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ABSTRACT

Objective: HIV infection risk can be estimated based on not only individual features but also social network in-

formation. However, there have been insufficient studies using n machine learning methods that can maximize

the utility of such information. Leveraging a state-of-the-art network topology modeling method, graph convolu-

tional networks (GCN), our main objective was to include network information for the task of detecting previ-

ously unknown HIV infections.

Materials and Methods: We used multiple social network data (peer referral, social, sex partners, and affiliation

with social and health venues) that include 378 young men who had sex with men in Houston, TX, collected be-

tween 2014 and 2016. Due to the limited sample size, an ensemble approach was engaged by integrating GCN

for modeling information flow and statistical machine learning methods, including random forest and logistic

regression, to efficiently model sparse features in individual nodes.

Results: Modeling network information using GCN effectively increased the prediction of HIV status in the social

network. The ensemble approach achieved 96.6% on accuracy and 94.6% on F1 measure, which outperformed

the baseline methods (GCN, logistic regression, and random forest: 79.0%, 90.5%, 94.4% on accuracy, respec-

tively; and 57.7%, 80.2%, 90.4% on F1). In the networks with missing HIV status, the ensemble also produced

promising results.

Conclusion: Network context is a necessary component in modeling infectious disease transmissions such as

HIV. GCN, when combined with traditional machine learning approaches, achieved promising performance in

detecting previously unknown HIV infections, which may provide a useful tool for combatting the HIV epidemic.
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INTRODUCTION

According to the Centers for Disease Control and Prevention

(CDC), there were about 38 500 new human immunodeficiency

virus (HIV) infections in 2015 and over 39 700 in 2016 in the US.1

From 1981 to 2015, over 1.8 million people in the US have been

infected with HIV and approximately 650 000 people have died.2

The group at the highest risk of HIV diagnosis is men who had sex

with men (MSM) (30.7% in 2015). Among the new HIV infections

in 2016, 37.2% were in people between 20 and 29 years old, which

is the most-affected age group. HIV is costly with about $29.5 bil-

lion spent in 20143 and $32.8 billion in 2017 in the US.4 A global

public health priority is to develop new methods that identify risk

populations most vulnerable to HIV infection and subsequently de-

velop interventions in order to reduce potential HIV transmissions.

Among the risk populations, certain proportions of individuals are

not aware of their infection status, even though they frequently ex-

pose themselves to risk environments.

The aim of this study was to identify individuals within a social

network who are at high risk of HIV infection by making predic-

tions of their HIV infection status. This will assist with research into

disease prediction and risk evaluation. Using machine learning or

other predictive modeling methods, direct analytical approaches

have been used to detect HIV infections. Among existing methods, 1

of the most relevant branches is machine learning-based prediction,

which is aimed at categorizing the HIV status of an individual based

on information on the individuals’ features such as demographic

characteristics.5 Another branch is statistical methods, which evalu-

ate risk factors related to the prevalence of HIV such as an individu-

al’s socioeconomic status,6 lack of access to health care,4 residential

environment (eg, urban vs rural), marital status, and sexual

behaviors.7

However, most of these previous studies lack explorations of

network contextual features such as the connections between indi-

viduals. In particular, risk environments8 that comprise sexual net-

works, social networks,9,10 and venue-based affiliation

networks11,12 have been shown to play an important role in shaping

the HIV/sexually transmitted infection risk. A network study did

conduct multi-nomial regression analysis to predict the HIV/syphilis

infection status using the degree to which individuals are exposed to

network members who are coinfected, HIV mono-infected, or syphi-

lis mono-infected along with individual features.13 However, that

study was limited by a general lack of modeling information flow

between individuals.

Stochastic network simulation methodology for modeling HIV

transmission dynamics has also been employed. This method uses

aggregated empirical egocentrically sampled data as model statis-

tics.14,15 Such a network modeling approach has the capability of

modeling partnership formation and dissolution to better under-

stand the spread of disease in relation to network features such as

concurrency and assortative mixing patterns.15 However, this ap-

proach focuses on estimation and statistical inference using the

exponential–family random graph models, and their primary focus

is not to predict an individuals’ disease status.

