
HAL Id: hal-00278795
https://hal.science/hal-00278795

Submitted on 15 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized quantifiers in declarative and interrogative
sentences

Raffaella Bernardi, Richard Moot

To cite this version:
Raffaella Bernardi, Richard Moot. Generalized quantifiers in declarative and interrogative sentences.
Logic Journal of the IGPL, 2003, 11 (4), pp.419-434. �hal-00278795�

https://hal.science/hal-00278795
https://hal.archives-ouvertes.fr

Generalized Quantifiers in Declarative and
Interrogative Sentences

RAFFAELLA BERNARDI
UiL OTS, Utrecht University, Trans 10, 3512 JK Utrecht, NL, E-mail:
Raffaella.Bernardi@let.uu.nl
RICHARD MOOT
UiL OTS, Utrecht University, Trans, 10 3512 JK Utrecht, NL, E-mail:
Richard.Moot@let.uu.nl

ABSTRACT: In this paper we present a logical system able to compute the semantics of both declarative
and interrogative sentences. Our proposed analysis takes place at both the sentential and at the discourse
level. We use syntactic inference on the sentential level for declarative sentences, while the discourse level
comes into play for our treatment of questions. Our formalization uses a type logic sensitive to both the
syntactic and semantic properties of natural language. We will show how an account of the linguistic data
follows naturally from the logical relations inherent in the type logic.

KEYWORDS: Type Logical Grammar, Type Logical Semantics, Generalized Quantifiers, Question Seman-
tics

L&C. Vol. 1 – No. 3, 2001, pp. 1 to 19. c© Hermes Science Publishing LTD

2 Language and Computation, Vol. 1 – No. 3, 2001

1 Introduction
Natural reasoning inferences are derived from structures whose grammaticality is af-
fected by both syntactic and semantic constraints. A system modeling these semantic
inferences must be able to take both types of constraint into account. The role of the
syntax-semantics interface in the analysis of natural reasoning inferences is illustrated
by the example below.
Sentences with multiple quantifier occurrences may receive different interpreta-

tions. The different readings of a sentence allow different inferential possibilities.
For instance,

(a) [Few> Every] (b) [Every> Few]

Few referees read every short abstract
Few referees read every excellent short abstract

Few referees read every short abstract
Few referees read every abstract

The inferences (a) (resp. (b)) are correctly derived from Few referees read every short
abstract when interpreted with the object narrow-scope (resp. wide-scope) reading.
In natural language, generalized quantifiers (GQs) do not always realize the full

set of combinatorial possibilities for scope dependencies predicted by their semantic
type assignment as sets of properties. As a result, certain inference substitutions that
would be logically valid are not available in natural reasoning. For instance, one would
expect the following two inferences to be derivable from Three good referees read few
abstracts, similarly to what we have seen above.

(a) [Three > Few] (b) [Few> Three]

Three good referees read few abstracts
Three referees read few abstracts

Three good referees read few abstracts
Three good Dutch referees read few abstracts

where (a) would be logically correct in the interpretation [Three> Few] and (b) in the
wide scope reading [Few > Three]. However, while (a) is a correct natural reasoning
inference, (b) is not. This difference at the reasoning level is a side effect of some
different properties proper of the quantifier phrases few referees and every abstract [3].
The example shows that natural language structures contribute to natural reasoning

and illustrates the need to account for this information when aiming to model natural
reasoning. Moreover, it sheds light on the importance of some differences holding
among items of the same semantic type, e.g. within the class of quantifiers, which are
irrelevant for the meaning assembly, but effect the form composition. In this paper,
we focus on this preliminary task to be carried out by a formal system employed to
account for natural reasoning inferences.
Lambek calculi [15] are well known for being able to properly account for natural

language syntactic-semantic interface by means of the Curry-Howard correspondence
between proofs and lambda-terms [11, 4]. Thanks to this relation, proofs of the gram-
maticality of a string correspond to lambda terms. The form/meaning assembly is
carried out in parallel by means of function application and abstraction. However, the

Generalized Quantifiers in Declarative and Interrogative Sentences 3

example above shows that expressions with the same meaning can have different syn-
tactic distribution. This difference between the syntactic and semantic levels cannot
be expressed by a system in a one-to-one correspondence with the lambda calculus.
Syntactic types must encode some features which are non visible in the semantic types.
In [12], Kurtonina and Moortgat extended the logical language of the Lambek cal-

culi with unary operators, obtaining Multimodal Categorial Logics (MMCL). In this
paper, we show how the latter have the right expressivity to encode fine-grained dis-
tinctions among expressions of the same semantic type.
The paper is divided into two main parts: In Section 2 and Section 3 we give a brief

presentation of the linguistic data concerning scope ambiguity phenomena and we in-
troduceMMCL showing how it can be used to account for these linguistic data. When
building the lexicon in this part, we concentrate on the type language of the system,
hiding the corresponding semantic representation since the constraints are purely syn-
tactic. Finally, in Section 4 we show how the results at the syntactic level contribute to
giving definitions for the semantic representations for polarity and constituent ques-
tions.

