
Research and Applications

Cost-aware active learning for named entity recognition

in clinical text

Qiang Wei,1 Yukun Chen,2 Mandana Salimi,1 Joshua C Denny,3,4 Qiaozhu Mei,5

Thomas A. Lasko,3 Qingxia Chen,3,6 Stephen Wu,1 Amy Franklin,1 Trevor Cohen,7 and

Hua Xu1

1School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA, 2Pieces

Technologies Inc, Dallas, Texas, USA, 3Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA,
4Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA, 5School of Information, University of Michigan, Ann

Arbor, Michigan, USA, 6Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA, and 7Department of Bio-

medical Informatics and Medical Education, University of Washington, Seattle, Washington, USA

Corresponding Author: Trevor Cohen, MBChB, PhD, Department of Biomedical Informatics and Medical Education, Uni-

versity of Washington, 850 Republican Street, Seattle, WA 98109, USA; cohenta@uw.edu and Hua Xu, PhD, School of Bio-

medical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Suite 870, Houston, TX

77030, USA; hua.xu@uth.tmc.edu

Received 28 November 2018; Revised 17 May 2019; Editorial Decision 22 May 2019; Accepted 5 June 2019

ABSTRACT

Objective: Active Learning (AL) attempts to reduce annotation cost (ie, time) by selecting the most informative

examples for annotation. Most approaches tacitly (and unrealistically) assume that the cost for annotating each

sample is identical. This study introduces a cost-aware AL method, which simultaneously models both the an-

notation cost and the informativeness of the samples and evaluates both via simulation and user studies.

Materials and Methods: We designed a novel, cost-aware AL algorithm (Cost-CAUSE) for annotating clinical

named entities; we first utilized lexical and syntactic features to estimate annotation cost, then we incorporated

this cost measure into an existing AL algorithm. Using the 2010 i2b2/VA data set, we then conducted a simula-

tion study comparing Cost-CAUSE with noncost-aware AL methods, and a user study comparing Cost-CAUSE

with passive learning.

Results: Our cost model fit empirical annotation data well, and Cost-CAUSE increased the simulation area under

the learning curve (ALC) scores by up to 5.6% and 4.9%, compared with random sampling and alternate AL

methods. Moreover, in a user annotation task, Cost-CAUSE outperformed passive learning on the ALC score

and reduced annotation time by 20.5%–30.2%.

Discussion: Although AL has proven effective in simulations, our user study shows that a real-world environ-

ment is far more complex. Other factors have a noticeable effect on the AL method, such as the annotation ac-

curacy of users, the tiredness of users, and even the physical and mental condition of users.

Conclusion: Cost-CAUSE saves significant annotation cost compared to random sampling.
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INTRODUCTION

Supervised machine learning (ML) models have achieved state-of-

the-art performance across a range of clinical natural language proc-

essing (NLP) tasks,1,2 but statistical NLP systems often require large

numbers of annotated samples in order to build high performance

ML models. Constructing large-scale, high-quality corpora is time

consuming and costly, particularly in the medical domain where

corpus-building often requires manual annotation by domain

experts. Therefore, methods that can help build high-performance

ML models but require fewer annotations are highly desirable in

clinical NLP.

Active learning (AL) systems attempt to prioritize more informa-

tive samples for annotation during an iterative training process; this

contrasts with the standard passive learning (PL) strategies, such as

random sampling. AL approaches may select samples based on di-

versity (samples that are least similar to already-annotated ones),3,4

uncertainty (the samples the model considers most difficult to cate-

gorize may be most informative),5 query-by-committee (samples

that multiple systems are least in agreement on),6 or other

approaches.7

The contribution of the current work is twofold. First, our AL

approach is to consider annotation costs while selecting AL samples,

extending CAUSE (Clustering And Uncertainty Sampling Engine)8

to weigh these costs against informativeness in a new model we call

Cost-CAUSE. Second, in addition to a typical simulated AL evalua-

tion where we measure the area under the learning curve (ALC), we

also complete a user study of real annotators using our AL system.