To address the previously mentioned issues, our study introduces

a machine learning method that is based on the social network per-

spective, which takes into consideration both individual features

and network context for the detection of unknown HIV infections.

The method was experimented on a data set derived from a multi-

site longitudinal network study, the Young Men’s Affiliation Project

(YMAP) in Houston, collected between 2014 and 2016. In that

study, only the network built at a single time (the baseline survey)

was used. Graph convolutional networks (GCN) is a deep learning

method specifically designed for network structures.16 Rooted in its

recent success on graph-based node classifications, and according to

the limited graph size, we proposed a novel ensemble approach to

predict the HIV status, which integrates GCN into the combination

of 2 popular statistical machine learning methods: Random Forest

(RF) and Logistic Regression (LR). GCN was mainly used to capture

network information such as information flow along edges, while

RF and LR showed their advantages in dealing with individual-level

sparse features given the limited sample size. Examining these multi-

ple approaches within the same data source can yield important in-

formation on which approach is most accurate and the extent to

which network data are useful in identifying unknown HIV infec-

tions, thus providing a new tool for combatting the HIV epidemic.

MATERIALS AND METHODS

Population
YMAP was a prospective cohort study that examined the impact of

social networks formed through social and health venue affiliation

on HIV risk and prevention among young men who had sex with

men (YMSM), aged 16 to 29, in Houston and Chicago. The present

study used the data that were collected in Houston from YMSM

participants between 2014 and 2016 through the respondent-driven

sampling (RDS) method.17,18 The RDS method is based on the link-

tracing chain referral recruitment method that has been widely

employed to recruit hard-to-reach populations such as MSM or

drug users. In RDS, individuals were purposively selected as

“seeds.” These seeds then recruited up to 4 of their contacts (or

recruits). In Houston, a total of 378 YMSM were recruited. Survey

data was collected based on computer-assisted personal interviews

that include sociodemographic characteristics, HIV/sexually trans-

mitted infection risk/protective behaviors, social and sexual net-

works, and venue attendance or affiliation information.

Determination of HIV and syphilis infection status
Biological data were also collected, and this study used the test

results for HIV and syphilis infections based on the Alere Determine

HIV-1/2 Combo antigen/antibody test for HIV infection. Partici-

pants with reactive samples were confirmed using HIV-1/HIV-2

multi-spot differentiation and HIV RNA (viral load) tests. HIV sero-

positivity was defined based on the confirmatory test results. Syphi-

lis infection was assessed via a rapid plasma reagin (RPR) test,

followed by a confirmatory fluorescent treponemal antibody ab-

sorption (FTA) test, and we defined those with FTA test positive as

syphilis seropositivity.

Constructing the social network data
To summarize, the aggregated social network data were constructed

based on the following 2 sources of network information: (1) survey

data in which each participant was asked to nominate up to 5 part-

ners with whom they share personal information (social network)

and up to 5 people with whom they had anal, oral, or vaginal sex

within the past 6 months (sexual network); (2) peer-referral network

that was generated by the RDS recruitment process. These distinct

network data sources were combined using a matching procedure

based on a fuzzy matching algorithm that cross-refers participants

and their partners’ sociodemographic information, such as name,

age, and race, to determine if the pairs listed are the same persons.19
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More detailed information on data collection and survey items can

be found elsewhere.13,20

Incomplete networks simulate real world scenarios
We also built incomplete networks to simulate the scenarios of miss-

ing labels. Even if the whole network topology is known, it may con-

tain individuals with unrecorded HIV status. Any proposed method

has to be able to handle missing data.

Final network
Finally, we built a social network in which each node stands for an

individual participant, and the edges between them represent their

social network members with connections. The network contained

378 nodes (positive: 115, negative: 263) and 398 edges.