2 Scope Ambiguity
Quantifiers offer interesting challenges for the treatment of the syntax/semantic inter-
face. First of all, they can take scope wider than where they occur overtly as illustrated
by the object wide scope reading assigned to Few referees read every short abstract.
Moreover, quantifiers differ with respect to the ways of scope taking as shown by
the non-validity of the inference derived from the object wide scope reading of Three
good referees read few abstracts.
For quite a long time, linguists have concentrated only on the first problem exhibited

by GQs. In the generative tradition since the pioneer work of May [16], all GQs have
been treated as having the same scope possibilities. We can refer to this approach
as the Uniformity of Quantifier Scope Assignment. Beghelli and Stowell [3] present
evidence against this approach and propose a move to a more flexible theory which
explains how and why different types of GQs can have different scoping possibilities.
In [3] scope is seen as the by-product of agreement processes, and mismatches in

agreement give rise to ungrammatical sentences. Beghelli and Stowell distinguish five
classes of GQs. Membership in any of the GQ types is indicated by some syntactic
properties which are morphologically encoded in the determiner position. They claim
that for certain combinations of quantifier types the grammar simply excludes certain
logically possible scope construals. We refer the reader interested in the linguistic
details of the theory to [3], we just summarize their data in Table 1 on the following
page.
We will focus on three types of GQ represented by any, a and some, and on the way

they interact with negation and wh-questions. To be more precise, some and a belong
to the same class, viz. ‘group-denoting’ quantifier phrases. However, they differ the

4 Language and Computation, Vol. 1 – No. 3, 2001

Sentence Scope

1. (a)What didn’t every actor know? ?∀
(b) ∗How didn’t every actor behave ? −

2. (a) Coppola didn’t direct any movie. ¬∃
(b) Coppola didn’t direct a movie. ∃¬ and ¬∃
(c) Coppola didn’t direct some movie. ∃¬

3. (a) ∗Any actor didn’t like Kubrick. −
(b)An actor didn’t like Kubrick. ∃¬ and ¬∃
(c) Some actor didn’t like Kubrick. ∃¬

TABLE 1. Scope data

way they take scope with respect to negation, which is our main point of interest.
We start analyzing sentences 2-3 in Section 3, we then move to discuss the examples

in 1, in Section 4.

3 Quantifier Scope in Multimodal Categorial Logic
In the type logical tradition, Montague [22] makes the first step towards the solution
of the first problem presented by quantifier scope, namely the ability of GQs to take
scope wider than where they occur at surface structure. His solution has been further
developed by Hendriks [9] and incorporated into Categorial Type Logic frameworks
in [17]. In this paper, we improve on the latter solution showing how MMCL can
account for the second problem exhibited by GQs, namely their difference in the way
of scope taking. Intuitively, the binary operators of the Lambek calculi will model the
merge of the structures, and the unary operators introduced in [12] will be employed
to zoom in on the domains of interpretation and distinguish the objects exhibiting dif-
ferent distributional behavior. A detailed comparison of the categorial logic approach
introduced here with the minimalist analysis proposed by Beghelli and Stowell is given
in [5].
In our system, different scope possibilities of a sentence correspond to different

proofs of the parsed string. Syntactic and semantic information is stored in the lexicon
and propagated through the proof by means of logical rules. We will use these char-
acteristics of the system to account for scope ambiguity phenomena, and the unary
operators of MMCL to account for the different ways of scope taking identified by
Beghelli and Stowell.
In this section we first briefly present the system, and then we show how we can

infer the linguistic data given in Table 1 from the rules of the system starting from the
lexical assignments.
Derivable objects inMMCL are of the form Γ : A where Γ is a structure (typically

Generalized Quantifiers in Declarative and Interrogative Sentences 5

a tree representation of a sentence) and A is a formula indicating the syntactic type of
this structure.

DEFINITION 3.1 (Formulas)
Over a finite set of atomic formulas A, we define the set of formulas F as follows:

F ::= A | !F | "↓F | F/F | F • F | F\F

DEFINITION 3.2 (Structures)
Over a countably infinite set of structural variables V , we define the set of structure
terms as follows:

S ::= V | 〈S〉 | (S ◦ S)

To make our proofs a bit more readable, we will typically use lexical word as struc-
tural variables. A structure term is then a tree of words.
The natural deduction calculus for MMCL tells us how to combine proofs from an

initial set of lexical assignments to produce phrases of different types. See [21] for a
more detailed explanation and many linguistic applications of the Fitch-style natural
deduction calculus presented below.
In the logical rules below X, Y, Z range over structure terms, A,B,C range over

formulas and x,y are structural variables not occurring elsewhere in the proof. Fi-
nally, Z[X] denotes a structure term Z with a distinguished subterm occurrence X .
Tables 2 on the next page and 3 on page 7 list the logical rules of type-logical

grammar. The [/E] rule tells us that whenever rule n of our proof shows structure X
to be of type A/B and line m of this same proof shows structure Y to be of type B,
then the combined structure (X ◦ Y) is of type A. The [/I] rule indicates that, once
we hypothesize a B formula with a fresh structural variable x , we can discharge this
formula once we derive a formulaA with structure (X ◦x) to produce a formulaA/B
with structure X . Note that we mark the scope of a hypothesis with a vertical bar and
that all hypotheses should be discharged at the end of the proof.
According to the Curry-Howard interpretation, natural deduction proofs correspond

to typed lambda terms. For our current applications, we are only interested in the
semantics of the implications. When we want to compute the meaning of a syntactic
expression, it is often convenient to add semantic labels to the proof steps. Derivable
objects are then of the Γ : A − t, where Γ is a structure, A is a formula and t is
the semantics of the expression. Table 4 lists the semantically annotated rules for the
implications; the other connectives have their own Curry-Howard interpretations, but
they are not relevant for our current applications.
The semantically annotated [/E] rule now tells us that whenever we combine an

A/B formula with semantics t with a B formula with semantics u the resulting A
formula has the term (t u) as its semantics. For the [/I] rule, the hypothesis B is ini-
tially assigned a fresh variable x as its semantics, then we continue our proof until we
derive a formulaAwith some semantics t. We can now withdraw ourB hypothesis by
abstracting over its variable, producing λx.t as the semantics of the expression A/B.