Active learning successes without cost modeling
AL has been widely studied in the biomedical context and in the gen-

eral domain. Settles and Craven conducted a large-scale general-

domain evaluation of multiple AL methods with a number of

approaches giving relatively robust performance.9 Chen et al dem-

onstrated that AL outperformed random sampling for a simulated

clinical named entity recognition (NER) task,4 while Kholghi et al

showed that AL in the clinical domain could reach the same ML ac-

curacy using only 54% (i2b2/VA 2010) and 76% (ShARe/CLEF

2013) of the total number of concepts in the training data.10 Chen et

al clustered sentences into groups based on their content, then com-

bined the uncertainty and diversity of samples to query samples

from an unlabeled pool and showed a better performance compared

with traditional AL algorithm.8

Despite the fact that these studies demonstrated the potential of

AL, they were conducted in simulated environments, and assumed

that annotation costs for each sample were identical. They maxi-

mized informativeness (ie, how much a sample will contribute to

learning an ML model), divided by the number of sentences or

words. However, in reality, annotation cost (ie, the time required by

an annotator) can be very different from 1 sample to another and

from 1 user to another user. So, the number of annotated examples

is a surrogate estimate of cost and may not accurately reflect the ac-

tual time required for annotation—which is the primary concern for

practical purposes.

Active learning and real-world annotation time
Addressing this issue of real-world annotation time, Settles et al11

collected several corpora along with sample-level annotation times

to evaluate real-world AL performance, and found that observed

costs are highly variable across instances. Chen et al8 developed an

AL annotation system to sample sentences for users, concluding on

the basis of user studies that cost-agnostic AL approaches may per-

form no better than random sampling on the measurement of anno-

tation time, but improved learning curves are achievable if the cost

variables can be appropriately taken into account. Kholghi et al12

recruited 4 users to compare various AL methods with random sam-

pling. The AL methods in their tests reduced annotation time by

28% compared with random sampling.

However, while these studies did advance understanding of the

effects of AL on annotation time, the AL approaches evaluated did

not explicitly address annotation time in their querying strategies.

Furthermore, the experiments involved a relatively small number of

users, did not compare AL with PL, and did not control as exten-

sively for noise factors.

Cost-conscious active learning
Introducing a cost (ie, time) variable into an AL strategy is 1 way to

reflect real-world annotation time. A number of studies proposed

methods to model the cost of a sample and balance that cost against

informativeness. Haertel et al13 presented a practical cost-conscious

AL approach motivated by the business concept of return on invest-

ment, and showed a 73% reduction in hourly cost as compared with

random sampling on a part of speech (POS) tagging task. Tomanek

et al14 summarized and compared several methods that incorporated

cost variables into AL. Both studies found that using the ratio be-

tween informativeness and cost was an effective way to incorporate

a cost variable into AL.

However, the estimation of time-specific cost variables for AL is

not a trivial task, since AL models do not know the cost of a sen-

tence before it has been annotated by a user in practice. Conse-

quently, a predictive model for annotation time is required. In the

open domain, time-specific annotation cost models have been pro-

posed for NLP tasks like POS tagging,15 text classification,16 and

NER.17 All of these studies took count characteristics of samples

into consideration including number of words and sentences at the

document level. Besides those variables, Arora et al16 also used vari-

ables describing annotator characteristics, and Tomanek et al17 in-

corporated the semantic and syntactic complexity of sentences into

a cost model. Haertel et al contributed a theoretical analysis of cost

model-based AL and presented a simulated study for POS tagging,

which showed it can indeed successfully reduce total annotation

time and be considered a viable option for machine-assisted annota-

tion.18 However, though these previous studies did utilize cost-

conscious AL methods, they did not evaluate these methods in the

context of user studies. Consequently, these studies do not address

important aspects of the complexity of annotation in production

environments, such as differences in annotation quality across users

and the element of user fatigue—both of which affect the estimated

performance of AL.

