rates and class weights on individual reason cate-

gories would potentially improve the overall performance. For

instance, the Adverse_Event reason category didn’t seem to benefit

from class- weighting as other reason categories did. In addition,

jointly tuning the parameters for classifiers, sampling, and class-

weighting on the training data—although computationally expen-

sive—may further boost the system performance, which is worth ex-

ploring for future work.

Limitations
There are several limitations in this study. First, due to limited anno-

tated data, we did not explore complicated deep learning models.

Figure 3. Performance trend on combined oversampling and cost-sensitive training.
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As we found in our experiments, using W2V itself can’t beat the tra-

ditional TFIDF-weighted NGram representation. Therefore, 1 focus

of our future work would be exploring data-scarce deep learning

approaches (eg, learn a better sentence encoder, improve pre-trained

W2Vs using unlabeled data and integrate them in a deep architec-

ture such as convolutional neural networks,28 or long-short term

memory neural networks29). Second, this study assumes that the dis-

continuation event will be stated with reasons in the same sentence,

and our analysis shows that larger context may be needed to deter-

mine the reasons. Third, in this study, our focus is recognizing high-

level discontinuation reason categories. We plan to refine the cate-

gory schema to accommodate more specific reason subcategories,

and address challenges imposed by limited annotation samples as

well as possible overlapping among subcategories.

CONCLUSION

We developed an NLP system to automatically detect discontinua-

tion events and identify their associated reasons, where a semantic-

enriched vector representation was proposed and evaluated. Our

system has shown promising results, suggesting it could be applied

on a large scale of EHR data for population-based observational

studies. Therefore, this study has the potential to improve the effi-

cacy of pharmacovigilance, enhance patient management, and re-

duce medical errors due to medication nonadherence. In addition,

the rigorous comparative experiments shed light on this new clinical

task and lay a solid foundation to motivate further advancement.

For future work, we will explore suitable deep learning algo-

rithms to further improve the system’s discriminative training and

develop a more refined reason category schema to better profile dis-

continuation causes. We also plan to apply our system to EHR data

from a different EHR system in order to evaluate its portability and

generalizability.
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