Integrity Constraints Revisited
(Preliminary version)

Robert Demolombe Andrew Jones
ONERA/CERT Department of Philosophy
Toulouse University of Oslo

June 25, 1993

1 Introduction

When computerised databases began to be used in business applications, there
naturally arose a concern with how the integrity the stored data could be checked.
This task was implemented by large sets of programs, depending on each par-
ticular application.

Relational DBMS have significantly improved the situation in supporting
automated integrity checking, based on some particular kinds of Integrity Con-
straints (ICs). Despite this significant practical improvement many researchers
realized that the role and status of Integrity Constraints should be defined more
precisely. This question is presently more important since Deductive DBMS pro-
totypes have been implemented, and the justification of the distinctions between
the role played by the rules that are used to derive answers, and the role played
by the rules that are used to check updates, also needs to be clarified.

There are many papers in the literature that discuss such issues as: should
ICs be characterized in terms of syntactical criteria like: atomic facts vs. general
rules, or Horn clauses vs. non Horn clauses?, How are IC violations to be formally
characterized? What is the intuitive interpretation of IC violations? What is an
ICs epistemic status?.

The objective of this paper is to try to provide answers to such kinds of
questions. We have tried to understand what the status and role of Integrity

309

Constraints are, and we propose formal definitions and properties to represent
our interpretation. However, algorithms for integrity checking, and any consid-
erations of performance, are outside the scope of this paper.

We start in Section 2 with an analysis, based on a simple example, of the
standard treatment of ICs. Then we recall in Section 3 how Reiter has provided
a clear definition of the epistemic status of ICs with regard to the Database
content. We also show that in his approach the ICs are implictly supported
by statements that are guaranteed to be true. This property is explicit in the
standard view of ICs, and in section 4 we show how the standard view of ICs can
be refined in the light of Reiter’s work. In section 4 are also given formal defini-
tions of the properties that have to be enforced using ICs, namely: Validity and
Completeness. General formal results are presented that can be used to support
techniques to check these properties. Finally in section 5 we propose to split the
overall information involved in Integrity Checking into three components called:
DB, SAF and IC. DB represents a description of the world that is not necessarily
guaranteed to be correct, SAF represents the information about the world that
is guaranteed to be true, and which is used to check violations of Validity or
Completeness, and IC defines the parts of DB for which the property of Validity
or Completeness has to be enforced.

2 Standard view of Integrity Constraints

The standard view of Integrity Constraints in the field of Relational Data Bases
is that ICs represent true statements about the world, and that they are used
to check if there are some false statements in the description of the world stored
in the Data Base DB [?,?, ?, 7, ?].

To illustrate the role played by ICs, we consider a very simple example,
where DB is a First Order Theory, whose language is defined from the predicate

expressions: p(x), m(x) and w(x), whose respective meanings are: x is a person,
x is 2 man, and x is a woman.

The set of Integrity Constraints IC for DB is the set of sentences:
IC1: Vx(p(x) — m(x) V w(x))
IC2: Vx(m(x) A w(x) —)

IC3: Vx(m(x) — p(x))

310

and the Database content is:
DB = { p(a), m(b), w(b), m(c) }

In this DB state the constraint IC2 is said to be violated because we have:

DBF m(b)A w(b) and IC2F —(m(b) A w(b))

Indeed, the inconsistency between IC2 and DB shows that there is something
wrong.

Since it is implicitly assumed that Integrity Constraints are true in the world, .
the standard interpretation of the inconsistency is that either m(b) or w(b) is
false in the world, and this observation suggests that one of them should be
removed from DB.

The DB content is also considered as unacceptable with regard to the fact
m(c) and IC3. Indeed, if the question: “is p(c) true ?” is asked of DB, the
answer will be: “we don’t know”, while from DB and IC3, it is known by the
system that the answer is: “yes”. In formal terms we have:

" DB¥p(c) and DB,ICF p(c)

This situation is interpreted, in the standard view, as a lack of information
in DB, and this suggests that p(c) should be inserted in DB.

The DB content can be shown to be unacceptable in a different way if CWA
[?] is assumed. Under this assumption we have:

CWA,DB F m(c)A-p(c) and ICF m(c)— p(c)

In that case we have an inconsistency, and it is more obvious that the DB
content is unacceptable. Nevertheless the reason why it is not acceptable is dif-
ferent. The inconsistency, here, is caused by the CWA which allows the inference
of =p(c) from DB. In informal terms, the CWA has the same effect as inserting
-p(c) in DB. But this “insertion” leads to an inconsistency, and this suggests
that —p(c) should be “removed”. However, in the context of CWA, either p(c)
or =p(c) is derivable from DB, and to “remove” —p(c), p(c) has to be inserted.

311

We see that whether or not CWA is adopted we are lead to the same con-
clusion, that is: p(c) should be inserted.

A similar situation arises with the fact p(a). Since, we have:

DB l/m(a) VvV w(a) and DB,ICt m(a)V w(a)

the sentence m(a) V w(a) should be derivable from DB. In the context of a
standard Relational Database that suggests that either m(a) or w(a) should be
inserted in DB. We get the same conclusion if the CWA is adopted, because the
CWA plays the same role as “inserting” -m(a) and -w(a), and p(a) A ~m(a) A
—w(a) is inconsistent with IC1. So, to remove this inconsistency, either m(a) or -
w(a) should be inserted.

This example shows that a DB state may be unacceptable because it is
inconsistent with Integrity Constraints, or because different answers to a query
will be given depending on whether or not the ICs are used. In the latter case, if
a sentence p can be infered from: DBUIC, and cannot be infered from DB alone,
then the sentence -p can be derived from: CWA U DB, and CWA UDB UIC is
inconsistent. The explanation of the inconsistency is that the “insertion” of —p,
due to CWA, inserts false information.