MATERIALS AND METHODS

Data set
In this study, we used data from the 2010 i2b2/VA challenge, pre-

serving the original training and test splits of 349 clinical documents

(20 423 unique sentences) and 477 clinical documents (29 789

unique sentences).19 There were 3 types of medical entities anno-

tated in each sentence: problem, treatment, and test (see details in

the Supplementary Table 1). We also utilized the annotation time

for 2 users (887 sentences for user A, and 891 for user B) obtained

from a previous study.8 These annotation times were used to
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develop our cost model. The training set was used in the simulation

study and for training annotators in the user study. The test set was

used in the user study.

Cost-CAUSE
We propose Cost-CAUSE as an approach to identify more informa-

tive, less costly sentences. While we follow the CAUSE8 query strat-

egy to select unlabeled sentences for annotation, we score sentences

using the ratio Informativeness(s)/Cost(s) between the informative-

ness of a sentence s and its estimated annotation time, similar to

other cost-conscious approaches.7,9 Cost-CAUSE is encapsulated by

the following pseudocode in Box 1. The ranked sentence set S main-

tains a balanced distribution across topics while selecting high infor-

mativeness per cost (IPC) samples, and top sentences in S will be

used for annotating.

While Informativeness(s) is determined by established querying

algorithms (eg, entropy of words in the sentence, entropy of entities

in the sentence, least confidence of the sentence4), our Cost(s) model

is unique and we thus describe it in further detail below.

Annotation cost model
We developed a cost model to estimate annotation cost for 1 sen-

tence based on features selected to capture the basic characteristics,

lexical complexity, and syntactic complexity of the sentence. Moti-

vated by psycholinguistic literature showing that linear combina-

tions of estimates can model the time it takes to read words,20,21 the

linear model for annotation time estimation is given by the follow-

ing formula:

Cost sð Þ ¼ c0 þ
X

i

cifi sð Þ

where fi(s) is the value of feature i for sentence s, and coefficients ci

are parameters learned during training.

Table 1 shows all the features used in the study. The Count fea-

tures reflect the characteristics of sentences, such as their length and

the number of entities and entity words they contain. To model syn-

tactic complexity, we developed a Syntactic feature based on the

probability of POS bigrams. The underlying assumption is that

relatively infrequent POS sequences may take longer to process.

Specifically, the POS Tag Entropy feature H(s) is based on the

corpus-derived probabilities of POS bigrams. P(s) represents the

probability of a sentence s, which is estimated as the product of the

probabilities of POS tags of each bigram in s. Formally, H(s) is cal-

culated from this as follows, where n is the length of the sentence s

and pi is the POS tag of the ith word in the sentence s:

H sð Þ ¼ �1

n
log P sð Þ ¼ �1

n
loge

X
pi2s

P pijpi�1ð Þ
 !

¼ �1

n
loge

X
pi2s

Pðpi; pi�1Þ
Pðpi�1Þ

 !

Lexical features model how difficult it is for annotator to under-

stand each word in a sentence at the level of meaning. The cumula-

tive inverse document frequency (IDF, with sentences as

“documents”) is used to measure the lexical complexity on the as-

sumption that infrequently encountered terms may take longer to

process.

We calculated the value of each feature for 887 and 891 senten-

ces respectively and used them to estimate the ci values, fitting linear

models to the annotation times of these 2 users in the simulation.

Simulation
A simulation was performed in order to evaluate the Cost-CAUSE

model. For AL models in this simulation, an evaluation set E was set

aside for evaluating an incrementally trained ML model; the remain-

ing data were initially considered unlabeled data U. Some samples

from U were subsequently selected (eg, via our Cost-CAUSE scor-

ing) and “labeled” with the gold standard label, moving these sam-

ples to a set of labeled data L. With the labeled data, a ML model

was trained and evaluated on E. More samples from U were selected

and “labeled” and trained on until an artificial time limit of 2 simu-

lated hours was reached. We used the cost model to estimate anno-

tation time for each sentence in the labeled set L and summed these

estimates, yielding our simulated time.