For each node (individual participant) in the social network, a

feature set was built based on the surveys including sociodemo-

graphic characteristics, sexual behavioral characteristics, biological

values from test results, network characteristics, perceived informa-

tion, and graph features; and then each feature was converted into

numeric values. The graph features were mainly influenced by sev-

eral popular graph-based features.21,22 The features adopted within

this study are listed in Table 1 (More detailed information is found

elsewhere.23).

Institutional review board approval
The University of Texas Health Science Center at Houston

(UTHealth) received approval from the institutional review board.

Overview of the method
The goal of this study was to determine (with as high a probability

as possible) each individual’s HIV status (label), when the HIV sta-

tus of other network members was known. We used statistical ma-

chine learning models, such as LR and RF, to extract useful

information from individual features and GCN to help model the in-

formation flow between individuals. Due to the limited sample size

which may hinder the performance of GCN, we used an ensemble

approach which combines GCN, LR, and RF with their predicted

labels and the corresponding probabilities for each category as its in-

put features.

Graphic convolutional networks
Related studies

While data with regular grid structure (eg, images) can be success-

fully modeled by convolutional neural networks24 and sequential

structure (eg, natural language) by recurrent neural networks,25 net-

work data have only recently been explored in the deep learning

context.26 Graph neural networks (GNNs)26,27 have exploited the

idea of information flow along edges, which aim to directly encode

the graph structure. They include more comprehensive and thorough

network information than previous graph modeling methods, which

may destroy the relationships between data samples by using only

summary information such as node degree and centrality.21,22 In the

family of graphic neural networks, GCNs (a generalization of con-

volutional neural networks in the graph Laplacian domain) have

been shown to provide promising results on modeling chemical

structure of molecules.28 Kipf and Weilling16 have shown that a

Table 1 (a). Features for HIV status prediction

Feature Feature name Data type and explanation

Sociodemographic

characteristics

Age Continuous

Race/Ethnicity Nominal, Hispanic, Non-Hispanic White/Caucasian, Non-Hispanic Black/African

American, Non-Hispanic other races

Education Nominal, Education level

Lifetime Homeless Binary

Insurance type Nominal

Sexual behavioral

characteristics

Inconsistent condom use Binary, “not always using condom” with at least 1 sex partner in the past 6 months

Number of sex partners Numeric, numbers of sex partners in the past 6 months

PrEP condom Ordinal, when taking PrEP, how often did you use condoms during anal or vaginal

sex

Sex transaction Binary, engaged in sex transaction with at least 1 sex partner in the past 6 months

Biological Data Viral load Ordinal, the viral load for each participant

Syphilis infection Binary, FTA syphilis test result

Network characteristics Number of health venues attended Numeric, total number of health venues* attendance

Number of social venues attended Numeric, total number of social venues attendance

Number of nom sex Numeric, number of nominated sex partners

Number of nom soc Numeric, number of nominated social partners

Information

from sampling

Perceived HIV positive Numeric, number of nominated sex partners perceived as HIV positive by respond-

ents

Graph features Centrality Numeric, the eigenvector centrality of a node

Ratio of positive neighbors Numeric, number of known HIV positive neighbors (in the training set) in the graph

normalized by the number of neighbors

Ratio of negative neighbors Numeric, number of known HIV negative neighbors (in the training set) in the graph

normalized by the number of neighbors

Abbreviation: FTA, FLUORESCENT TREPONEMAL ANTIBODY-ABSORPTION (FTA-ABS)

*venues: YMSM-serving venues of various types including social (eg, bars, religious or sporting organizations, homeless shelters) and health (eg, clinics, HIV-

testing centers).
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first-order approximation of ChebNet29 with 2 layers was able to

achieve state-of-the-art results in node classification tasks in several

networks such as the literature citation network. Since then, GCN

approaches have been adopted rapidly to various network-based

prediction tasks, including edge prediction,30 bi-partite graph pre-

diction, and multi-graph prediction.29 A brief illustration of GCNs

in modeling message passing is shown in Figure 1, where the infor-

mation for a specific node is the aggregation of its neighborhood

nodes. After training, a hidden representation for each node is

obtained, which can be used for further processing, such as node

classification and link prediction.