We have seen that inconsistencies can be interpreted in different ways. Some-
times they indicate that false facts are in DB which have to be removed; some-
times, they indicate a lack of information in DB, and some facts have to be
inserted. In the literature there are several proposed definitions for Integrity
Constraint violation. For some authors there is a violation if IC U DB is not
consistent, for others there is a violation if IC is not a logical consequence of
DB. Notice that the two definitions are equivalent if CWA is assumed.

From this analysis of the standard view of Integrity Constraints we can con-
clude that two questions need clearer answers: what is the epistemic status

of Integrity Constraints ? And: how are Integrity Constraint violations to be
interpreted ?,

3 Reiter’s view of Integrity Constraints

In his paper: “What should a Database know?” [?], Reiter proposes a clear
answer to the question of the status of Integrity Constraints. In his view the Data

312

Base DB is a set of statements about the world, that are formally represented by
First Order sentences, and the ICs are a set of statements about the DB content
that are formally represented by First Order Epistemic sentences, where the
epistemic modality K is formalized by the KFOPCE Logic defined by Levesque
[?]. Sentences of the form: Kp are intended to mean: the Data Base DB believes
that p holds.

The epistemic sentences allow one to impose constraints about what DB
believes. For instance the Integrity Constraints IC1, IC2 and IC3 can be refor-
mulated as:

KIC1: Vx(Kp(x) — Km(x) V Kw(x))

KIC2: Vx(Km(x) A Kw(x) —)

KIC3: ¥x(Km(x) — Kp(x))

The Data Base DB is represented as in the standard approach:

DB = { p(a), m(b), w(b), m(c) }

The intuitive meaning of the constraint KIC1 is that if DB believes that
some X is a person, then either it should believe that x is a man, or it should
believe that x is a woman. That is, a DB state where there is some person “in”
DB such that DB ignores if he/she is a man or a woman is not acceptable. The
role of this constraint is to prevent DB ignorance about the sex of people. The
constraint KIC3 plays a similar role.

The constraint KIC2 plays a different role. It prevents DB states where DB
believes that some person is both a man and a woman. The reason is that we
know that in this situation one of these two DB beliefs is not true in the world.

Roughly speaking there are constraints to prevent the lack of DB beliefs,
and there are others to prevent false DB beliefs. From a technical point of
view the two cases lead to inconsistencies in the KFOPCE Logic, even if CWA is
not assumed. Indeed this Logic has the following property. If p is a First Order
sentence, we have:

DBj~ Kp if DB + p
DB|~ -Kp iff DB I/ p

where: DB|~ Kp means that Kp logically follows from DB in the KFOPCE

313

Logic.

In this framework, a DB state is acceptable iff DB} IC holds. In the example
we have: DB|~ Kp(a) A ~-Km(a) A ~Kw(a); then IC1 is violated, and since we
have: DB|~ Km(b) AKw(b), IC2 is also violated. Though the two violations are
represented by the same formal property, i.e. an inconsistency, they have two
different interpretations. For this reason we think that even if Reiter proposes a
clear answer to the question: what is the status of Integrity Constraints ?, the
answer to the question: how are Integrity Constraint violations to be interpreted
? has to be refined.

Another issue that needs clarification in his approach is the justification
of integrity constraints. It is clear that integrity constraints are constraints
about the DB content, not about the world. Nevertheless they are supported by
true beliefs about the world. For example the constraint: KIC1: Vx(Kp(x) —
Km(x) V Kw(x)) is supported by the fact that we know that: Vx(p(x) — m(x)V
w(x)) is true in the world. So the question: how are Integrity Constraints
supported ? needs clarification.

4 Refinement of the Standard view

We want to exhibit the kind of role Integrity Constraints are intended to play
in regard to checking some properties of the DB content. The properties to be
checked have been defined, in the context of standard Relational Data Bases,
by Motro in his paper: “Integrity = Validity + Completeness”. The formal
definitions of these properties we present in this paper are more general, in the
sense that DB can be any kind of First Order Theory, and that their logical
definitions allow one to reason about them. For example, in the formalism
presented below it is possible to demonstrate how the Validity of a conjunction
is related to the Validity of its conjuncts.

From an intuitive point of view we say that DB is Valid vis-a-vis a sentence
p if, whenever DB believes p, then p is true in the world, and we say that DB

is Complete vis-a-vis p if, whenever p is true in the world, then p is believed by
DB.

For the definition of these properties we define DB as a consistent First Order
Theory, and from DB we define DBB, the set of DB beliefs as:

314

DBB = {Bp : DB+ p}u{-Bp : DBV p}

where B is defined by the Logic KD45 [?].

Let W be a First Order Theory that has a unique model (up to an isomor-
phism). W is intended to represent the world. The concepts of Validity and
Completeness are formally defined by the definitions 1 and 2.

Definition 1: Validity of DB vis-a-vis a sentence p.

Let W and DBB be the representations of the world, and of the DB beliefs,
respectively; we say that the sentence p is Valid, with respect to W and DB, iff .
W,DBB |- Bp — p holds.

In formal terms we have:

Val(W,DB,p) iff W,DBB + Bp — p.

Notice that Bp — p is logically equivalent to -Bp V p. As a conscquence,
DB is valid vis-d-vis p whenever ~Bp belongs to DBB. In informal terms,
Val(W,DB,p) holds whenever DB has no opinion about p.

Invalidity is defined by:

Inval(W,DB,p) iff W,DBB F (Bp) A -p

The Propertyl shows that Invalidity, as it is defined, corresponds to the
opposite property of Validity.

