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ABSTRACT

Objective: This article presents a novel method of semisupervised learning using convolutional autoencoders

for optical endomicroscopic images. Optical endomicroscopy (OE) is a newly emerged biomedical imaging mo-

dality that can support real-time clinical decisions for the grade of dysplasia. To enable real-time decision

making, computer-aided diagnosis (CAD) is essential for its high speed and objectivity. However, traditional su-

pervised CAD requires a large amount of training data. Compared with the limited number of labeled images,

we can collect a larger number of unlabeled images. To utilize these unlabeled images, we have developed a

Convolutional AutoEncoder based Semi-supervised Network (CAESNet) for improving the classification perfor-

mance.

Materials and Methods: We applied our method to an OE dataset collected from patients undergoing

endoscope-based confocal laser endomicroscopy procedures for Barrett’s esophagus at Emory Hospital, which

consists of 429 labeled images and 2826 unlabeled images. Our CAESNet consists of an encoder with 5 convo-

lutional layers, a decoder with 5 transposed convolutional layers, and a classification network with 2 fully con-

nected layers and a softmax layer. In the unsupervised stage, we first update the encoder and decoder with

both labeled and unlabeled images to learn an efficient feature representation. In the supervised stage, we fur-

ther update the encoder and the classification network with only labeled images for multiclass classification of

the OE images.

Results: Our proposed semisupervised method CAESNet achieves the best average performance for multiclass

classification of OE images, which surpasses the performance of supervised methods including standard con-

volutional networks and convolutional autoencoder network.

Conclusions: Our semisupervised CAESNet can efficiently utilize the unlabeled OE images, which improves the

diagnosis and decision making for patients with Barrett’s esophagus.
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INTRODUCTION

The computer-aided diagnosis (CAD) system utilizes digital imaging

processing and machine learning for medical imaging analytics.

CAD systems aim at assisting doctors in the interpretation of medi-

cal images to speed up the diagnosis and reduce the human biases. A

typical CAD system consists of image quality control, feature extrac-

tion, predictive modeling, and model visualization, which enables

automatic decision making with reliable and reproducible perfor-

mance.1 With the ability to quantitatively represent medical images,

the CAD system is a helpful tool to detect rare events and subtle

changes that may be extremely challenging for human observers.

Thus, researchers have developed CAD systems for multiple imaging

modalities including computed tomography,2 magnetic resonance

imaging,3 and whole-slide images,4 which have significantly im-

proved the diagnosis of various diseases.

Optical endomicroscopy (OE) is a newly emerged endoscopic

imaging based on confocal microscopy, spectroscopy-based imag-

ing, or optical coherence tomography.5 By combining endoscopy

and microscopy, OE can function as “optical biopsies,” which ena-

bles real-time in situ biopsy instead of the conventional biopsy and

histopathology. Using an OE technique, the physician can make

real-time clinical decisions about the grade of dysplasia, if present,

and potentially treat the patient during the same endoscopic session.

Thus, this novel technique can significantly decrease the waiting

time from the time of diagnosis to time for endoscopic treatment.

The newly emerged OE technique provides gastrointestinal

endoscopists the opportunity to evaluate the esophageal lining and

mucosa in real time through optical biopsy. Compared with the con-

ventional biopsy through endoscope plus microscopic examination

afterward, OE can potentially improve the clinical care for patients

with gastrointestinal conditions like Barrett’s esophagus (BE). BE is

a disorder defined as abnormal changes from normal squamous epi-

thelium to the columnar epithelium. The abnormal changes usually

happen in the lower portion of the esophagus.6 BE is a well-known

risk factor for esophageal adenocarcinoma (EAC). Once BE is diag-

nosed, doctors will perform a biopsy and use the histologic severity

of the targeted BE tissue to determine the cancer prevention surveil-

lance intervals and treatment recommendations. With the limited

amount of tissue collected during a biopsy and the time delay be-

tween biopsy and actual diagnosis, OE is a promising novel tech-

nique for real-time diagnosis using optical biopsy. Clinical trials

have demonstrated that OE could achieve improved clinical care

quality for patients with BE.7–9 However, a large number of micro-

scopic images are generated during an OE session. Human examina-

tion of all microscopic images in real time through an OE session

can be demanding and prone to errors. Thus, a fast and reliable

CAD system to automatically process these microscopic images is es-

sential to enable real-time diagnosis for BE patients using OE

techniques.