In our tests, we randomly split the 2010 i2b2/VA NLP challenge

training data set with 20 423 unique sentences into 5 folds for cross-

validation. Out of 5 folds, 4 were used as the initial unlabeled pool

U, while the remaining fold was the independent test set for evalua-

tion E. The workflow of the simulation is detailed as follows in

Box 2.

The same procedure was used for all tested AL systems; of

course, a PL random sampling method did not make use of the

Cost-CAUSE derived labeled/unlabeled data partitions. The learning

Box 1: Cost-CAUSE algorithm.

1. Cluster sentences s into groups g according to their topics.

2. Calculate IPC for each sentence:

IPC sð Þ ¼ InformativenessðsÞ
CostðsÞ

3. Calculate averaged IPC for each group gi:

Avg IPC gið Þ ¼
P

s2gi
IPCðsÞ

#fsentences in gig

4. Ranked group list!G: gi; g2; : : : : ; gn

5. For gi in G:

select sentence s with highest IPC in gi put s into ranked

sentence set S remove s from gi

Table 1. Features in the cost model. Named entities are in boldface

Sentence MRI by report showed bilateral rotator cuff repairs and he was admitted for repair of the left rotator cuff.

Categories Count Lexicon Syntactic

Feature Number of words Number of entities Number of entity words Inverse Document Freq. Entropy of POS tag

Value 20 3 11 35.36 2.28
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curves that plot F-measures vs. estimated annotation time were gen-

erated to visualize the performance of different methods. The area

under the learning curve (ALC; see equation in the Supplementary

Material) was used to compare the performance of AL or PL meth-

ods. The ALC measured the expected F-measure that the ML model

(trained by samples selected by AL or PL methods) can achieve,

within a given time window.

User study
To further validate the utility of the Cost-CAUSE method, we con-

ducted a user study to compare overall NER annotation times using

Cost-CAUSE vs random sampling. This study received the Institu-

tional Review Board approval from Committee for the Protection of

Human Subjects at The University of Texas Health Science Center

at Houston (HSC-SBMI-14-0678). The participants were recruited

in the University of Texas Health Science Center at Houston, and

met the following conditions: (1) they were medical or nursing stu-

dents; (2) they had experience working with clinical notes written in

English. The actual training and evaluation were conducted in 3

phases, designed for consistency in annotation skill level and envi-

ronment.

1. Phase I. 20 participants took basic NER annotation training,

and were tested to characterize their level of accuracy.

2. Phase II. All 20 participants entered Phase II, but 8 participants

discontinued the user study for personal reasons. Data used in

Phase II came from the i2b2/VA. Participants took a further 90

minutes of training: additional learning materials, discussion of

guidelines, and further annotation cases. Then all participants

completed 3 sessions of practice, annotating in our system for 15

minutes and reviewing their annotations. Finally, they took a 1-

hour test to determine whether they were eligible for Phase III,

in which they annotated an unseen set of sentences. We chose 10

participants for the next phase, with a minimum annotation

quality (measured by F1 score) of 0.67. Also, data from the test

were used for fit parameters of a cost model for each participant.

3. Phase III. Phase III was conducted in 2 days. For each day, par-

ticipants reviewed their annotation from the Phase II test for a

half hour to warm up. Then, they took the annotation test using

our annotation system with the i2b2 2010 data for 120 minutes.

The test was in 3 40-minute sessions and there was a 15-minute

break between any 2 sessions. A total of 10 medical experts

(nurses, medical students, and physicians) completed Phase III,

but 1 participant was subsequently removed from further analy-

sis due to lower annotation quality. No users have unique com-

binations of background and medical training (Supplementary

Table 2). Data used in Phase III came from the original test set

of the i2b2/VA, and the data set for evaluating models trained

from users’ annotation in this phase came from the original

training set of the i2b2/VA.

Annotation system design to control potential bias. User studies

comparing active and passive learning are inherently vulnerable to

bias on account of differences in annotation times across users and dif-

ferences in annotation times for the same users, which may increase as

they gain experience or decrease as they become fatigued during the

annotation. In order to mitigate for these biases when comparing AL

to PL, we designed a system (see details in Supplementary Material)

that can use either AL or PL to query sentences for users to annotate,

while adjusting its selection among these methods to ensure that (1)

users spend similar time on sentences from AL and PL, and (2) the

sentences are presented to users at the same point in a session (mitigat-

ing for fluctuations in user annotation speed over time).