Property 1:
Inval(W,DB,p) holds iff Val(W,DB,p) does not hold 1.

The definition of Validity can be extended to open formulas, of the form
P(x), with free variable x. In that case the definition says that all the instances
of p(x) are Valid:

Val(W,DB,p(x)) iff W,DBB F Vx(Bp(x) — p(x))

The same extension holds for Invalidity:

'Proofs of all the presented properties are given in the Appendix

315

Inval(W,DB,p(x)) iff W, DB F 3x(Bp(x) A -p(x))
The definition of Completeness is quite similar to Validity.
Definition 2: Completeness of DB vis-a-vis a sentence p.

Let W and DBB be the representations of the world, and of the DB beliefs,
respectively; we say that the sentence p is Complete with respect to W and DB
iff
W,DBB I p — Bp holds.

In formal terms we have:

Comp(DB,W,p) iff W,DBB } p — Bp.

Notice that p — Bp is logically equivalent to ~p V Bp. As a consequence,
DB is Complete vis-a-vis p, provided p is not true in the world, even if DB has
no opinion about p,

Incompleteness is defined hy:

Incomp(DB,W,p) iff W,DBB+ p A -Bp

The Property2 shows that Incompleteness, as it is defined, corresponds to
the opposite property of Completeness.

Property 2:

Incomp(W,DB,p) holds iff Comp(W,DB,p) does not hold.

As for Validity, extensions of the definitions to open formulas lead to:

Comp(DB,W,p(x)) iff W,DBB | Vx(p(x) — Bp(x)).

Incomp(DB,W,p(x)) iff W,DBB F 3x(p(x) A =Bp(x))

If W and DB are clearly defined in a given context, Val(W,DB,p), In-
val(W,DB,p), Comp(W,DB,p), and Incomp(W,DB,p), are respectively abbre-

viated to: Val(p), Inval(p), Comp(p) and Incomp(p).

We have proved that the following properties hold for Validity and Com-
pleteness.

316

Properties of Validity:

The properties listed below show how the concept of Validity behaves with
respect to the logical connectives. Some of them, like for example Property V.4,
are a bit surprising. In fact they can be understood if we keep in mind the
specific logical properties of the belief modality and the fact that Validity is
defined in the conditional form: Bp — p. So, for instance, for (V.4), the fact
that Val(pVq) is not entailed by the conjunction of the two conditional sentences
Bp — p, Bq — q, turns essentially on the fact that B(p V q) = (pVq) is not
valid.

As a shorthand, in the following, connectives in the meta language are de-
noted like connectives in the object language. For example “Val(p) and Val(q)”
is denoted “Val(p) A Val(q)”. '

(V.1) Val(p) A Val(q) = Val(p Aq)

(V.2) Val(p vV q) = Val(p) v Val(q)

(V.3) Inval(p A q) = Inval(p) V Inval(q)

(V.4) Val(p) A Val(q) # Val(p V q)

(V.5) Val(p) # Val(-p)

(V.6) Val(pvq) # Val(p)

(V.7) Val(p Aq) # Val(p)

Properties of Completeness:

(C.1) Comp(p) A Comp(q) = Comp(p A q)
(C.2) Comp(p) A Comp(q) = Comp(pV q)
(C.3) Incomp(pVq) = Incomp(p) V Incomp(q)
(C4) Incomp(p Aq) = Incomp(p) V Incomp(q)
(C.5) Comp(pAq) # Comp(p)

(C.6) Comp(p) # Comp(-p)

317

(C.7) Comp(pVvq) # Comp(p)

(C.8) Comp(pVvgq) # Comp(p)V Comp(q)

Properties of Validity and Completeness:
(VC.1) If DB is consistent: Comp(—~p) = Val(p)

(VC.2) If DB is complete: Val(p) => Comp(-p)

5 Refinement of Reiter’s view

The definitions of Validity and Completeness we have presented in the previous
section refer to W, but one may note that usually a system does not know how
things are in the world, unless the system is told that such and such part of DB
are true of the world. This is the case for what, in the standard view, are called
Integrity Constraints. In fact ICs can be used to check the properties of Validity
or Completeness because they are guaranteed to be true in the world. Indeed,
in the standard view, it is assumed that we have: W I IC.

According to Reiter’s view it is not appropriate to identify Integrity Con-
straints with sentences that have the property of being true description of the
world. For this reason, in the following, we call SAF the set of sentences that are
known by the system to be true of the world. So, SAF has the formal property:

W I SAF

In other words, DB represents a set of beliefs of the system, and SAF a
set of true beliefs of the system. From a theoretical point of view, SAF is
a subset of DB, because true beliefs are beliefs. However for technical reasons,
the two sets of beliefs, DB and SAF, may be managed in two different ways. In
particular, for query evaluation, a Relational DBMS cannot use rules, and DB
is restricted to a set of atomic facts, and for a Deductive Relational DBMS of
DATALOG type, DB is restricted to be a set of Horn clauses. In these cases only
part of SAF is included in DB for query evaluation, and the overall content of
SAF is used for Integrity Constraint checking. In the case where the system has
the same deductive capabilities as a general theorem prover, SAF is included in
DB.