To build a reliable CAD system, we typically need substantial la-

beled training data to select the optimal feature subsets and train ro-

bust classification models through supervised learning. However,

accumulating a large labeled dataset for OE images can be expensive

and time consuming, and there are no public OE datasets available

yet. On the other hand, it is relatively easy to collect a significant

number of unlabeled images through each OE session. Thus, consid-

ering the lack of labeled OE images and the easy access to unlabeled

OE images, we propose to improve the classification of OE images

by utilizing the unlabeled images through semisupervised learning.

In the previous study, we have applied handcrafted feature

extraction and label propagation methods for semisupervised learn-

ing.10 With the rapid development of deep learning and their mas-

sive success in natural image processing, we propose to improve our

previous method by exploiting the convolutional autoencoders

(CAEs) and developing a semisupervised deep neural network Con-

volutional AutoEncoder based Semi-supervised Network (CAESNet)

for improving the multiclass classification of BE. With extensive

experiments on the OE dataset collected at Emory University, we

have demonstrated the superior performance of our semisupervised

CAESNet compared with all baselines.

Optical endomicroscopy
OE is a novel optical technology integrating endoscopy with micros-

copy for in situ diagnosis. It enables real-time diagnosis and treat-

ment, in contrast to the delay in treatment due to the inherent time

needed to obtain a final diagnosis by histopathology.

Currently, 3 types of commercial OE systems are available for

clinical use: endoscope-based confocal laser endomicroscopy

(eCLE), probe-based CLE, and volumetric laser endomicroscopy

(Figure 1),5 which have been developed and approved in 2004,

2006, and 2013, respectively. Table 1 compares specifications of the

3 technologies. They are significantly different in resolution, acquisi-

tion position, acquisition speed, and microscopic imaging presenta-

tion, and we refer the readers to these articles for detailed

comparison.5,11–13 As clinical trials suggest that eCLE has better

performance than probe-based CLE in the diagnosis of esophageal

diseases,14 we focus on developing a semisupervised classification

method for eCLE images, and we believe that this method can be

readily generalized to other OE modalities.

Barrett’s esophagus
BE, a well-known risk factor for EAC,15 is characterized by the ab-

normal changes from normal squamous epithelium to the columnar

epithelium at the lower portion of the esophagus. The population

incidence of EAC in the United States has an estimated rise of

300%-350% since the 1970s,16,17 making up 60% of the new

esophageal cancer diagnosis in the United States in 2009,18 with

only a 5-year survival rate of 15%-20%.19 The progression from

BE to adenocarcinoma involves multiple stages, namely nondys-

plastic BE, low-grade dysplasia, high-grade dysplasia, and finally

adenocarcinoma.20

The impact of BE on the mortality from EAC is still unclear,

which makes directly screening for BE controversial.21 Thus, physi-

cians identify patients with BE through either subjective selectively

screening22 or an upper endoscopy performed for an unrelated rea-

son. The rapid development of OE may provide another mechanism

to help detect the neoplastic changes earlier than conventional en-

doscopy and improve the efficiency of cancer surveillance.14

CAD for BE classification
The CAD-based BE classification using OE has become an emerging

field of research due to the rapidly increasing population incidence

of EAC, as it can realize real-time diagnosis, improve the patients’

prognosis by early detection, and reduce the physicians’ workload.

Conventional CAD pipeline includes image quality control, fea-

ture extraction, predictive modeling, and model visualization. For

example, Grisan et al23 applied support vector machine to identify

gastric metaplasia vs intestinal metaplasia using rotation invariant

local binary pattern features. Veronese et al24 improved the
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approach via a 2-stage classification pipeline, and Ghatwary et al25

applied image enhancement before feature extraction for increased

overall accuracy.

More recently, deep learning has also been applied to the classifi-

cation of BE using OE images. For example, Mendel et al26 have

implemented deep convolutional neural networks for binary classifi-

cation of patients into EAC and non-EAC, realizing a sensitivity of

0.94 and a specificity of 0.88 with leave-1-out cross-validation.

Hong et al27 have also applied convolutional neural networks for 3-

class classification for BE and neoplasia using endomicroscopic

images with an accuracy of 80.77%.

However, the performance and generalization capability of CAD

systems is still largely constrained by the scarcity of annotated

images. Besides collecting more annotated data, researchers incorpo-

rate unsupervised, semisupervised, and weakly supervised learning

to make the most of the data available.