6 Language and Computation, Vol. 1 – No. 3, 2001

Lexicon
n x : A Lex

Hypothesis
n x : A Hyp

Binary Rules

n X : A/B
m Y : B

(X ◦ Y) : A /E(n, m)

n x : B Hyp
m (X ◦ x) : A

X : A/B /I(n, m)

n Y : B
m X : B\A

(Y ◦X) : A \E(n, m)

n x : B Hyp
m (x ◦X) : A

X : B\A \I(n, m)

n X : A •B
m x : A Hyp
m + 1 y : B Hyp
p Z[(x ◦ y)] : C

Z[X] : C •E(n, m,m + 1, p)

n X : A
m Y : B

(X ◦ Y) : A •B •I(n, m)

TABLE 2. The logical rules of type-logical grammar

Note that without the structural labeling these are just the logical rules of implication
in intuitionistic logic. Also note that on the semantics level, we are not interested in
the difference between the two implications: both have the same semantic content.
The reader may wonder about the complexity of this system and about how proof

search would proceed. Natural deduction proofs have the pleasant property that for
finding proofs of a given logical statement we only need to consider the subformulas
of this logical statement, thereby bounding the search space for proof search. With re-

Generalized Quantifiers in Declarative and Interrogative Sentences 7

Unary Rules

n X : !A
m x : A Hyp
p Z[〈x〉] : C

Z[X] : C !E(n, m, p)

n X : A
〈X〉 : !A !I(n)

n X : "↓A
〈X〉 : A "↓E(n)

n 〈X〉 : A
X : "↓A "↓I(n)

TABLE 3. The logical rules for the unary connectives

Implications

n X : A/B − t
m Y : B − u

(X ◦ Y) : A− (t u) /E(n, m)

n x : B − x Hyp
m (X ◦ x) : A− t

X : A/B − λx.t /I(n, m)

n Y : B − u
m X : B\A− t

(Y ◦X) : A− (t u) \E(n, m)

n x : B − x Hyp
m (x ◦X) : A− t

X : B\A− λx.t \I(n, m)

TABLE 4. The logical rules for the implications with semantics

spect to the complexity, de Groote [8] presents a polynomial algorithm for the system
as described above, but adding more complex structural possibilities, like we need for
our treatment of generalized quantifiers will increase the complexity and can make the
system PSPACE complete in the worst case [20].
We illustrate how the logical system can be used to reason with linguistic signs by

showing a simple proof consisting only of elimination rules.

8 Language and Computation, Vol. 1 – No. 3, 2001

EXAMPLE 3.3
Given the lexicon below we have specified that tarantino and pulp fiction are lexical
expressions of type np, that oscar and movie are of type n and that directed and won
are of type (np\s)/np. The latter complex type means that it combines first with an
np to the immediate right then with an np to the immediate left to produce an s, which
is the atomic type assigned to sentences. We will discuss the correct type assignments
to determiners like a and some after this example.

Lexicon
pulp fiction : np− pulp tarantino : np− tarantino
oscar : n− oscar won : (np\s)/np− λxy.((win x) y)
movie : n−movie directed : (np\s)/np− λxy.((direct x) y)

Using this lexicon, together with the logical rules above, we can prove that tarantino
directed pulp fiction is a well-formed expression of type s and its meaning represen-
tation is (direct pulp) tarantino. For the sake of simplicity, we replace the structural
formulas with their corresponding linguistic expressions.

1. tarantino : np− tarantino Lex
2. directed : (np\s)/np− λxu.((direct x) y) Lex
3. pulp fiction : np− pulp Lex
4. (directed ◦ pulp fiction) : np\s− λx.(direct pulp) x /E(2, 3)
5. (tarantino ◦ (directed ◦ pulp fiction)) : s− (direct pulp) tarantino \E(1, 4)

The proof starts from the lexical assumptions. The elimination of the main con-
nective of the complex type assigned to the transitive verb, namely /E is applied to
the premises 2 and 3, yielding a structure of type np\s. Similarly, the connective \
is eliminated, composing the final structure which is proved to be of type s. Further-
more, the example shows that the elimination rules of \, / correspond to functional
applications. Note that steps 4 and 5 hide the application of β-reduction.