The GCN model

GCN aims to model each node in a graph using deep neural net-

works. Let X stand for the N nodes in a graph G, each with a C-di-

mensional feature set xi, A is the adjacency matrix of G. A more

formal representation of G using a layer-wise propagation rule is

outlined as follows:

Hðlþ1Þ ¼ rðAHðlÞWðlÞÞ (1)

where HðlÞ 2 R
N�L is the matrix of activation in the lth layer and

Hð0Þ ¼ X stands for the input nodes. r �ð Þ is the activation function

such as ReLU.31 W(l) is the trainable neural network weighted ma-

trix for layer l. The advantage of using Eqation 1 to model each

node over conventional graph features is that it aggregates all the

neighborhood information through matrix multiplication (the con-

volution operation) and thus builds a more complete context for

each node. The number of convolutional layers (ie, the number of

propagations) defines how deep we want GCN to model the neigh-

bors for each node. For example, the first layer stands for modeling

the direct neighbors (1st-order) and the second layer stands for

modeling the 2nd-order neighborhood, the case of which is shown in

Figure 1 using k¼1 (1st-order) and k¼2 (2nd-order).

After adding self-loop to include the information of each node itself

and using the diagonal node degree D to normalize the feature vectors,

according to Kipf & Welling,16 the propagation rule can be reduced to

Hðlþ1Þ ¼ r ~D
�1

2 ~A ~D
�1

2HðlÞWðlÞ
� �

(2)

where ~A ¼ Aþ IN is the adjacency matrix of G with added self-

connections. IN is the identity matrix, and ~Dij ¼
P

j
~Aij. It has been

validated that this propagation rule can be motivated via a first-

order approximation of localized spectral filters on graphs29 by de-

fining the convolution operation of a signal x with a filter gh0 as in

gh0 �x �
XK

k¼0

h
0

kTkð ~LÞx (3)

with ~L ¼ 2
kmax

L� IN and L ¼ IN � ~D
�1

2 ~A ~D
�1

2 ¼ UKUT is the nor-

malized graph Laplacian. In the definition of L, U is the matrix of

eigenvectors and K is the diagonal matrix of L. When K is limited to

1 and kmax � 2, given the consideration that the neural network can

adapt a numeric value during training, the convolution operation

can be converted to

gh
0 �x � h

0

0xþ h
0

1 L� INð Þx ¼ h
0

0x� h
0

1D�
1
2AD�

1
2x

� h IN þD�
1
2AD�

1
2

� �
x (4)

where hs are weight matrices. After constraining the number of

parameters h to avoid overfitting, the convolutional signal matrix

for an input X can be further simplified to

Z ¼ ÂXH ¼ ~D
�1

2 ~A ~D
�1

2XH (5)

where H 2 R
C�F is the parameter matrix with a C-dimensional fea-

ture vector for each node and F filters for the convolution operation.

Rewriting Equation 5 into a function, and if including 2 layers, the

mathematical inference of GCN is

Figure 1. An overview of GCNs in modeling information flow. k¼ 1 denotes the 1st-order neighbors, and k¼2 denotes the 2nd-order neighbors of the node of

interest.
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Z ¼ f X;Að Þ ¼ softmaxðÂðr ÂXW 0ð Þ
� �

ÞW 1ð ÞÞ (6)

In Eqation 6, W(0) is the weight matrix connecting the input X

and the hidden layer H, and W(1) is the weight matrix connecting H

and the outputs. Since Â can be computed in advance, according to

Kipf & Welling,16 the computational complexity of Eqation 5 is

only OðjejCHFÞ (ie, linear in the number of edges in the graph)

which is very time efficient. The losses of GCN are cross-entropies

based on the node labels, and when adapting itself to graph semi-

supervised learning, the losses only include those from nodes with

known labels. The model will output a predicted label for each cate-

gory as well as predicted probabilities.