One major application of semisupervised learning is image seg-

mentation. Papandreou et al28 are among the first in studying weak-

ly and semisupervised learning for semantic image segmentation.

The authors designed an expectation maximization algorithm for it-

eratively updating the prediction for pixel-level annotations and the

parameters of segmentation neural networks. Jia et al29 approached

the weakly supervised segmentation with multiple instance learning

by aggregating the pixel-level annotations and designed a con-

strained optimization process when additional supervision informa-

tion is available. More recently, Li et al30 studied weakly supervised

segmentation for the prostate cancer pathological images by utiliz-

ing the prior knowledge about the epithelium-stroma distribution.

Besides image segmentation, semisupervised learning has also

been applied for image classification. For example, our prior work

applies semisupervised learning to eCLE images by propagating labels

to unlabeled images.10 However, handcrafted feature extraction is a

major bottleneck for further performance improvement. The unsuper-

vised nature of CAE makes it a popular choice for automated image

feature extraction,31 which can naturally utilize the unlabeled data

for improved feature representation. Thus, in this article, we adopt

the CAE to build a semisupervised deep neural network called CAES-

Net for improving the classification of BE status using OE images.

MATERIALS AND METHODS

Data
The data we used were images collected from patients undergoing

eCLE procedures for BE at Emory Hospital. The dataset consists of

429 images labeled as one of the nine classes by an expert gastroin-

testinal endomicroscopist and 2826 unlabeled images for

semisupervised learning. The statistics of these images are summa-

rized in Table 2. Example images for each class are shown in Figure 2.

Image preprocessing and data augmentation
The original size of our eCLE images is 1024� 1024 Pixels. Because

of the limited number of training data, we apply image augmenta-

tion to increase the number of instances for training, which is

expected to improve the performance of image reconstruction and

Figure 1. Example images of three types of commercial optical endomicroscopy systems. Left: endoscope-based confocal laser endomicroscopy (eCLE); middle:

probe-based confocal laser endomicroscopy (pCLE); right: volumetric laser endomicroscopy (VLE).

Table 1. Comparison of specifications for 3 optical endomicroscopy technologies

eCLE pCLE VLE

Company Pentax, Tokyo, Japan; and

Optiscan, Victoria, Australia

Mauna Kea Technologies,

Paris, France

NinePoint Medical,

Cambridge, MA

Model Pentax ISC 1000 Cellvizio 100 Series Nvision VLE

Data Format Surface images Surface image video Helical scan video

Axial Information Multiple z-planes Single z-plane Multiple z-planes

Axial resolution, mm 7 NA 7

Lateral resolution, mm 0.7 3.5 NA

Z-depth, mm 0–250 60 0–3000

Frame size 500� 500 600-mm diameter 6-cm scan acquisition length

Image size 1024� 1024 580� 576 NA

Speed 0.8-1.2 frames/s 12 frames/s 1200 slices/90 s

Intravenous

fluorescein required?

Yes Yes No

eCLE: endoscope-based confocal laser endomicroscopy; NA: not applicable; pCLE: probe-based confocal laser endomicroscopy; VLE: volumetric laser endomi-

croscopy.
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classification. For each batch of training images, we apply a data

augmentation consisting of random rotation, zooming in, and flip-

ping (Supplementary Note 1). The augmented images are then scaled

into a smaller size of 256� 256 to reduce the number of parameters.

Examples of the augmented images are shown in Supplementary Fig-

ures S1 and S2.

CAESNet: stacked CAEs for semisupervised learning
The structure of CAESNet is shown in Figure 3, which consists of a

stacked convolutional autoencoder for unsupervised feature repre-

sentation and fully connected layers for image classification. The en-

coder consists of 5 convolution layers, each with a filter of size 4

and stride 2, resulting in encoded hidden codes of size 8� 8. Simi-

larly, the decoder consists of 5 deconvolution (transposed convolu-

tion) layers with the same filter size and stride as that of encoders.

The depth of each layer of the encoder is 16, 32, 64, 128, and 100,

respectively, with the last layer as the bottleneck layer. The bottle-

neck layer with dimensions of 8� 8� 100 is first flattened into a

vector of length 6400 and then connected to the second fully con-

nected layers through a rectified linear unit activation function, a

dropout layer, and batch normalization layer. Finally, the label is

predicted from the second fully connected layer with a softmax func-

tion. The dropout layer is applied during training stage and turned

off during test stage.