RESULTS

Simulation studies
We trained the baseline and the proposed annotation cost models

for 2 users using their own annotated data (Table 2). We started

with number of words in a sentence (the NOW model) as a baseline,

which fit poorly to both user A and B. Incorporating both the num-

ber of entities and the number of entity words in the cost model

improves the R2 value (the COUNT model), and adding IDF

(COUNT_LEXICAL) and other syntactic complexity features

(COUNT_LEXICAL_SYNTACTIC) further improved the

model’s fit.

In Figure 1 (learning curves) and Table 2 (ALC scores), the Cost-

CAUSE method shows better ALC than that of RADOM, Uncer-

tainty, and CAUSE. Among cost-aware algorithms, the model with

COUNT_LEXICAL_SYNTACTIC achieved the best ALC score,

with improvements of 5.6% for both users for random sampling

and 3.3% for user A and 4.9% for user B for CAUSE. Comparing

the cost-agnostic AL methods, we note that these perform no better

than random sampling when evaluated using annotation time

(rather than number of words or sentences).

We also observed different characteristics of the sentences que-

ried by different methods (Table 4 in Supplementary Material).

Each technique (RANDOM, Uncertainty, CAUSE, and Cost-

CAUSE) varies in its average sentence length (11, �42, 27, and 11–

13), entities per sentence (1.25, 6.7, 3.9, and 13), and entity density

(0.24, 0.37, 0.36, and 0.32–0.34). Uncertainty and CAUSE seem to

select longer sentences, which explains why their performance is

overestimated when only number of sentences is considered; while

Cost-CAUSE selects sentences with similar length as RANDOM.

User study of Cost-CAUSE
Performance of AL and PL. AL (Cost-CAUSE) outperformed PL

(random selection) for 8 of 9 users in ALC scores (Table 3 and Fig-

ure 2), and the score for AL was significantly larger than that for PL

(Wilcoxon signed-rank test, P< .01). At 120 minutes, the ML model

Box 2: The workflow of the simulation.

1. Initialization:

a. Fit a linear cost model Cost(s) to each user.

b. Split the data into 5 folds.

c. Put 4 folds of sentences into unlabeled pool U. The

remaining fold is the evaluation set E.

2. Loop until estimated annotation time reaches 120 minutes:

a. Rank sentences in the unlabeled pool U (eg using Cost-

CAUSE)

b. Select the top 5 sentences from ranked sentences and put

them into labeled pool.

c. Use sentences as input to train a CRF model.

d. Use model from step 2c to predict sentences in the unla-

beled pool U.

e. Calculate the performance of the model from step c us-

ing evaluation set.
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trained on AL sentences had a better performance than that from PL

sentences in 7 of 9 users. To test whether AL is significantly different

from PL in terms of performance of the ML model as captured by

the learning curves, we performed a Wilcoxon signed-rank test for

each user, and AL significantly outperformed PL in terms of ALC

scores for 6 of 9 users (P<10�3).

Annotation performance. Table 4 shows the characteristics of

the annotation processes using AL (Cost-CAUSE) and PL (random

sampling). The annotation quality F-measure was estimated by com-

paring user annotations to the reference standard. While users main-

tained at least 0.70 F-measure on annotation quality, there was an

observable difference between AL and PL (0.748 for AL and 0.798

for PL on average; a median of 0.74 for AL and 0.79 for PL). Anno-

tation qualities of 3 users for AL sentences were much lower than

PL (user 1, 3, and 4, �0.08 lower). Users spent a longer time anno-

tating words in AL sentences (33.01–73.07 vs 40.47–92.22 words/

minute) and annotated fewer AL sentences within 120 minutes. AL

sentences were slightly longer (12.44 vs 11.38 words/sentence on av-

erage), contained more entities (2.14 vs 1.39 entities/sentences on

average), had a higher entity density (0.34 vs 0.26 on average), and

thus were perhaps more difficult for users.