318

In this new approach, the same example, in the context of a Relational
DBMS, is represented by:

SAF = { ¥x(p(x) — m(x) V w(x)), Vx(m(x) A w(x) =), Vx(m(x) — p(x)) }

DB = { p(a), m(b), w(b), m(c) }

In the context of DATALOG it is represented by:

SAF = { ¥x(p(x) = m(x) V w(x)), Vx(m(x) A w(x) —), Vx(m(x) - p(x)) }

DB = { p(a), m(b), w(b), m(c), ¥x(m(x) — p(x)) }

According to Reiter’s view Integrity Constraints are statements about DB,
but, to be more specific, we propose to make explicit the properties of DB content
we want to enforce. Then IC defines the part of DB content for which properties

of Validity or Completeness have to be enforced . For instance, with the same
example, we may have:

IC = { Val(p(x)), Val(m(x)), Val(w(x)), Comp(m(x)), Comp(w(x)) }
The intuitive meaning of IC is that, in any state of W and DB, all the
sentences of the form: p(x), m(x), and w(x), should be Valid, and that all the

sentences of the form: m(x), and w(x), should be Complete,

The following properties give a method for checking Validity or Complete-
ness.

Property 3: Validity checking

From DBB I Bp and SAF F —p, we can infer =Val(p).

Property 4: Completeness checking

From DBB + -Bp and SAF F p, we can infer =Comp(p).

The Properties 3 and 4 allow one to check whether or not properties of the
form Val(p) or Comp(p) in IC are violated, depending on the content of SAF

and DB.

Another formulation of Property 4 might be to have the premiss: DB I/ p,
instead of: DBB F ~Bp. This formulation shows that, in the standard view of

319

IC, a violation of a constraint about Completeness would not lead to a formal
inconsistency, as is the case in the proposed view.

Property 5: Validity and Completeness checking.
From DBB + Bp A ~Bq and SAF - p — q we can infer ~Val(p) V ~Comp(q).

The Property 5 can be easily extended to the case where p is the conjunction
of several sentences, and q is the disjunction of several sentences.

Property 6: General Validity and Completeness checking.

From DBBF B(py A...Apm)A-B(q: V...V qn), and:
SAFFpPiA...ADPm — q1 V...V qn We can infer:
~Val(p1) V...V ~Val(py) V =Comp(q;) V ...V ~Comp(qy).

One may note that Properties 3, 4 and 5 are particular cases of Property 6
where n and m take the value 0 or 1.

In the case where SAF is included in DB, Properties 3 to 6 are of no interest
because the premisses of the properties are never satisfied. For example, for
Property 3, if SAF is included in DB, from the premiss SAF F -p we infer
DB F -p, and from DBB Bp, we infer DB + p. That means that DB would
be inconsistent. In the case of Property 5, if SAF is included in DB, from the
premiss SAF - p — q we infer DB+ p — q and DBB + B(p — q). From the first
premiss we have DBB I Bp, and then we have DBB Bq, which is inconsistent
with DBB I -Bq.

However, even if SAF is included in DB, the following Property 7 can be
used to check Validity or Completeness.

Property 7: General Validity and Completeness checking.

From DBBF B(p1 A...Apm)A-B(q1)A...A-B(qn), and:
SAFFpP1A...APm — q1 V...V qy We can infer:
=Val(p1) V...V ~Val(py) V =Comp(q;) V...V =Comp(qy).

If, from a given W and DB, we can infer some sentence about Val and Comp
which is inconsistent with IC, this DB state is not acceptable, and we know

the property that is violated.

For instance, in the same example (above page 11), from the definition of

320

SAF it follows immediately:
SAF F p(a) — m(a) v w(a)
and from DBB we can infer:

DBB I Bp(a) A =B(m(a) V w(a)), because we have: DB + p(a),
and:DB i/ m(a) vV w(a).

Then, from Property 5 we have: Inval(p(a)) V Incomp(m(a) vV w(a)); using
(C.3) we derive: Inval(p(a)) vV Incomp(m(a)) V Incomp(w(a)), and this is equiv-
alent to: —(Val(p(a)) A Comp(m(a)) A Comp(w(a))), which is inconsistent with
IC, where we have: Val(p(x)) A Comp(m(x)) A Comp(w(x)). Here, rejection of
the DB state can be interpreted as: either p(a) is not true in the world, or one -
of the two sentences m(a) or w(a) is missing in DB.

It is interesting to note that in Reiter’s approach the inconsistency with IC1
does not suggest that the violation may be due to the fact p(a) is not Valid.

6 Violation of Integrity Constraints

We return to the above example in which:

SAF = { Vx(p(x) — m(x) v w(x)), Vx(m(x) A w(x) =), Vx(m(x) — p(x)) }
and

IC = { Val(p(x)), Val(m(x)), Val(w(x)), Comp(m(x)), Comp(w(x)) }

We have made explicit here the constraints about the Validity of p(x), m(x)
and w(x). However, for any application it should be implicit that for any sentence
P the constraint Val(p) is in IC. Indeed, we cannot imagine a situation where
the system knows that p is false (SAF F —p), and it also believes p (DB I p).
Moreover we should have Val(p) in IC for any sentence, not only for atomic
facts, because, for example, the constraints Val(m(x)) and Val(w(x)) do not
entail Val(m(x)V w(x)) (see V.4).

Suppose that initially the DB contains no information about the specific
individual a (for instance we can consider that DB is empty), and consider a
class of situations in which, were the formula p(a) to be inserted into DB, one

321

or more ICs would be violated. We distinguish four members of this class:

(i) W p(a) and p(a) ¢ SAF.

(ii) W F -p(a) and p(a) ¢ SAF.
(ili) W I p(a) and p(a) € SAF.
(iv) W I -p(a) and ~p(a) € SAF.

Consider first (i). From SAF it follows that W p(a) — m(a) V w(a), and
thus W I m(a) v w(a) (since, by (i), W F p(a)). Since W is a complete theory
it follows that either W I m(a) holds, or W + w(a) holds.