Statistical machine learning models
LR and RF were employed as the benchmark statistical machine

learning classifiers. LR is a popular and effective statistical machine

learning model32 and often employed as a baseline for predictive

modeling.33 It performs well especially when the data set is small

and with rich sparse features. RF is an ensemble of decision trees

with different subsets of features or training samples and is also a

strong baseline for classification.34 LR and RF take sparse features

as inputs and output both predicted probabilities and labels for each

node. For LR and RF, the context information was also included in

the feature set (we include sparse graph features in Table 1 as a com-

parison).

Ensemble approach
Statistical machine learning methods are effective in individual fea-

ture selection especially with rich sparse features and on small data

sets, while GCN is capable of capturing network information such

as information flow, but the performance may be hindered by the

graph size. Based on the supposition that these 2 types of informa-

tion may complement each other, we used an ensemble learning ap-

proach by integrating GCN into RF and LR. Both the predicted

labels and the probabilities for each category were used as the input

features of the ensemble classifier, in which the probabilities were

obtained from running the classifier on either a training node (with

known label) or a testing node (with unknown label). Firstly, each

basic classifier was trained separately on the training set, and the

predicted probabilities and labels for each node produced by each

classifier were extracted respectively. Then, the ensemble model

took them as input features and learned to put the data through fur-

ther operations. In our study, we employed RF as the ensemble clas-

sifier so that the best combinations of features were automatically

selected and optimized. An overview of the ensemble method is

shown in Figure 2. We also compared other ensemble combinations

in the experiments.

EXPERIMENTS

Experiment configuration
We set the training: testing ratio as 300: 78 and performed 10

rounds of random resampling. In each round, to conduct semi-

supervised learning, N% (with an interval of 10% from 10% to

100%) training nodes with labels were randomly selected 10 times.

All the results reported in this section were averaged across the 10

times and 10 rounds random selection. The primary evaluation met-

rics were accuracy and F1 measure. Accuracy was computed accord-

ing to the number of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN) in classification. The equa-

tions are:

TruePositiveRate ¼ TP=ðTPþ FNÞ (7)

FalsePositiveRate ¼ FT=ðFPþ TNÞ (8)

Accuracy ¼ ðTN þ TPÞ=ðTN þ FN þ TPþ FPÞ (9)

Accuracy was the commonly used measure in previous HIV-

related predictions (such as those by Betechuoh et al,35 Leke-Bete-

chuoh et al,36 and Dom et al37) to evaluate the performance. In

addition to accuracy, we also used F1 measure as another primary

evaluation metric, which is computed by

precision ¼ TP=ðTPþ FPÞ (10)

recall ¼ TP=ðTPþ FNÞ (11)

F1 ¼ 2� precision� recall=ðprecisionþ recallÞ (12)

Precision is the percentage of the correctly classified HIV posi-

tives, while recall denotes how complete the HIV positives can be

identified, and F1 is the balance of the 2.

For the individual classifiers, LR and RF were implemented with

the help of the Scikit-learn toolkit for Python3,38 and the Tensor-

Flow code base from Kipf & Welling16 was used for the implemen-

tation of GCN. In each round of resampling, the testing set was held

out as blind. We tuned the parameters of each method over the

resampling so that they obtained the optimal results on the training

set in the label-complete network (with 100% known training

labels). Finally, the parameters for LR and RF were set as: C¼0.01

with L2 penalty for LR, max depth¼3 and random state¼40 for

RF. For GCN, the dimension of hidden layers was set to 16 and 2

convolutional layers were used (considering 1st- and 2nd-order

neighbors). The model was trained using Adam39 with the maxi-

mum number of iterations at 200 and an early stopping with a win-

dow size of 10. The dropout rate for each convolutional layer was

set as 0.1 so that more features were retained. For a fair comparison

between different classifiers, no thresholding strategies were applied

on the predicted probabilities; instead, the default cutoff of 0.5 was

used to generate the predicted labels. The ensemble methods evalu-

ated in our experiments include GCNþLR, GCNþRF, LRþRF, and

GCNþLRþRF, in which for LR and RF, graph features were re-

moved since we found that removing these features improved the

performance of the ensemble methods. To further validate the effec-

tiveness of GCN in modeling network contextual information, a

comparison between classifiers with different contextual features

(ie, ratios of positive and negative neighbors and eigenvector central-

ity listed in Table 1 vs GCN) was performed.