There was a decrease in annotation quality for AL from 40

minutes (Figure 2, blue dashed lines), where annotation quality for

AL clearly falls below PL. This may be because sentences selected by

AL become progressively harder to annotate as sentences must be

more atypical to qualify as “informative” as the model evolves (fur-

ther exploration is in the Supplementary Material).

Annotation effort saved by Cost-CAUSE. Consider a comple-

mentary measurement of users’ annotation effort: how much anno-

tation is necessary (in minutes, number of sentences, and number of

words) to reach a target performance F-measure of 0.67? For users 1

and 4, the AL model took more time to reach target performance

than PL. For another 2 users, the PL model never reached the target

performance at the end of 120 minutes, while the AL model did. For

the remaining 5 users, AL reduced the annotation time to reach the

target performance by 20.5%—30.2% and reduced the number of

sentences and words annotated at target performance by 43%–

49.4% and 37.6%–44.4%, respectively (Supplementary Table 5).

Interestingly, although Cost-CAUSE did not reduce annotation

time for User 1 and User 4, it did reduce the number of annotated

sentences. However, as we have argued previously, annotation time

is a more important measure of performance for practical purposes.

Performance of AL and annotation quality. It is evident from the

learning curves that annotation quality decreased over time for AL,

suggesting that the annotation quality of the more challenging sen-

tences suggested by AL is more vulnerable to the effects of fatigue.

Overall, annotation quality for AL of some users (user 1, 3, and 4)

was as much as 8% lower than their annotation quality for PL. A

more in-depth exploration of this effect is in the Supplementary

Material.

DISCUSSION

In this study, we integrated annotation cost estimation models into

previously developed AL algorithms and demonstrated the utility of

this approach using both simulation and user studies. To the best of

our knowledge, Cost-CAUSE is the first AL algorithm to combine

uncertainty, representativeness, and cost models to efficiently build

NER systems for clinical text. Despite the advantages of the Cost-

CAUSE algorithm in this study, these findings suggest there are

some aspects of the user annotation process in need of further

elucidation.

Differences between users. Our user study showed that the bene-

fit of Cost-CAUSE over PL was different across our 9 users. This is

perhaps to be expected, and highlights the danger in drawing con-

clusions from studies of individuals or pairs of users. Further investi-

gations revealed that changes in annotation quality may explain

some of these differences. Also, our annotation cost estimation dif-

fered in performance across users (Supplementary Table 3)—espe-

cially for User 4, an outlier whose annotation time increased with

AL over PL. Clearly it is more difficult to predict the annotation

time for some users, and this may cancel out the performance advan-

tage of cost-sensitive methods. Ideally, cost models should work ef-

fectively for most users, avoiding the additional annotation

associated with individualized cost models. Though out of scope for

this study, more features (such as the background of users, time pe-

riod during an annotation session, reading speed, and other charac-

teristics of users) may be incorporated to develop a future, unified

annotation cost model.

Annotation time models. To that end, an interesting research di-

rection may be to develop more sophisticated annotation time mod-

els. The relation between annotation time and other annotation

time-associated factors may not be adequately represented by a

straightforward linear model. For example, interactions between

variables such as that between length of the session and length of a

sentence (ie, fatigue is more apparent with the more complex AL

examples) are currently ignored.

Relation between AL and categories of named entities (NEs). It

is possible that AL prefers some categories of entities (see Supple-

mentary Table 7). While the proportions of 3 NEs were similar

across users, AL had lower proportions of problem (32.9% vs

38.7%, on average) and higher proportions of test (35.6% vs 29.2%

on average) compared to PL for all 9 users. Therefore, incorporating

the NE category as a feature might improve the AL method.