According to the Montegovian tradition GQs are denoted by functions which take
scope at the sentence level [2]. A type suitable for a subject generalized quantifier
would be s/(np\s), that is a type which produces a sentence when it finds to its right
a sentence missing an np to its left. Similarly, an object generalized quantifier would
be assigned the type (s/np)\s. The reader might complain that there are no good
motivations for such a duplicate type assignment. A solution to this problem is given
in [17, 18], where it is shown howMMCL can be extended in such a way that a single
type assignment suffices for each quantifier, regardless of its position in the sentence.
However, for the sake of simplicity, we will abstract over this issue and adopt the
general notation (np → s) → s. Doing so we can focus on the problem we are
interested in, namely the different scope possibilities of quantifiers.
The use of a uniform logical type assignment (np → s) → s for all GQs could

be seen as a deductive version of May’s [16] Scope Uniformity thesis, and would fail

Generalized Quantifiers in Declarative and Interrogative Sentences 9

in accounting for the different scope possibilities of GQs discussed in the previous
section. In order to diversify the way GQs scope on sentences, we refine this type
assignment further, distinguishing three different sentential levels, s1, s2 and s3 to
which three logically related types are assigned. We consider the standard sentential
type s to be the type of the medium sentential level s2 and we derive the other two
types as shown below.
Suppose that we have a proof that a structureX is of type s, then we can prove it is

of type "↓!s as follows.

1. X : s
2. 〈X〉 : !s !I(1)
3. X : "↓!s "↓I(2)

similarly, we can prove that !"↓s derives (⇒) s, as follows.

1. X : !"↓s
2. x : "↓s Hyp
3. 〈x〉 : s "↓E(2)
4. X : s !E(1, 2, 3)

The converse derivability relations do not hold. The reader can verify this by trying
all possible proofs using only subformulas of the logical types.
Summing up, the logical derivability relation connecting the three types is:

sentential levels s1 | s2 | s3

logical types !"↓s ⇒ s ⇒ "↓!s

The logical derivability relation among these types will play a crucial role in our anal-
ysis, as we will show when presenting the examples.
Let us now look at the way GQs differ on the level of the sentence they are allowed

to take scope over. The sentences in Section 2 show that any cannot have scope over a
negative sentence (see examples 2.-3.(a)), whereas a can (see examples 2.-3.(b)), and
some must (see examples 2.-3.(c)). We consider a negative sentence as the borderline
that can, cannot or must be reached or overcome by a GQ. Its type is s and it is on the
sentential level s2. As a consequence of the logical relations above, the level below
s is of category !"↓s, and the level above it is of category "↓!s. GQs like any
can have scope only on the lowest level s1, and are blocked when trying to reach the
higher ones. Some, instead, must operate on a higher level than negative sentences
s: it takes scope on the level s3 of type "↓!s. Finally, a is on the same level as a
negative sentence, therefore we correctly predict scope ambiguity in this case.
With this in place, we can represent the three GQ types as:

GQ1: (np → s1) → s1 (e.g. any movie)

GQ2: (np → s2) → s2 (e.g. a movie)

GQ3: (np → s3) → s3 (e.g. some movie)

10 Language and Computation, Vol. 1 – No. 3, 2001

which mean that GQ1 cannot operate on the level s2 we obtain when negating a sen-
tence, whereas GQ2 can and GQ3 lifts the level up to s3. Another important conse-
quence of these different type assignments is on the way generalized quantifiers can
combine with each-other when more than one GQ occurs in the same sentence. The
three types we have been describing so far give few combinatory possibilities. We can
summarize the permitted scopings as: GQi will always have wide scope over GQj

where i > j. Looking at linguistic data, however, we can easily find generalized
quantifiers which behave differently. We will comment on this after showing the GQ
types above at work.
Before introducing the type for didn’t two comments must be made. First of all,

negation-like expressions, e.g. didn’t, play a crucial role in our approach; they move
the sentential level up from the initial s1 level to the ‘negated’ s2 level. We have to
take this into account for the lexical type assignment.
Moreover, to get the desired interaction between negation and generalized quanti-

fiers, we follow Carpenter’s raising strategy [6]. Instead of considering didn’t as a
standard verb phrase modifier vp/vp – where vp = np\s, we lift its goal formula
to ((s/vp)\s)/vp, i.e. a type which takes an s incomplete for an np to produce an s
incomplete for a GQ. We enrich this type with the information on the sentential levels
while abstracting over the directionality of the implication operators, resulting in the
following lexical entry.

didn’t : (np → s2) → (((np → s2) → s2) → s2)

EXAMPLE 3.4
Given the lexicon below

Lexicon
coppola : np
the godfather : np
oscar : n
movie : n
directed : (np\s1)/np
won : (np\s1)/np
any : ((np → s1) → s1)/n
a : ((np → s2) → s2)/n
some : ((np → s3) → s3)/n
didn’t : (np → s2) → (((np → s2) → s2) → s2)

sentences 2-3 of Table 1 can be correctly parsed. We simplify the logical types using
the sentential levels instead of their corresponding types, while we abbreviate sub-
proofs of the relations between the sentence level by (derived) rules we name si,j .
We can see in Figure 1 on the next page that direct first combines with didn’t and

then the result combines with a movie. Besides the application of the elimination
rules which as seen before correspond to functional application, the proof contains