RESULTS

The performance of different classifiers for predicting HIV status are

shown in Table 2. The results were generated on the label-complete

network. We noticed that the ensemble GCNþRF achieved the high-

est accuracy, and F1 and GCNþLRþRF performed comparably

well. Additionally, both GCNþLR and GCNþRF demonstrated

considerable improvements over simply using LR and RF, indicating

the positive contribution of context factors modeled by GCN.

LRþRF also achieved good results compared with individual classi-

fiers. All the ensemble methods had both high accuracies and

F1s. Using RF alone can result in a satisfying performance of 90.4%

on F1.
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Figures 3 and 4 depict accuracies and F1s for graph semi-

supervised learning respectively, where different colors and markers

were used to denote different methods. Accuracy and F1 curves basi-

cally follow the same trend: the curves generated by the ensemble

methods achieved higher accuracy than only using the basic meth-

ods, and the performance improves with increased fraction of la-

beled training nodes. The ensemble GCNþRF and GCNþRFþLR

produced the optimal results for almost every fraction of labeled

training nodes. Among the basic classifiers, RF performed consis-

tently better than LR and GCN. The ensemble LRþRF and

GCNþRF also produced comparable performance to

GCNþRFþLR. Although GCN itself did not produce as good

results as other methods, when adding it to LR and RF, notable

improvements were generated.

The ensemble methods (except GCNþLR) had comparable per-

formances and can get over 85% on accuracy and 80% on F1 even

with only 20% training labels, indicating that the individual features

and context information can compensate well for prediction in our

ensemble methods. A Wilcoxon test was performed to test the signif-

icance of the improvements. GCNþRF showed an averaged P value

of .159 over RF. This only shows a near-marginal significance, signi-

fying that the uncertainty in resampling on such a small network

will affect the performance, and that RF alone behaved as a strong

baseline. In addition, the difference between GCNþLR and LR is

significant as to alpha¼0.05 (0.0192).

The comparison between classifiers with different types of con-

text features is shown in Table 3. The results demonstrate that add-

ing graph features to LR and RF did not improve the performance—

and even made the result worse. A possible cause for this decreased

performance might be that the summary-like graph features (eg, ra-

tio of positive neighbors) added uncertainties into the feature set.

Results for adding graph features under the semi-supervised setting

were not satisfying either. For example, LR and RF produced

60.8% and 66.7% on F1 with graph features compared with

GCNþLR and GCNþRF which produced 81.2% and 89.6% given

50% labeled nodes.

DISCUSSION

In this study of identifying social network members who are at high

risk of HIV seropositivity, but whose status is unknown, we found

that the machine learning methods produced satisfying results with

the addition of context features modeled by GCN.

GCN in modeling context
LR and RF are both strong baselines for classifications on relatively

small data sets. As shown in Table 2 and Figures 3 and 4, GCN gen-

erally performed worse than both of them on accuracy and F1. A

possible reason might be that as a deep learning model, GCN

requires more parameters to train than statistical machine learning

Figure 2. Overview of the ensemble approach.

Table 2. Prediction performance for different classifiers in percent

(standard deviation of 10 rounds of resampling)

Method Accuracy(%) F1(%)

GCN 79.0(62.72) 57.7(66.83)

LR 90.5(62.69) 80.2(67.48)

RF 94.4(62.76) 90.4(64.38)

GCNþLR 93.4(63.09) 88.4(65.30)

GCNþRF 96.6(61.97) 94.6(62.88)

LRþRF 95.3(62.75) 91.6(65.64)

GCNþLRþRF 96.5 (62.05) 94.5(63.12)

Abbreviations: GCN, graph convolutional networks; LR, logistic regression;

RF, random forest. The optimal values for each column are marked bold.
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methods. It naturally relies on bigger data sets which cannot be

obtained in this network due to the limited size of the cohort. An-

other potential reason for the lower performance is GCN’s insuffi-

ciency on feature selection. GCN lacks sparse feature selection

strategies such as ensemble of feature subsets that are adopted in.