Since DB I/ m(a) and DB i/ w(a), it follows that DBB F —Bm(a) and
DBB - -Bw(a). Thus W,DBB I m(a) A ~Bm(a) or W,DBB I- w(a) A ~Bw(a).
Hence, either ~Comp(m(a)) or ~Comp(w(a)). So one of the last two members -
of the set IC must be violated.

Note that it follows directly from SAF and the definition of Comp, that
either Comp(m(a)) or Comp(w(a)), simply because SAF requires that —m(a)
or =w(a) is true, since Vx(-m(x) V =w(x)) is in SAF, and what follows from
SAF follows from W, and thus from W,DBB. In general from SAF={-p} we
can infer Comp(W,DB,p) whatever is in DB. There is nothing odd here if we
keep in mind that Comp(W,DB,p) requires something about DB only in those
situations where W I p holds.

Compare this outcome with what happens when the formula m(a), rather
than p(a), is inserted into the intially empty DB (and suppose that W m(a)).

Since SAF F -(m(a) A w(a)), it follows that W + —w(a). Hence, since
DBB F Bm(a) A ~Bw(a}), we have W,DBB + Bm(a) A m(a) A ~Bw(a) A ~w(a).
So that, now, neither Comp(m(x)) nor Comp(w(x)) is violated.

If, however, Comp(p(x)) were to be added to IC, we would again have a
violation. Since SAF F m(a) — p(a) and W + m(a) it follows that W F p(a).
But DBB + -Bp(a). Hence W,DBB I p(a) A =Bp(a), i.e. “Comp(p(a)).

However, though the constraint Comp(p(x)) is violated, only an agent who
knows what W is can know that there is a violation. An agent who only
knows SAF and DB (for instance the DB management system) cannot know
that ~Comp(p(a)), even if ~Comp(p(a)) holds. That means that to detect all
the violations one has to know what W is. This is because the notions of Com-
pleteness and Validity refer to the links between W and DB, and usually one
has only a partial knowledge of what W is. It is the role of SAF to represent
this partial knowledge, and the distinction between W and SAF, in the formal-

322

ization, allows to distinguish what is true of the world, and what is known by
the system to be true of the world.

Return now to our original scenario, where p(a) is to be inserted into an
initially empty DB, and consider case (ii), where W F —p(a). Since DBB +
Bp(a), we have W,DBB + Bp(a) A -p(a) and this means ~Val(p(a)), i.e. there
is a violation of the first member of IC. Note that like for (i) this violation is not
known by the system. None of the other members of IC is violated, however.

We move on next to case (iii), where p(a) € SAF. Since W I p(a), the
argument applying to (i) also applies here, and we see that one of the last two
members of IC must be violated. The difference between (i) and (iii) is that in
(iii) the violation is known by the system, because it can be derived from SAF
and DB. A practical consequence is that in (jii) there is a choice for the system
to enforce or not insertion of p(a), while in (i) the insertion is always performed
because the system cannot detect the violation.

Finally, as regards cases of type (iv), the outcome is as it was for (ii): the
first member of IC, but none of the other can be shown to be violated, but the
difference between (ii) an (iv), is that in (iv) the system can detect the violation.

If we now change the basic assumptions, and add the supposition that SAF C
DB, we may ask whether this will have any consequences for cases (iii) and (iv).
(It clearly will not for (i) and (ii)). As regards case (iii), we still get violation
of the last two members of IC (and no others), so the situation is unchanged
with respect to violation. It is, however, worth noting that the supposition that
SAF C DB yields the following:

DBB - B(p(a) = m(a) vV w(a)) A Bp(a) A B(-m(a) V ~w(a)).

Hence (from KD45) DBB + B(m(a) V w(a)) A B(-m(a) V ~w(a)). This is
perfectly compatible with the fact that we also have: DBB I ~Bm(a) A ~Bw(a).
The situation is that the DB is aware that a is either a2 man or a woman, 1s
aware that a is not both a man and 2 woman, but yet is not aware of which sex
a is. Since in fact a is either m or w (because a is a person), the DB violates
ICs requirement of completeness vis -a-vis sentences “m(a)”, “w(a)”. i

As regards situations of type (iv), the consequence of accepting SAF C DB
will simply be that the database contains ~p(a), and thus the insertion of p(a)

would produce an inconsistent database.

Assumptions and conclusions corresponding to the four cases we have anal-
ysed are summarised below.

323

For every cases:
IC = { Val(p(x)), Val(m(x)), Val(w(x)), Comp(m(x)), Comp(w(x)) }.

¢ Case (i):

- Wt p(a).

- DB={p(a)}

— SAF = { Vx(p(x) = m(x) V w(x)), Vx(m(x) A w(x) =),
Vx(m(x) — p(x)) }.

~ Violation of Comp(m(a)) or Comp(w(a)).

— The violation cannot be detected by the system.

e Case (ii):

- W -p(a).

— DB={p(a)}

— SAF = { Vx(p(x) — m(x) V w(x)), Vx(m(x) A w(x) —),
Vx(m(x) — p(x)) }.

— Violation of Val(p(a)).

— The violation cannot be detected by the system.

¢ Case (iii):

— W p(a).

— DB={p(a)}

~ SAF = { p(a), Vx(p(x) » m(x) V w(x)), Vx(m(x) A w(x)),
Vx(m(x) — p(x)) }.

— Violation of Comp(m(a)) or Comp(w(a)).

—~ The violation can be detected by the system.

— The system has the choice to enforce or not the insertion of p(a).
¢ Case (iv):

- Wt =p(a).

— DB={p(a)}

— SAF = { -p(a), ¥x(p(x) = m(x) V w(x)), Vx(m(x) A w(x) —),
Vx(m(x) — p(x)) }.