Cost-CAUSE in practice. To implement Cost-CAUSE in real-

world scenarios, for 1 target data set, we can sample from the data

set to train annotators and estimate parameters of the cost model;

the remaining samples are used for the main application of AL meth-

ods. Because the PL method also needs time to train and test users

Table 2. R-squared value for cost models and the area under the

learning curve (ALC) for each method – Passive (PL) vs Active (AL),

cost-agnostic vs cost-aware – in a 2-hour simulation study. Best

results for each user are in boldface

R2 ALC

User A User B User A User B

PL: RANDOM – – 0.621 0.620

AL: Uncertainty (LC) – – 0.595 0.590

AL: CAUSE – – 0.635 0.624

Cost-CAUSE variants

AL: NOWa (baseline) 0.668 0.459 – –

AL: COUNTa 0.791 0.530 0.650 0.650

AL: COUNT_LEXICALa 0.818 0.543 0.652 0.649

AL: COUNT_LEXICAL_

SYNTACTICa

0.823 0.545 0.656 0.654

Abbreviations: AL, active learning; ALC, under the learning curve; LC,

least confidence; PL, passive learning.
aResults of 4 Cost-CAUSE variants were shown, which used cost models

including different features to estimate annotation time. The text after colon

shows the features in the cost model.
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before real annotation, the AL method Cost-CAUSE does not re-

quire extra time compared with PL method.

Pros and cons of simulation studies. Aside from using an accu-

rate cost model in AL, the cost model could also be used for simula-

tion studies, which would provide a generalizable evaluation to

researchers. Namely, multiple annotation tasks (eg, named entity

recognition, word-sense disambiguation, phenotyping) could be

evaluated against a simulated annotation time if real annotation

time was not explicitly captured. Simulation studies are more eco-

nomical than user studies when evaluating a large number of

methods, and an accurate annotation cost model would enable such

simulations to provide estimates of savings in annotator time—the

primary outcome of interest from a practical perspective.

However, we should be cautious that simulated results do not

overestimate the benefit of AL. There are 2 issues that may cause

overestimation of benefit: (1) Simulations are often based on a gold

standard (100% quality), whereas a user study relies on annotations

generated by users in real time (�80% quality after training). (2)

The simulated update process (eg, querying! annotation!
training! querying, etc.) is ideal in that a querying can be

Figure 1. Learning curve for both users in the simulated study, with the simulated annotation time (rather than number of words) on the x-axis. The Cost-CAUSE

(COUNT) represents the Cost-CAUSE method that only uses the count features in its cost model, and the Cost-CAUSE (COUNT_LEXICAL_SYNTACTIC) represents

the Cost-CAUSE method that uses both lexical and syntactic features in its cost model.
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Figure 2. Learning curves and annotation performance for the 9 users. Dashed lines represent annotation quality and solid lines represent the learning curves.

The orange and blue represent PL and AL, respectively.

Table 3. ALC scores, F-measures at the end of 120-minute annotation, and the statistical test P values of AL and PL. Best performance across

models for a user is in boldface

Users ALC scores F-measures at 120 minutes P values based on Wilcoxon

signed-rank test
PL AL PL AL

User1 0.633 0.637 0.696 0.695 9.7x10-2

User2 0.574 0.575 0.659 0.671 7.2x10-3

User3 0.608 0.628 0.683 0.690 3.0x10-5

User4 0.615 0.609 0.692 0.680 5.6x10-3

User5 0.619 0.642 0.707 0.717 1.8x10-5

User6 0.580 0.610 0.674 0.691 3.9x10-4

User7 0.521 0.580 0.624 0.671 1.8x10-5

User8 0.599 0.613 0.673 0.691 2.7x10-5

User9 0.606 0.629 0.683 0.693 1.8x10-5

Mean 0.595 0.632 0.677 0.689

Abbreviations: AL, active learning; ALC, under the learning curve; PL, passive learning.
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performed until the last training is completed, whereas the batch up-

date process in the user study may not be optimal for reasons such

as supporting the “no waiting” annotation workflow.