Generalized Quantifiers in Declarative and Interrogative Sentences 11

1. Coppola : np Lex
2. v : np → s2 Hyp
3. (Coppola ◦ v) : s2 →E (1, 2)
4. Coppola : (np → s2) → s2 →I (2, 3)
5. direct : (np\s1)/np Lex
6. y : np Hyp
7. (direct ◦ y) : np\s1 /E (5, 6)
8. x : np Hyp
9. (x ◦ (direct ◦ y)) : s1 \E (7, 8)
10. (x ◦ (direct ◦ y)) : s2 s1,2 (9)
11. (direct ◦ y) : np → s2 →I (8, 10)
12. didn’t : (np → s2) → (((np → s2) → s2) → s2) Lex
13. (didn’t ◦ (direct ◦ y)) : ((np → s2) → s2) → s2 →E (11, 12)
14. (Coppola ◦ (didn’t ◦ (direct ◦ y))) : s2 →E(4, 13)
15. (Coppola ◦ (didn’t ◦ direct)) : np → s2 →I (6, 14)
16. a : ((np → s2) → s2)/n Lex
17. movie : n Lex
18. (a ◦movie) : (np → s2) → s2 /E (16, 17)
19. ((Coppola ◦ (didn’t ◦ direct)) ◦ (a ◦movie)) : s2 →E (15, 18)
20. ((Coppola ◦ (didn’t ◦ direct)) ◦ (a ◦movie)) : s3 s2,3 (19)

FIG. 1. Coppola didn’t direct a movie, ∃¬ reading.

applications of the introduction rules of the functional connectives. As marked by
the label of the steps 2 and 6, these rules correspond to hypothetical reasoning. For
instance, the hypothesis v of type np → s2 assumed in 2, is discharged at the step
4 by means of → I lifting the noun phrase type of Coppola to the GQ type. This
order composition produces the reading where the existential quantifier has wide scope
(∃¬): it takes the built structure (Coppola ◦ (didn’t ◦ direct)) in its scope.
In order to understand the way the different lexical type assignments of the GQs

properly account for their different scope possibilities, attention has to be drawn on
the step 14 in the proof, where we have a structure of type s2. For the case at hand,
with a movie in object position, the proof proceeds simply by means of the logical
rules of the binary operators. On the other hand, if we consider the sentence 2c where
a is replaced by some, we first have to lift s2 to s3 and then proceed as before. Finally,
since we cannot derive the type s1 from s2, the reading (∃¬) is disallowed in case a is
replaced by any as in 2a.
An alternative proof exists for sentence 2b, as shown in Figure 2 on the following

page, giving the second reading.
Here, instead, direct combines first with a movie and then with didn’t. In other

words, in this reading the negation has wide scope (¬∃).

12 Language and Computation, Vol. 1 – No. 3, 2001

1. Coppola : np Lex
2. v : np → s2 Hyp
3. (Coppola ◦ v) : s2 →E (1, 2)
4. Coppola : (np → s2) → s2 →I (2, 3)
5. direct : (np\s1)/np Lex
6. x : np Hyp
7. y : np Hyp
8. (direct ◦ y) : np\s1 /E (5, 7)
9. (x ◦ (direct ◦ y) : s1 \E (6, 8)
10. (x ◦ (direct ◦ y) : s2 s1,2 (9)
11. (x ◦ direct) : np → s2 →I (7, 10)
12. a : ((np → s2) → s2)/n Lex
13. movie : n Lex
14. (a ◦movie) : (np → s2) → s2 /E (12, 13)
15. ((x ◦ direct) ◦ (a ◦movie)) : s2 →E(11, 14)
16. (direct ◦ (a ◦movie)) : np → s2 →I (6, 15)
17. didn’t : (np → s2) → (((np → s2) → s2) → s2) Lex
18. (didn’t ◦ (direct ◦ (a ◦movie))) : ((np → s2) → s2) → s2 →E (16, 17)
19. (Coppola ◦ (didn’t ◦ (direct ◦ (a ◦movie)))) : s2 →E (4, 18)
20. (Coppola ◦ (didn’t ◦ (direct ◦ (a ◦movie)))) : s3 s2,3(19)

FIG. 2. Coppola didn’t direct a movie, ¬∃ reading.

Now, in order to get the required argument np → s2 at step 16 it is essential we
have an s1 or s2 result at step 15, which we can only have when the quantifier is any
or a. The failure to derive s3 ⇒ s2 blocks this derivation for the quantifier some.

Before considering the interrogatives, we give some comments on how the small frag-
ment we have given can be extended.
For example, when a generalized quantifier like every actor combines with other

GQs, we have to account for multiple readings. In other words, we need to assign to
every a type which will allow for more scope possibilities than any of the assignments
we have seen so far. A proper type for this kind of GQ is (np → s3) → s1, which
will allow every to have both wide and narrow scope with respect of a second GQ. So
using heterogeneous combinations of sentential types, we can account for GQs with
more complex behavior than some and a.
Another interesting example is given by the negative polarity items (NPIs), as any:

items which require to be in the scope of a negative operator [14]. The type assigned
to any above, will satisfy the request that when the negation occurs the only possible
reading will be the one where the negation has wide scope. However, using this type
any can still occur in positive contexts, contrary to linguistic reality. We refer the
reader to [5] for a solution to this problem and for the discussion of a larger English

Generalized Quantifiers in Declarative and Interrogative Sentences 13

fragment with GQs.