— Violation of Val(p(a)).

— The violation can be detected by the system.

— The insertion of p(a) has to be rejected.

324

7 Conclusion

We have presented a new approach to Integrity Constraints that allows explicit
representation of the properties of Validity and Completeness that have to be
enforced for some parts of the Database. These properties are formally defined
in the framework of a Doxastic Logic, and we have presented formal results that
allow IC violations to be interpreted as violations of Validity, or as violations of
Completeness. The first kind of violation indicates the false sentences that have
to be removed, and the second indicates the missing sentences that have to be
inserted.

We have shown that the explicit distinction between beliefs that are guaran-
teed to be true, represented by SAF, and other beliefs that are not guaranteed -
to be true, represented by DB, allows a system that knows both SAF and DB
to detect some Integrity Constraint violations. The distinction between infor-
mation that is true of the world, represented by W, and SAF, allows one to
distinguish between, on the one hand, DB beliefs that are also true of the world,
formally represented by DBB - Bp and W I p, and, on the other hand, DB be-
liefs that are known by the system to be true of the world, formally represented
by DBB F Bp and SAF F p.

However one might wish for a more precise definition of the epistemic status
of the SAF content. We think that an answer to this question can be found in
our work on safe information (?]. In this work a safe sentence p is, by definition,
a sentence such that a particular agent, called the administrator, knows that if
p has been inserted in DB by a reliable agent, then p is true of the world.In
future work we intend to follow up this line of investigation.

In section 6, we have also shown that in some circumstances the system may
know that an insertion leads to an Integrity Constraint violation, and it has the
choice, in the case of Completeness violation, as to whether or not to enforce
the insertion. The possibility that the system may have a choice of response to
IC violation calls for a distinction to be made between “hard” ICs, violation of
which will never be allowed by the system, and “soft” ICs, for which the system
might tolerate violation.For example, in a particular application, it might be
sensible to define a constraint on completeness regarding specification of level
of salary (for a given class of agents) as a hard constraint, and a constraint on
completeness about telephone numbers (of the same agents) as a soft constraint.
A soft constraint would then be a constraint that it would be desirable for the
system to satisfy, under ideal circumstances. From the practical point of view,
the notion of soft constraint would be likely to be of value only if the system was
required to react in specific ways to instances of violation. There is a potential

325

role here for the application of deontic logic, in characterising more precisely the
concept of soft IC. Deontic logic is particularly concerned with the representation
of reasoning about the distinction between actial and ideal situations, and thus
also with ”reparational” norms which come into force when actual circumstances
deviate from the ideal. We intend to pursue these matters too in the next stages
of this research. The present paper, then, has laid out the groundwork, by giving
a framework in terms of which ICs and their violation may be described.

Acknowledgement: This work has been partially suported by the CEC, in
the context of the Basic Research Action, MEDLAR.

Appendix

Lemma 1: DBB I/ -Bp iff DBB Bp.
Proof: From the definition of DBB we have:
DBBF-Bp iff DBWp

If we take the negation of both propositions we get:

DBBY-Bp iff DBFp

Again from the definition of DBB we have:

DBBF-Bp if DBFp

Therefore we have: DBB Y/ -Bp iff DBBF Bp.
Lemma 2: W U DBB is consistent.

Proof: a sentence p is, or is not, derivable from DB. Therefore either Bp or
-Bp is in DBB, but DBB cannot contain both of them. Then DBB is consistent,
and, from properties of the logic KD45, there exists a Kripke structure M, and
a world w in M, such that any formula of DBB is true in w (this is denoted by
M,w |= DBB), and w is not accessible from itself.

326

Let’s change the assignment of truth values of propositional variables in w,
and only in w, in such a way that W is true in w. This is possible because W is
consistent, and the theory W does not contain formulas with the modal operator
B, except tautologies of KD45. That means that the truth value of any formula .
in W depends only on w.

Let’s call M’ this new Kripke structure. By definition of M’ we have M wkE
W, and since the assignment of truth values of propositional variables in other
worlds than w is unchanged, we have: M’,w |= DBB. This shows that W U DB
is satisfiable, and therefore it is consistent.

Property 1: Inval(W,DB,p) iff not Val(W,DB,p).
Proof: from the definitions of Validity and Invalidity we have:

Inval(W,DB,p) = (1) W,DBB + Bp A -p.
not Val(W,DB,p) = (2) W,DBB I Bp — p.

We first prove that (1) implies (2).

Since Bp — p is equivalent to =(Bp A -p), (2) is equivalent to (3) W,DBB ¥/
-(Bp A -p). From Lemma 2 W U DBB is consistent, therefore (1) implies (3),
and then (1) implies (2).

We now prove that (2) implies (1).

Since Bp — p is equivalent to ~Bp V p, (2) implies (4) W,DBB I/ -Bp V p,
and (4) implies (5) W,DBB I/ -Bp and (6) W,DBB ¥/ p.

Due to monotonicity of our consequence relation, DBB + -Bp implies W, DBB I
—Bp, then, by contraposition, (5) implies (7) DBB ¥ -Bp, and, from Lem-
ma 1, (7) implies (8) DBB + Bp, and, due to monotonicity, (8) implies (9)
W,DBB Bp.

Due to monotonicity we also have (6) implies (10) W ¥ p, and (10) implies
(11) W F —p, because W is a complete theory. From monotonicity (11) implies
(12) W,DBB F -p, and from (9) and (12) we have (1).

Property 2: Incomp(W,DB,p) iff not Comp(W,DB,p).