There are two loss functions in this network, namely reconstruction

loss and classification loss. In the unsupervised stage, we use the recon-

struction loss to train the encoder-decoder with both labeled and unla-

beled images. In the supervised stage, we use the classification loss to

train the encoder-classifier with only labeled images. The reconstruc-

tion loss lR is a measure of the differences between the input images

and the reconstructed images, measured by the mean squared errors:

lR ¼
1

M
� 1

N

XM
i¼1

XN
j¼1

ðxij � x̂ij Þ2

where M is the number of images in the batch, N is the number of

pixels of each input image, xij is the original value of the jth pixel of

the ith image, and x̂ij is the value of the jth pixel of the ith recon-

structed image.

We use the cross-entropy function as classification loss lC to

measure of the differences between the real labels and the predicted

labels of the images:

lC ¼ �
1

M

XM
i¼1

ðyi � logðŷi ÞÞ

where M is the number of images in the batch, yi is the real label of

the ith image in the batch, and ŷi is the predicted probability of the

ith image. The yi is a vector of one-hot coded labels, which equals 1

for the real label and 0 for other labels.

We construct four models utilizing all or parts of this network

structure with or without the unlabeled images. The major compo-

nents of these four models are summarized in Table 3.

In model 1, we implemented a stacked CAE, which is an unsu-

pervised feature representation network. Each input image is

encoded by an encoder with 5 convolution layers into hidden codes.

Then the input images are reconstructed by a decoder with 5 decon-

Figure 2. Example images of the endoscope-based confocal laser endomicroscopy (eCLE) dataset we used in this article. The images can be classified into nine

categories including squamous (Sq), intestinal metaplasia (IneMet), low-grade dysplasia (LowG), high-grade dysplasia (HighG), intraepithelial carcinoma (Intra-

Car), duodenum (Duod), gastric antrum (GasAnt), gastric body (GasBody), and gastric cardia (GasCard).

Table 2. Statistics of the Barrett’s esophagus dataset

Categories Subclass Images

Low risk Squamous (Sq) 41

Intestinal metaplasia (IntMet) 153

Low-grade dysplasia (LowG) 23

High risk High-grade dysplasia (HighG) 4

Intraepithelial carcinoma (IntraCar) 43

Other Duodenum (Duod) 48

Gastric antrum (GasAnt) 60

Gastric body (GasBody) 28

Gastric cardia (GasCard) 29

Total 429

Unlabeled 2826

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 11 1289

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz089#supplementary-data


volution layers (transposed convolution layers) from the hidden

codes. The network is trained by minimizing the reconstruction loss

(Algorithm 1 unsupervisedTrain).

In model 2, we use only the stacked convolutional encoders and

the fully connected layers for image classification, which is a stan-

dard implementation for image classification. Each input image is

first encoded and then classified into multiple categories. The net-

work is trained by minimizing the classification loss using only the

labeled images (Algorithm 1 supervisedTrain).

In model 3, we use both the stacked CAE for image reconstruc-

tion and the fully connected layers for image classification, but only

using the labeled images. In each training step, we first update the

encoder and decoder by reconstruction loss, then we update the en-

coder and fully connected layers by classification loss. All images are

firstly encoded into hidden codes. After encoding, we reconstruct

the input images and update the encoder and decoder by taking the

gradient of reconstruction loss. Then, we use the updated encoder to

regenerate the hidden codes and pass them through fully connected

layers for image classification. We update the encoder and fully con-

nected layers by taking the gradient of the classification loss.

In model 4 (CAESNet), we use the same structure as that in

model 3, but utilize both labeled and unlabeled images for training.

For each image, if it is labeled, we first update the encoder and de-

coder, then the encoder and fully connected layers; on the other

hand, if it is unlabeled, we only update the encoder and decoder by

minimizing the reconstruction loss. The implementation details of

model 4 are presented in Supplementary Note 2.

Model evaluation and classification metrics
The three classification pipelines are evaluated using stratified 4-fold

cross-validation (Supplementary Note 3.1). In each fold of the cross-

validation, we split the labeled data into training, validation, and

test datasets. We initiate the weights of our networks with multiple

random seeds and select the best model based on the classification

loss on the validation set. Data augmentation has been applied only

on the training datasets. To enable statistical test, we repeat the 4-

fold cross-validation for three times.