4 Interrogatives
Now that the three types of GQs have been introduced and the criteria for differentiat-
ing them have been explained, we can discuss the last type of GQ we are interested in,
namely wh-phrases. This brings us to move from a syntactical approach dealing with
sentential inference, to a more semantical one, which involves the discourse level.
Therefore, instead of considering only the syntactic types of our lexical items, we will
discuss their semantic representation as well.
In natural language we can distinguish two basic categories of questions: polarity

questions (also known as yes/no questions) and constituent questions (also known as
wh-questions). We will first discuss the first type, then we will present the second one.
In our framework we will consider a string of words which form a question to be

of a different category and to have a different meaning than a declarative sentence.
However, their type and denotation will be a logical consequence of the one attributed
to sentences. The distinction of levels described above will therefore reappear. In
particular, we will distinguish two levels of questions, q1 and q2, deriving their types
from the one assigned to sentences in s1 and s2. For reasons which will become
clear later, we also need a third question level q3 derivable from the types of both q1

and q2. The logical relations among the types in these three question levels and in
the sentential ones are as shown below. For the sake of simplicity we abbreviate the
logical types using their corresponding sentential/question level:

s1 ⇒ s2 ⇒ s3

⇓ ⇓
q1 q2

⇒ ⇒

q3

where the relation between types of different levels is the logical derivability relation
discussed above; and the one between sentences and questions is the lifting theorem
[19]. Hence, q1 stands for s1/(s1\s1)which in turn abbreviates!"↓s/(!"↓s\!"↓s)
and q2 stands for s2/(s2\s2), viz. s/(s\s). Reading out this logical types, a yes/no
question is seen as a function which takes a sentential modifier and yields a sentence.
As might be clear, the two categories q1, q2 are at the level of positive and negative
yes/no questions, respectively. Their type are

Positive: !"↓s/(!"↓s\!"↓s)
Negative: s/(s\s)

A question to investigate further is whether the type obtained from lifting the type
in s3, i.e. "!s, can also play a role in a type logical approach to questions.

14 Language and Computation, Vol. 1 – No. 3, 2001

In the logical, philosophical and linguistic literature several frameworks have been
proposed for the meaning of questions [7]. The logical type we have assigned to
the yes/no questions finds its semantic motivation in the structured meaning approach
(also called “categorial”), which traces back to Ajdukiewicz [1], as noticed in [10],
and has been developed in [23, 13]. The basic idea which characterizes this approach
is that:

Question meanings are functions that, when applied to the meaning of the
answer, yield a proposition.

Yes/no questions expect answers like yes, no. In [13] it is suggested that no can be
considered as a propositional operator that reverses the truth value, λp.¬p, and yes as
a propositional operator that retains the truth value, i.e. the identity function: λp.p.
Before going to discuss some examples, it is worth to notice the contribution the

proof theoretical approach here assumed gives to the semantic investigation on ques-
tions. The results we describe bring evidence to the correctness of the categorial ap-
proach and complete the framework with the syntatical conterpart. As pointed out in
the beginning of the paper, at the heart of any categorial grammar analysis there is the
Curry-Howard isomorphism between lambda terms and types. The former are used
as semantic representation of the natural language expressions, and the latter as their
sytactic type. Since the studies on questions are mostely related with their interpre-
tation in this section we discuss the lambda term representation of the lexical items
as well as their type assignments. We start from the final semantic representation of
yes-no questions and we then build the lexicon behind it. Let us first present the theory
intuitively by means of an example with a polarity question.

EXAMPLE 4.1

Q Did Tarantino direct Titanic? λY.(Y ((direct titanic) tarantino))
A No. λp.¬p
Q(A) By twice beta-reduction. ¬((direct titanic) tarantino)

Translating into the type language what we have treated so far, an auxiliary as did
or didn’t will be a function which takes a sentence and yields a question. More specif-
ically, did yields a question of the first level, whereas didn’t of the second one.
Now that the theory is clear, we can present the lambda terms formally. We first

show the desired lambda terms representing a wh-question, and then we give the lexi-
con displaying both types and lambda terms for the items involved. Additionally, we
introduce wh-phrases which give rise to the second type of questions when combined
with the first one.
As is explained in [24] wh-phrases differ in the way they behave with respect to

negation. This fact can be easily accounted for in our framework, thanks to the dis-
tinction between the two levels q1, q2 for positive and negative questions. Following
the criterion given in [13] and quoted above, we consider wh-questions to be functions

Generalized Quantifiers in Declarative and Interrogative Sentences 15

taking an answer to yield a sentence. The type of the question therefore depends on
the type of its possible answer.
Let us consider what as an example.

EXAMPLE 4.2

Q What did Cameron direct? λY.(Y λx.((direct x) cameron))
A Titanic λP.P (titanic)
Q(A) By twice beta-reduction. ((direct titanic) cameron)

Translating this into the type language, we have that a wh-question is a function
which takes a GQ and yields a sentence. We abbreviate this category with wh, know-
ing that wh = s/GQ, and add the following lexical entries to our lexicon:

Lexicon
Tarantino : np− tarantino
Cameron : np− cameron
Titanic : np− titanic
no : s2 → s2 − λp.¬p

direct : (np\s)/np− λx.λy.((direct x) y)
did : GQ → ((np → s1) → q1)− λP.λQ.λR.(R (P Q))
didn’t : GQ → ((np → s1) → q2)− λP.λQ.λR.(R ¬(P Q))
what : wh/(np → q?)− λZ.λP.(P λx.((Z x) (λU.U)))

Notice that the lexical type of the auxiliary selects for a generalized quantifier and
a vp to produce a question. The GQ can be any of the three different types we treated
before. Therefore, the type selected by the auxiliary has to be general enough to
satisfy this request. In other words, GQ is such that GQ1 ⇒ GQ, GQ2 ⇒ GQ and
GQ3 ⇒ GQ are all derivable. These logical properties are assured by GQ = (np →
s1) → s3. The type assigned to what simply means that wh-phrases combined with
a yes/no question missing an np result into a wh-question. In our language we have
two different types of yes/no questions. Before discussing which of them is requested
by a wh-phrase we show a derivation of a wh-question. Notice that the type assigned
to wh-phrases can account for cases where the answer is a simple proper name (e.g.
Titanic), a set of proper names (e.g. Terminator, Aliens, Titanic) or a GQ (e.g. Several
famous movies).