AL for clinical NER in the long term. In this study, we limited the

annotation time to 120 minutes, which is not long enough to show the

long-term effect of AL methods. To evaluate the long-term performance

of AL, we could easily simulate both Cost-CAUSE and random sam-

pling for longer (eg, 20 hours, which is 10 times longer than the user

study. Simulated results show that AL would achieve higher percen-

tages of savings when we extend the annotation time, which is very

promising (Figure 3). We also plan to extend the user study to evaluate

the long-term effect of AL for building clinical NER systems.

User study. Although we developed a system to eliminate bias

from factors such as fatigue, memory effect, and so on, limitations

to our methods remain. In our study, each sentence could only be se-

lected by either AL or PL, which resulted in different labeled sets for

AL vs PL. As previously discussed, annotation quality has an influ-

ence on the performance of AL. Participants had diverse back-

grounds and natural variability, so it was impossible to ensure

higher annotation quality. There are still some factors that may indi-

rectly influence the performance of AL, such as annotation speed. In

future work, we will investigate how these direct and indirect factors

improve the AL method and define more practical inclusion

criterion.

Two dropouts in our 3-phase user study may have some statisti-

cal consequences, but they do not affect the outcomes. A single par-

ticipant drop-out occurred in Phase II due to personal reasons. This

could be considered random and thus had no effect on the distribu-

Figure 3. Estimated annotation cost savings by Cost-CAUSE at different F-measures.

Table 4. Characteristics of annotation processes for 9 users for Random Sampling (PL) and Cost-CAUSE (AL) in each 120-minute annotation

User Method Number of

sentences

F1 Entities per

sentence

Words per

sentence

Entity words

per sentence

Entity

density

Time Words per

minute

User1 PL 920 0.79 1.40 11.37 2.97 0.26 119.97 87.16

AL 664 0.71 2.06 12.80 4.39 0.34 120.22 70.71

User2 PL 553 0.77 1.44 11.48 2.98 0.26 119.41 53.18

AL 415 0.72 2.17 12.33 4.50 0.36 120.64 42.43

User3 PL 766 0.79 1.34 10.73 2.74 0.26 119.88 68.58

AL 525 0.71 1.98 12.16 3.95 0.32 120.19 53.13

User4 PL 842 0.82 1.42 11.64 3.03 0.26 119.56 81.97

AL 550 0.74 2.38 14.47 4.78 0.33 120.44 66.10

User5 PL 910 0.83 1.43 12.15 3.12 0.26 119.85 92.22

AL 616 0.78 2.44 14.29 4.88 0.34 120.44 73.07

User6 PL 745 0.80 1.41 11.51 2.99 0.26 120.01 71.44

AL 570 0.74 2.06 11.20 4.32 0.39 120.22 53.11

User7 PL 435 0.75 1.27 11.11 2.63 0.24 119.46 40.47

AL 388 0.78 1.86 10.26 3.42 0.33 120.56 33.01

User8 PL 875 0.79 1.38 10.95 2.81 0.26 119.95 79.89

AL 637 0.77 2.00 11.90 3.83 0.32 120.10 63.10

User9 PL 617 0.84 1.44 11.45 2.93 0.26 120.23 58.77

AL 445 0.78 2.28 12.52 4.69 0.37 120.04 46.42

Abbreviations: AL, active learning; PL, passive learning.
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tion of participants’ backgrounds. The other dropout was in Phase

III due to lower annotation quality, which accorded with the goal of

the study—to compare AL and PL in a real environment. Our Phase

III AL exclusion criterion was also similar to standard practice for a

traditional PL annotation environment, where users undergo train-

ing and are only allowed to start annotating real samples if their an-

notation quality meets the criteria.

CONCLUSION

In this study we presented a cost model to predict annotation time,

which was then integrated into the novel AL method, cost-CAUSE.

Cost-CAUSE was shown to save annotation time with I2B2 2010

data set in a simulation study. Moreover, we conducted a user study

which demonstrated that Cost-CAUSE can save 20.5%–30.2% an-

notation time in a 2-hour experiment. These results demonstrate the

importance of considering, and compensating for, the cost of sen-

tence annotation in clinical AL systems.
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