We evaluate the multiclass classification results using four met-

rics, namely accuracy, precision, F1 score, and Cohen’s kappa score

(Supplementary Note 3.2). We do not include recall because it is the

same as accuracy for multiclass classification if we weighted the re-

call by the number of samples in each class.

Experiment configuration
We run all data processing pipelines and models on a single server

with multiple CPU cores and two NVIDIA Tesla K80 GPUs (NVI-

DIA, Santa Clara, CA). The image augmentation is implemented

with Python Library Augmentor32 with random rotation, scaling,

and flipping (Supplementary Note 1.3). The CAESNet and baseline

deep learning models are implemented with PyTorch Version 0.4.0.

The classification results are evaluated with scikit-learn.33 For the

training of semisupervised networks, we use a batch size of 20,

epochs of 200, and a learning rate of 0.0002. We apply different

depths (ie, 16, 32, and 64) to each convolutional layer to see the in-

Figure 3. Visualization of the proposed convolutional autoencoders based semisupervised learning model Convolutional AutoEncoder based Semi-supervised

Network. The original images are first encoded into hidden codes through 5 layers of convolutional layers with a filter size of 4� 4 and a stride of 2. The hidden

codes can be either fed into fully connected layers for classification or into the 5 layers of deconvolutional layers for decoding into original images.

Table 3. The major components of 4 models

Components Loss function Train set Endpoint

Model 1 Encoder, decoder Reconstruction loss Labeled / unlabeled Reconstruction

Model 2 Encoder, fully connected Classification loss Labeled Classification

Model 3 Encoder, decoder, fully connected Reconstruction loss Labeled Classification

Classification loss

Model 4 (CAESNet) Encoder, decoder, fully connected Reconstruction loss Labeled and unlabeled Classification

Classification loss
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fluence on the classification and reconstruction performance. We

also compare the results with our previous semisupervised

method,10 which is also briefly described in Supplementary Note 4.

RESULTS

Improved image reconstruction performance by extra

training with unlabeled images
The image reconstruction quality increases as the number of training

images increases. Figure 4 shows the original images and the recon-

structed images from the test set for models 1, 3 and 4. The recon-

structed image quality of model 3 is the worst compared with

models 1 and 4. However, model 4 can achieve similar reconstruc-

tion performance as model 1 even with the extra task of classifica-

tion. The poor reconstruction performance of model 3 may result

from the trade-off between image reconstruction and classification,

and the limited number of labeled images.

Improved classification performance by

semisupervised learning with unlabeled images
The classification performance of 3 models is shown in Figure 5 and

Table 4. Based on Table 4, the performance of model 2 is inferior

compared with the best baseline model (label spreading). However,

models 3 and 4 consistently achieve better performance compared

with the baseline models at all network depths, likely resulting from

utilizing the reconstruction loss for regularizing the network. Thus,

when trained with the same amount of labeled data, only model 2

suffers from underfitting. Models 3 and 4 achieve similar prediction

performance, where model 4 at depth 32 achieves the best average

performance (0.824 6 0.0329). We have also performed the

pairwise 2-sample t test for the prediction performance of all models

in Table 4 (Supplementary Note 5). Model 3 and model 4 signifi-

cantly outperforms model 2. However, no significant difference has

been identified between models 3 and 4. In Figure 5, we visualized

the significance levels among models 2, 3, and 4 at the same network

depth. We have also visualized the performance of all models with

boxplots and their pairwise 2-sample t-test results in Supplementary

Note 5. The training losses of models 2, 3, and 4 are visualized in

Supplementary Figure S10.

The confusion matrices of three models with various depths are

shown in Figure 6. An ideal classification should achieve the diago-

nal pattern in the confusion matrix. Model 3 and model 4 concen-

trate more on the diagonal cells compared with model 2, which is

consistent with their overall performance. However, both models 3

and 4 makes a relatively poor classification for gastric cardia (Gas-

Card), low grade dysplasia (LowG), and high grade dysplasia

(HighG). These three classes are tended to be misclassified as the in-

Algorithm 1: Unsupervised and supervised learning.

Def unsupervisedTrain(Image):

while unsupervisedTraining() do

D getRandomMiniBatch()

zi ¼ Encoderh xið Þ 8xi 2 D

x̂i ¼ Decoderu zið Þ 8zi

lR ¼
1

M
� 1

N

XM
i¼1

XN
j¼1

ðxij � x̂ij Þ2

LR ¼
XM
i¼1

lRðxi; x̂iÞ

gh; g/
� �

 @LR

@h; @LR

@/

 !