EXAMPLE 4.3
We give a proof of ‘What did Cameron direct?’ in Figure 3 on the next page

As shown in the proof the type assigned to Cameron, viz. np has to be lifted to the
one of GQ. Having chosen the type GQ derivable from GQ1,2,3, allows ‘did’ to be
combined with either an arbitrary generalized quantifier or a simple noun phrase.

16 Language and Computation, Vol. 1 – No. 3, 2001

1. Cameron : np− cameron Lex
2. v : np→s1 − V Hyp
3. (Cameron ◦ v) : s1 − (V cameron) →E(1, 2)
4. (Cameron ◦ v) : s3 − (V cameron) s1,3(3)
5. Cameron : (np→s1)→s3 − λV.(V cameron) →I(2, 4)
6. did : GQ→((np→s1)→q1)− λP.λQ.λR.(R (P Q)) Lex
7. (did ◦ Cameron) : (np→s1)→q1

−(λP.λQ.λR.(R (P Q)) λV.(V cameron)) →E(5, 6)
8. (did ◦ Cameron) : (np→s1)→q1

−λQ.λR.(R (Q cameron)) β(7)
9. direct : (np\s1)/np− λx.λy.((direct x)y) Lex
10. z : np− z Hyp
11. (direct ◦ z) : np\s1 − (λx.λy.((direct x) y) z) /E(9, 10)
12. (direct ◦ z) : np\s1 − λy.((direct z) y) β(11)
13. ((did ◦ Cameron) ◦ (direct ◦ z)) : q1

− (λQ.λR.(R (Q cameron)) λy.((direct z) y)) →E(8, 12)
14. ((did ◦ Cameron) ◦ (direct ◦ z)) : q1

− λR.(R ((direct z) cameron)) β(13)
15. ((did ◦ Cameron) ◦ (direct ◦ z)) : q3

− λR.(R ((direct z) cameron)) q1,3(14)
16. ((did ◦ Cameron) ◦ direct) : np→q3

−λz.λR.(R ((direct z) cameron)) →I(10, 15)
17. what : wh/(np→q?)− λZ.λP.(P λx.((Zx) (λU.U))) Lex
18. (what ◦ ((did ◦ Cameron) ◦ direct)) : wh

−(λZ.λP.(P λx.((Z x) (λU.U)))
λz.λR.(R ((direct z) cameron))) /E(16, 17)

19. (what ◦ ((did ◦ Cameron) ◦ direct)) : wh
−λP.(P λx.((λz.λR.(R ((direct z) cameron))) x) (λU.U)) β(18)

20. (what ◦ ((did ◦ Cameron) ◦ direct)) : wh
−λP.(P λx.((λR.(R ((direct x) cameron))) (λU.U)) β(19)

21. (what ◦ ((did ◦ Cameron) ◦ direct)) : wh
−λP.(P λx.((λU.U) ((direct x) cameron))) β(20)

22. (what ◦ ((did ◦ Cameron) ◦ direct)) : wh
−λP.(P λx.((direct x) cameron)) β(21)

FIG. 3. Derivation of what did Cameron direct

We are now ready to answer the open question of the previous paragraph: what is
the type of the question taken as an argument by a wh-phrase? In [24] it is shown
that wh-phrases differ from each-other in the way they behave with respect to nega-
tion. Szabolcsi and Zwart give algebraic motivations for this linguistic phenomenon
which fits naturally into our framework. Having distinguished positive and negative

Generalized Quantifiers in Declarative and Interrogative Sentences 17

questions enables us to deal with contrasting pairs like what and how presented in
Section 2 and repeated here.

1.(a) What didn’t every actor know?
1.(b) ∗How didn’t every actor behave?

As these examples show the wh-phrase what can have scope on a question with a
negation in it, i.e. a question of category q2, whereas how cannot. Due to this diverse
behavior of the two wh-phrases, we differently instantiate the type q? selected by them,
as shown below:

what : wh/(np → q3)
how : wh/(adj → q1)

which mean that ‘how’ can combine only with a positive question, whereas ‘what’ can
select both a positive and a negative one. This fact motivates the choice of q3 which
is the type derivable from both q1 and q2, i.e. s3/(s3\s1), viz. "↓!s/("↓!s\!"↓s).
The type adj is the one assigned to adjectives.
Concluding this section on interrogatives in our framework, we want to point out

a nice consequence of the categorial approach to yes/no questions. As discussed in
[13], this approach predicts the different behavior of polarity questions with respect
to alternative questions, i.e. questions as: ‘Didn’t Tarantino direct Titanic, or did he?’.
Although the two types of questions may look similar, they are semantically different
as shown by the answers they expect. This difference is generated by the disjunctive
phrase. This phenomenon fits naturally into our framework by simply extending the
lexicon with the type for the disjunctive phrase:

or : qi → ((qj → vp) → (s? → s?))