Proof: The proof is quite similar to the proof of Property 1. We have:

327

Incomp(W,DB,p) = (1) W,DBB I p A =Bp.
not Comp(W,DB,p) = (2) W,DBB i/ p — Bp.

We first prove that (1) implies (2).

(2) is equivalent to (3) W,DBB I/ ~(p A -Bp). From Lemma 2, (1) implies
(3), and then (1) implies (2).

We now prove that (2) implies (1).

We have (2) implies (4) W,DBB I/ -p and (5) W,DBB I/ Bp. Since W
is complete, (4) implies (6) W,DBB + p, and from Lemma 1, (5) implies (7)
W,DBB - =-Bp. Then, (2) directly follows from (6) and (7).

Property 3: DBB I Bp and SAF + —p implies —~Val(p).

Proof: from the property of SAF we have: W I SAF, then SAF F —p implies
W I =p, and W,DBB F —p.

Since we also have DBB Bp, we can infer W,DBB F (Bp) A —p, that is
Inval(p), and from Property 1 we have ~Val(p).

Property 4: DBB } -Bp and SAF I p implies ~Comp(p).
Proof: the proof is very similiar to the proof of Property 3.

From SAF F p we infer W + p, and W,DBB I p. Then we have W,DBB +
p A =Bp, which means Incomp(p). Then we have ~Comp(p).

Property 5: DBB F Bp A -Bq and SAF + p — q implies -Val(p) V
-Comp(q).

Proof: from SAF I p — q we infer Wk p — q, and W F =p V q. Since W is
a complete theory we have (1) W F -p or (2) W I q.

From DBB F Bp A ~Bq we have (3) DBB Bp and (4) DBB + =Bq. From
(1) and (3) we infer ~Val(p), and from (2) and (4) we infer -Comp(q). Therefore
we have —Val(p) V =Comp(q).

Property 6: DBBF B(py A...Apm)A=B(q1 V...V q,) and

SAF F (p1 A ...pm) — (@1 V...V qy) implies ~Val(p;) V ...V ~Val(pm) V
—~Comp(q) V...V ~Comp(q,).

328

Proof: let’s call p the sentence pj A...App, and q the sentence q; V...V gqq.
From Property 5 we have -Val(p) V ~Comp(q). From Property V.3 we have
—Val(p) implies ~Val(p;) Vv ...V -Val(pm), and from Property C.3 we have
—Comp(q) implies ~Comp(q;) V...V -~Comp(qy,). Therefore we have =Val(p,)V
«+.V=Val(py) V ~Comp(q;) V ...V ~Comp(q,).

Property 7: DBBF B(py A...Apm)A-B(q1)A...A=B(qn) and
SAF F (p1 A...Pm) — (q1 V...V qq) implies ~Val(p;) V ...V -Val(pm) V
—~Comp(q1) V...V =Comp(qn).

Proof: from DBB - B(p1 A...Apm)A-B(q1)A...A-B(q,) we have for i in
(1,m] DBB I B(p;), and for j in [1,n] DBB + =B(qg;).

From SAF F (py A ...pm) — (@1V...Vqy) we have: W I —p; or ... or °
Wk -pnorWkgqor...or WF q,.

Then the proof follows as for Property 5.
Property V.1: Val(p) A Val(q) = Val(p Aq).
Proof : let’s call C the theory W U DBB.

From the definition of Validity we have:

Val(p) = (1) CFBp — p
Val(q) = (2) C+ Bq — q.

We have to prove that, in the context of C, (1), (2) and B(p A q) implies
P Aq. Since B(p A q) implies Bp, from (1) we have p. In the same way B(pAgq)
implies Bq, and from (2) we have q. Therefore we have p A q.

Property V.2: Val(p Vv q) = Val(p) v Val(q).

Proof: by contraposition V.2 is equivalent to: =Val(p) A=Val(q) = —~Val(pV
q)-

From the antecedent and from the definition of Invalidity and Property 1
we have (1) C Bp A -p and (2) C F Bq A —q. Then (1) and (2) implies (3)
C+ Bp ABq A -p A =q, and (3) implies (4) C + B(pV q)A~(pV q), which is
Invalid(p V q). Again, from Property 1, we have ~Val(p V q).

329

Property V.3: Inval(p Aq) = Inval(p)V Inval(q).

Proof: by contraposition V.3 is equivalent to : =Inval(p) A -~Inval(q) =
~loval(p A g).

From Property 1, this is equivalent to: Val(p) A Val(q) = Val(p A q),
which is the Property V.1.

Property V.4: Val(p) A Val(q) # Val(p V q).

Proof: we exhibit a counterexample. Let’s consider W and DB defined by:
W = {-p,~q} DB = {pvag}.

In that case we have DBB + -Bp. Then we have DBB + -Bp V p and °

DBB Bp — p. Then Val(p) holds. In the same way we can show that Val(q)
holds.

From the definition of DB we have DBB + B(p V q); but W F =p A —q, so
we have W,DBB F B(pV q) A ~(p V q). This shows that Inval(p V q) holds, and,
from Property 1, Val(p V q) does not hold.

Property V.5: Val(p) 3 Val(-p).

Proof: we can easily show that the following situation is a counterexample:
W = {p} DB = {-p}. Indeed we have DBB + B-p, DBB F —-Bp, and
W Fp.

Property V.6: Val(pvq) # Val(p).

Proof: we can easily show that the following situation is a counterexample:
W = {-p,q} DB = {p}. Indeed we have DBB + Bp, DBB + B(pV q),
Wt -p,and Wk pvaq.

Property V.7: Val(p Aq) 7 Val(p).