ðh;uÞ  ðh;uÞ þ Cðgh; guÞ

end while

Def supervisedTrain(Image, Label):

while supervisedTraining() do

D getLabeledRandomMiniBatch ()

zi ¼ Encoderh xið Þ 8xi 2 D

ŷi ¼ FCu zið Þ 8zi

lC ¼ �
1

M

XM
i¼1

ðyi � logðŷi ÞÞ

LC ¼
XM
i¼1

lcðxi; yiÞ 8xi; yi 2 D

gh; g/
� �

 @LR

@h; @LR

@/

 !

ðh;uÞ  ðh;uÞ þ Cðgh; guÞ

end while

Algorithm 2: Training schemes for four models.

Def Model_1(UnlabeledImages):

while modelConverged() do:

unsupervisedTrain(UnlabeledImages)

end while

Def Model_2({LabeledImages, Labels}):

while modelConverged() do:

supervisedTrain({LabeledImages, Labels})

end while

Def Model_3({LabeledImages, Labels}):

while modelConverged() do:

unsupervisedTrain(LabeledImages)

supervisedTrain({LabeledImages, Labels})

end while

Def Model_4(UnlabeledImages, {LabeledImages, Labels}):

while modelConverged() do:

unsupervisedTrain(UnlabeledImagesþLabeledImages)

if LabeledImages:

supervisedTrain({LabeledImages, Labels})

end if

end while
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testinal metaplasia (IntMet). We suspect that this misclassification

could be caused by the limited numbers of samples for GasCard,

LowG, and HighG, where we only have 29, 23, and 4 samples, re-

spectively, of the 429 labeled images. On the contrary, we have 153

IntMet samples, which might dominate the classification decisions.

Fluctuated performance with the number of unlabeled

images
After confirming that utilizing unlabeled images to help the regulari-

zation of the encoder can improve the prediction performance, we

want to investigate the influence of the number of unlabeled images

utilized for the model training. With the 2826 unlabeled images, we

feed the model in an accumulative fashion. For ratio increasing from

0 to 1.0 with a step size of 0.1, we always use the first proportions

of the unlabeled images. For example, when ratio equals to 0.1, we

use the first 10% of unlabeled images; when ratio equals to 0.2, we

use the same first 10% of unlabeled images plus the subsequent

10% of unlabeled images. There are fluctuations in the prediction

performance along the number of unlabeled images applied (Supple-

mentary Figure S11 and Supplementary Table S5). We have also in-

vestigated the influence of data augmentation on classification

performance using model 2 (Supplementary Note 8), where similar

performance fluctuations have been observed.

CONCLUSION

In this article, we developed CAESNet, a CAE-based semisupervised

learning framework for multiclass classification of endomicroscopic

images. Based on the extensive experiments, we conclude that the

stacked CAE is an effective deep learning method to extract infor-

mative features from the eCLE images. The CAE network allows us

to not only add a regularization for the classification loss but also

allows us to utilize the unlabeled images to optimize the encoder in

a semisupervised learning fashion.

DISCUSSION

When utilizing a different number of unlabeled images, the perfor-

mance does not follow a monotonic increasing pattern but fluctuates

as the number of unlabeled images increased. There are multiple po-

tential explanations. First, the results could be caused by the training

configurations in which we apply the same hyperparameters for

experiments with different numbers of unlabeled images. To solve

this issue, optimized configurations may need to be searched for

each model and dataset. Second, the performance may be related to

the quality and underlined labels of the unlabeled images. If the

unlabeled images are less relevant with the labeled images, we may

experience an adverse effect when utilizing these unrelated unlabeled

images. We also suspect that if most unlabeled images are from a

specific class, they may preoccupy the autoencoder and make it

overfit images from that class. One potential way to solve this prob-

lem is to introduce another coefficient to balance the reconstruction

loss and classification loss. When we have a larger number of unla-

beled images, the reconstruction loss typically drops much faster

compared with classification loss. Thus, we can assign larger

weights to classification loss so that we can balance the training of

image classification as well as the image reconstruction.