where i, j ∈ {1, 2} and i += j. The type means that ‘or’ first combines with a positive
(resp. negative) polarity question then with a negative (resp. positive) ones missing a
verb phrase, to yield a type s? → s?. An alternative question will therefore received
a type which selects a sentence as answer. This is what is claimed in the categorial
approach, and this is what we expect looking at a possible answer to the question
above, e.g. ‘No, he didn’t’. Finally, due to the fact that the answer to alternative
questions may be of any of the type in the three sentential levels, we instantiate it with
s3 → s3.

5 Conclusion
We have presented a proof theoretical analysis of scope ambiguity phenomena in-
volving both syntactic and semantic constraints. We have shown how to profit of the
Curry-Howard isomorphism between types and lambda terms, and of the logically

18 Language and Computation, Vol. 1 – No. 3, 2001

derivability relation between types. We have used a type logical grammar to provide
evidence to the semantic theory on questions proposed in [13]. A question for further
investigation is whether the distinction on three sentential levels, is purely syntactic or
whether there are some semantic motivations behind it.

Acknowledgments
We like to thank Maria Aloni for having pointed out the connection of our work with
the categorial approach to questions, and the anonymous referees for their detailed
comments and suggestions.

References
[1] K. Ajdukiewicz. Die syntaktische konnexität. Studia Philosophica, 1:1–27, 1935.
[2] J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguistics and Philosophy,

4, 1980.
[3] F. Beghelli and T. Stowell. Distributivity and negation: The syntax of each and every. In A. Szabolcsi,

editor,Ways of Scope Taking, pages 72–107. Kluwer, 1997.
[4] J. van Benthem. The Lambek calculus. In E. Bach R. Oehrle and D. Wheeler, editors, Categorial

Grammars and Natural Language Structures, pages 35–68. Dordrecht: Reidel Publishing Company,
1988.

[5] R. Bernardi. Reasoning with Polarity in Categorial Type Logic. PhD thesis, UiL OTS, Utrecht Uni-
versity, 2002.

[6] B. Carpenter. Type-Logical Semantics. MIT Press, Cambridge MA, 1996.
[7] J. Groenendijk and M. Stokhof. Questions. In J. van Benthem and A. ter Meulen, editors, Handbook

of Logic and Language, pages 1055–1124. Elsevier, MIT Press, 1997.
[8] P. de Groote. The Non-associative Lambek calculus With Product in Polynomial Time In N. V. Mur-

ray, editor, Automated Reasoning With Analytic Tableaux and Related Methods, pages 128–139.
Springer Lecture Notes in Artificial Intelligence 1617, 1999.

[9] H. Hendriks. Studied Flexibility. Categories and Types in Syntax and Semantics. PhD thesis, ILLC,
University of Amsterdam, 1993.

[10] Hiz, editor. Questions. Dordrecht: Reidel, 1978.
[11] W. A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: essays on combina-

tory logic, lambda calculus and formalism, pages 480–490. Academic Press, London, 1980.
[12] N. Kurtonina and M. Moortgat. Structural control. In P. Blackburn and M. de Rijke, editors, Logic,

Structures and Syntax. Kluwer, Dordrecht, 1995.
[13] M. Krifka. For a structured account of questions and answers. In C. Smith, editor, Proceedings to

Workshop on Spoken and Written Text. University of Texas at Austin, 1999.
[14] W. Ladusaw. Polarity Sensitivity as Inherent Scope Relations. PhD thesis, University of Texas at

Austin, 1979.
[15] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154–170,

1958.
[16] R. May. The Grammar of Quantification. PhD thesis, MIT, 1977.
[17] M. Moortgat. Generalized quantification and discontinuous type constructors. In W. Sijtsma and

A. van Horck, editors, Discontinuous Constituency. De Gruyter, 1991.

Generalized Quantifiers in Declarative and Interrogative Sentences 19

[18] M. Moortgat. In situ binding: A modal analysis. In P. Dekker and M. Stokhof, editors, Proceedings of
the Tenth Amsterdam Colloqium, pages 539–549. ILLC, 1995.

[19] M. Moortgat. Categorial Type Logics. In J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Language, pages 93–178. The MIT Press, Cambridge, Massachusetts, Cambridge, 1997.

[20] R. Moot. Proof Nets for Linguistics Analysis. PhD thesis, UiL OTS, Utrecht University, 2002.
[21] G. Morrill. Type Logical Grammar. Dordrecht:Kluwer, 1994.
[22] R. Thomason, editor. Formal Philosophy: Selected papers of Richard Montague. Yale University

Press, New Haven, 1974.
[23] A. Stechow. Topic, Focus and Local Relevance. In W. Klein and W. Levelt, editors, Crossing the

Boundries in Linguistics. Dordrecht: Reidel, 1981.
[24] A. Szabolcsi and F. Zwarts. Weak islands and a algebraic semantics for scope taking. In A. Szabolcsi,

editor,Ways of Scope Taking, pages 217–262. Kluwer, 1997.

Received 16 January 2001