Proof: we can easily show that the following situation is a counterexample:
W = {-p,q} DB = {p}. Indeed we have DBB I Bp, DBB -B(p A q),
and W F —p.

Property C.1: Comp(p) A Comp(q) = Comp(p A q).

Proof: the proofis very similar to that for Property V.1. From the definition

330

of Completeness we have:

Comp(p) = (1) CF p — Bp
Comp(q) = (2) C+q— Bq
Comp(pAq) = (3) CH(pAq)— B(pAq).

If, in the context of C, we assume p A q, from (1) we have Bp, and from (2)
we have Bq. Then we have B(p A q).

Property C.2: Comp(p) A Comp(q) = Comp(pV q).
Proof: from the definition of Completeness we have:

Comp(p) = (1) C+p — Bp
Comp(q) = (2) C+q— Bq
Comp(pVq) =(38)CH(pVvq)— B(pVq).

If, in the context of C, we assume p V q, since W is a complete theory, we
have either W I p or W - g; then we have either C I p or C F g, and from (1)
and (2) we have either Bp or Bq. Since Bp implies B(pVq), and Bq also implies
B(p V q), we have B(p V q).

Comment: the basic reason why for Completeness we don’t have the same
property as for Validity (see V.4) is that from the fact that p V q holds in the
world, represented by W, we can infer that either p or q holds in W, while from
the fact that p V q is a DB belief, we cannot infer that either p or q are DB
beliefs; so there is no perfect duality between Completeness and Validity.

Property C.3: Incomp(pV q) = Incomp(p)V Incomp(q).

Proof: this is direct consequence of Property 1 and of the contrapositive form
of C.2.

Property C.4: Incomp(pAq) = Incomp(p)V Incomp(q).

Proof: this is direct consequence of Property 1 and of the contrapositive form
of C.1.

Property C.5: Comp(pAq) # Comp(p).

Proof: we can easily show that the following situation is a counterexample:
W = {p,~q} DB = 0. Indeed we have DBB F B-p, W I p, and

331

WES(pA q).
Property C.6: Comp(p) # Comp(-p).

Proof: we can easily show that the following situation is a counterexample:
W = {-p} DB = 0. Indeed we have DBB I =B-p and W | —p.

Property C.7: Comp(pVq) 7 Comp(p).

Proof: we can easily show that the following situation is 2 counterexample:
W = {p,~q} DB = {pVq}. Indeed we have DBB I B(pVq), DBB + -Bp,
Wtp,and WkEpvVvaq.

Property C.8: Comp(pVq) 7# Comp(p)V Comp(q).

Proof: we can easily show that the following situation is a counterexample:
W = {p,q} DB = {pVq}. Indeed we have Comp(p V q), because we have
Wt pVqand DBBtF B(pVq), and we have neither Comp(p), because we have
W pand DBB | -Bp, nor Comp(q), because we have W + q and DBB + —-Bq.

Property VC.1: If DB is consistent: Comp(-p) = Val(p).

Proof: we prove the contrapositive form of the proposition: -Val(p) =
~Comp(-p).

From Validity definition and Property 1, we have:
-Val(p) = W,DBB + (Bp) A -p, and W,DBB F Bp. We know from Lemma
2 that W U DBB is consistent, then we have W,DBB I/ ~Bp. Due to mono-
tonicity property of our logic we have DBB I/ =Bp, and from Lemma 1 we have
DBB I Bp. From the assumption that DB is consistent we have: DBB ~B-p.
Therefore we have: W,DBB F -p A =B(-p), that is ~Comp(-p).

Property VC.2: If DB is complete: Val(p) = Comp(-p).

Proof: the proof is similar to that proof of Property VC.1. We consider the
contrapositive form of the proposition: ~Comp(=p) = -Val(p).

From the definition of Incomp we have: W,DBB + -p A-~B(-p). From Lem-
ma 2 we know that WU DBB is consistent, then we have W, DBB t/ B(-p), and
from monotonicity DBB I/ B(-p). From the assumption that DB is complete,
we have either DBB + B(-p) or DBB - Bp, then we have DBB F Bp. Finally
we have: W,DBB | (Bp) A —p, that is ~Val(p).

332

References .

(1] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press,
1988.

[2] R. Demolombe and A. Jones. Deriving answers to safety queries. In R.
Demolombe and L. Farifias del Cerro and T. Imielinski, editor, Workshop
Nonstandard Queries and Answers, Toulouse, 1991. ONERA-CERT.

[3] R. Kowalski. Logic for data description. In H.Gallaire and J .Minker, editors,
Logic and Data Bases. Plenum Press, 1978.

[4] H. Levesque. A formal treatment of incomplete Knowledge Bases. PhD thesis,
University of Toronto, 1981.

[5] J-M. Nicolas and K. Yazdanian. Integrity checking in Deductive Databases. _
In H. Gallaire and J. Minker, editors, Logic and Databases. Plenum, 1982.

[6] A. Olivé. Integrity checking in Deductive Databases. In 17tk Int. Conf. on
Very Large Data Bases, 1991.

(7] R. Reiter. Towards a logical reconstruction of relational database theory. In
On Conceptual Modelling: Perspectives from Artificial Intelligence, Databas-
es and Programming Languages. Springer Verlag, 1983.

[8] R. Reiter. What Should a Database Know? Journal of Logic Programming,
To appear.

[9] E. Teniente. El métode dels esdeveniments per a lactualizacid de vistes en
Bases de Dades Deductives. PhD thesis, Universitat Politécinica de Catalun-
ya, 1992,

(10] E. Teniente and A. Olivé. The Events Method for View Updating in De-
ductive Databases. In Int. Conf. on Extending Data Base Technology, 1992.

333