There are multiple future directions for our semisupervised

model. One future direction is to improve the unsupervised feature

representation by applying adversarial autoencoders (AAEs). AAE is

a probabilistic autoencoder by matching the aggregated posterior of

the hidden code vector of the autoencoder with an arbitrary prior

distribution.34 As a result, the encoder tends to generate more mean-

ingful hidden codes. Currently, we only use the unlabeled data to

improve the unsupervised feature representation with simple hand-

crafted data augmentation. With the AAE framework, we can addi-

tionally autoaugment the labeled images from a few labeled images

and the unlabeled images.35 In this method, we learn a generator for

sequences of incremental, black-box transformation functions from

the unlabeled images and then apply the learned transformation

Figure 4. The original images (blue rectangle) and the corresponding reconstructed images (red rectangle) by autoencoders in 3 different models. Model 1: an

autoencoder using labeled images. Model 3: an autoencoder þ a classifier (Clf) using only labeled images. Model 4 (Convolutional AutoEncoder based Semi-su-

pervised Network): an autoencoder þ a classifier using both labeled and unlabeled images. Models 1 and 4 (Convolutional AutoEncoder based Semi-supervised

Network) achieve better reconstruction results compared with those of model 3.
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function generator to the labeled images for augmentation of realis-

tic labeled images. This advanced autoaugmentation for labeled

images should be able to improve the classification performance.

Introducing interpretation for the deep model we build is an-

other direction to enable the clinical translation of our method. By

introducing techniques like the attention to visualize the model, we

want to identify the features of the original images that contribute

most to the right classification. This process can, in turn, serve as a

parameter tuning or diagnosis step for the model. By examining

whether the neural network is truly picking up the disease-relevant

structures for the prediction, we can differentiate models fitting the

data noise from the truly effective models.

Figure 5. Boxplot of the classification performance of various models and depths. (A) The classification performance of three models using depth 16; (B) the per-

formance of three models using depth 32; (C) the performance of three models using depth of 64. Models 3 and 4 (Convolutional AutoEncoder based Semi-super-

vised Network) achieve similar prediction performance and consistently outperforms model 2. Model 4 (Convolutional AutoEncoder based Semi-supervised

Network) at depth 32 achieves the best average performance (0.824 6 0.0329). The asterisk indicates an average value and a red circle indicates outliers. ***P <

.005. Ave.: average; Med.: median; n.s.: not significant.
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Table 4. Classification performance of models with various implementations

Category Implementation Accuracy Precision F1 Cohen’s kappa

Graph based (baseline) LP 0.734 6 0.0175 0.763 6 0.0479 0.674 6 0.0269 0.642 6 0.0241

Randomized LP (20) 0.652 6 0.0465 0.709 6 0.0277 0.584 6 0.0453 0.528 6 0.0741

Randomized LP (90) 0.686 6 0.0318 0.702 6 0.0519 0.624 6 0.0394 0.577 6 0.0477

Model 2 (supervised) Network depth 16 0.679 6 0.0375 0.67 6 0.0623 0.652 6 0.046 0.6 6 0.0491

Network depth 32 0.683 6 0.0368 0.671 6 0.0661 0.656 6 0.0458 0.6 6 0.0486

Network depth 64 0.667 6 0.0431 0.628 6 0.0784 0.626 6 0.0554 0.572 6 0.0601

Model 3 (supervised) Network depth 16 0.787 6 0.0369 0.804 6 0.0376 0.774 6 0.0354 0.733 6 0.0439

Network depth 32 0.808 6 0.045 0.819 6 0.034 0.798 6 0.0448 0.761 6 0.052

Network depth 64 0.816 6 0.0384 0.822 6 0.0446 0.807 6 0.0425 0.768 6 0.0498

Model 4 (semisupervised) Network depth 16 0.784 6 0.046 0.789 6 0.0419 0.776 6 0.0458 0.731 6 0.0542

Network depth 32a 0.824 6 0.0329 0.832 6 0.0302 0.816 6 0.0342 0.781 6 0.04

Network depth 64 0.815 6 0.0252 0.814 6 0.0265 0.804 6 0.0262 0.768 6 0.0306

LP ¼ label spreading.
aBest performing model.

Figure 6. Confusion matrices of various models and depths. Each confusion matrix is color-coded as a heatmap for visualization purpose. Models 3 and 4 (Convo-

lutional AutoEncoder based Semi-supervised Network) consistently achieves better performance compared with model 2 at all network depths. Duod: duode-

num; GasAnt: gastric antrum; GasBody: gastric body; GasCard: gastric cardia; HighG: high-grade dysplasia; IneMet: intestinal metaplasia; IntraCar: intraepithelial

carcinoma; LowG: low-grade dysplasia; Sq: squamous.
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