However, in most cases, an effective utilization of the rich features is

quite useful for machine learning in smaller data sets. In this study,

LR and RF were able to remedy these drawbacks.

Figure 3. Accuracies produced by different methods in graph-semi supervised learning.

Figure 4. F1s produced by different methods in graph-semi supervised learning.

Table 3. F1s generated by LR and RF considering different types of

context information

Method original þgraph features þGCN þgraph features þGCN

LR 80.2% 79.3% 88.4% 91.2%

RF 90.4% 76.8% 94.6% 90.9%

Abbreviations: GCN, graph convolutional networks; LR, logistic regres-

sion; RF, random forest. The optimal values for each column are marked bold.
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Improvements are obvious when GCN is added to LR and RF,

demonstrating the important contribution of contextual information

modeled by GCN in prediction. LR and RF cannot sufficiently model

the network information, unlike GCN, despite having several features

related to the context (eg, number of sex partners). Some methods en-

able label propagations from the observed node to its neighbors; thus,

if the observed node is positive, neighbors are likely to be positive as

well (eg, LR with neighborhood labels as features). However, since

the node label is determined by not only the neighborhood informa-

tion but also by individual features (eg, condom usage) only if a

method is able to model these 2 types of features simultaneously and

effectively can it generate a better result, which can be seen from

Table 3. In our present study, we did not include any known node

labels as features for GCN. This might be part of our future work.

The ensemble
The 4 ensemble methods we tested all demonstrated their superiority

in integrating weak classifiers. Nevertheless, the relative improve-

ments of the ensembles (eg, GCNþLR improved LR by over 8%)

derived from Table 2 show that GCN plays a more important role

in offering complementary effects (ie, adding contextual informa-

tion). LRþRF, although this combination also performed well, did

not boost RF much. The comparisons of RF vs RFþLR, and

GCNþRF vs GCNþRFþLR reveal that RF and LR may have a large

proportion of consistent predictions, whereas RF performed better

than LR since adding LR did not produce obvious improvements in

these classifiers. The results in Figures 3 and 4 show that the ensem-

ble approach can help to obtain satisfying predictions even in a net-

work with missing labels.

Limitations and future work
The work still has some limitations at present: 1) The GCN model

itself did not perform well, especially on F1, partly due to the small

training sample size and its insufficiency on modeling sparse fea-

tures. 2) Due to the limited graph size, the deviations on the results

were big and the improvements over baselines sometimes showed

only marginal significance when doing average on resampling (see

Table 2), and some methods are very sensitive to parameters (eg,

RF). In future studies, we plan to collect additional data and design

ways of including other types of edges such as the venue coaffiliation

ties between pairs of nodes. Also, we may try to further investigate

how to improve the feature extraction part of GCN. Furthermore,

this approach can also enhance existing agent-based simulation

methods of HIV and other infectious diseases by adding prediction

in intermediate steps so as to speed up the computation and make

predictions on bigger data sets.

CONCLUSION

This paper presents a novel approach to combine individual features

and network contextual information in detecting unknown HIV

infections with the framework of integrating social network perspec-

tive and machine learning methodologies. And we present innova-

tive approaches combining statistical machine learning methods and

graph-based deep learning methods on HIV status prediction. The

capacities of distinct classifiers were evaluated under a semi-

supervised learning paradigm, which was a simulation of missing

recorded HIV status in real-world HIV networks. Experimental

results validated the effectiveness of the ensemble approach in

networks with different fractions of known labels. The ensemble

methods produced promising results on HIV infection detection and

are expected to provide useful clinical support for HIV prevention.
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