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Abstract

In the first part of this paper we analyzed finite non-deterministic matrix semantics for propositional
non-normal modal logics as an alternative to the standard Kripke’s possible world semantics. This
kind of modal systems characterized by finite non-deterministic matrices was originally proposed by
Ju. Ivlev in the 70’s. The aim of this second paper is to introduce a formal non-deterministic semantical
framework for the quantified versions of some Ivlev-like non-normal modal logics. It will be shown that
several well-known controversial issues of quantified modal logics, relative to the identity predicate,
Barcan’s formulas, and de dicto and de re modalities, can be tackled from a new angle within the
present framework.
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Introduction

In previous papers (see [10, 11, 12]),1 we analyzed finite non-deterministic matrix semantics for
propositional modal logics as an alternative to the standard Kripke’s possible world semantics,
in order to better understand the modal concepts of ‘necessary’ and ‘possible’ at the proposi-
tional level. This kind of semantics was independently proposed by Y. Ivlev (see [21, 22, 23, 24])
and J. Kearns (see [25]). The aim of this paper, which is the second part of [12], is to introduce
a formal non-deterministic semantical framework for some non-normal first-order modal logics,
based on Ivlev’s approach to propositional non-normal modal logics. In such works, Ivlev in-
troduced several modal systems which do not have the necessitation rule, for instance, weaker
versions of T and S5. The semantics proposed by Ivlev is given by finite-valued Nmatrices
together with the notion of (single-valued) valuations considered by A. Avron and I. Lev in [1]

1Closely related results were independently obtained by Omori and Skurt in [32].
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(which also introduced the terminology non-deterministic matrices/Nmatrices and legal valu-
ations). Thus, Ivlev’s systems constitute one of the earliest antecedents of Avron and Lev’s
non-deterministic semantics.2 The quantified version of the Ivlev-like modal logics presented
here is along the same lines as the non-deterministic semantics proposed in [13] for quantified
paraconsistent logics. As we shall see along this paper, several well-known criticisms to quan-
tified modal logics, relative to the identity predicate, Barcan’s formulas, and de dicto and de
re modalities, can be tackled from a new angle within the present framework.

In Part I of this paper ([12]), Ivlev’s propositional systems were expanded and it was shown,
among other results, that several Ivlev-like modal systems, which are characterized by finite-
valued non-deterministic semantics, can be captured in terms of the modal concepts of nec-
essarily true, possibly true and actually true.3 In particular, the four-valued systems can be
captured by only two concepts: actually true and contingently true.

Now, let us consider the quantified case. In first-order classical logic, a (usually called
Tarskian) structure is a pair A = 〈U, ·A〉 such that U is a nonempty set called the domain
or universe of the structure, in which the individuals of the structure exist. The function ·A

assigns a concrete interpretation for the symbols of the signature. In particular, n-ary predicate
symbols are interpreted as set of n-tuples over U , which is the extension of the predicate in A.4

In Kripke semantics for first-order modal logic, there are at least two universes for that
structure. First, there is a set of worlds and a relation between them. Besides this, the
function A associates to each predicate its extension in a given world. In a constant domain
approach, there is a fixed nonempty set U which states the individuals that exist in every world.
In a varying domain approach, the set U is replaced by a function U(w) that stablishes the
domain of the individuals that exist in the world w.5

Let Tm be the Ivlev’s four-valued version of T, and let us denote by Tm∗ the proposed
quantified version of it. Since the four-valued non-deterministic semantics for Tm can be
described in terms of the concepts of actually true and contingently true, this suggest that the
predicate symbols in a first-order structure A for Tm∗ could be interpreted in terms of two
mappings aA and cA, describing the actual and the contingent extension of P in A. In more
general systems involving six or eight truth-values, which are explained in terms of the modal
concepts of necessarily true, possibly true and actually true, each predicate could be interpreted
in terms of three mappings describing the respective extensions.

The organization of this paper is as follows: Section 1 presents the semantical intuitions
behind the non-deterministic framework for the modal systems proposed here. In Section 2 the
basic four-valued system Tm∗ is introduced, as a possible first-order version of Ivlev’s four-
valued system Tm. As we shall see, at least two possible (non-deterministic) interpretations for
the quantifiers could be considered. Section 3 analyzes some well-known philosophical questions
related to the standard approach to quantified modal logic, showing that some of the criticisms
to quantified modal logics can be can be avoided or better controlled in Tm∗. In particular,
it will be shown that the choice of one or another interpretation for the quantifiers in Tm∗

is related to the distinction between de dicto and de re modalities. In Section 4, first-order
versions of other four-valued, six-valued and eight-valued Ivlev-like modal systems are briefly
discussed. Finally, Section 5 discusses the results presented along the paper as well as some
future lines of research.

2Other antecedents of Nmatrices were proposed by N. Rescher [37], Quine [34], Kearns [25], and J. Crawford
and D. Etherington [15].

3This is closely related to the swap-structures semantics proposed in [14] for some of these systems.
4See, for instance, [30, p. 49] and [16, p. 80–81].
5For constant domains, see [20, p. 243] and [17, p. 95-98]. For varying domains, see [20, p. 278–279] and

[17, p. 101–104].
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1 The semantical intuitions behind (first-order) non-deterministic

modal semantics

According to the brief discussion presented in the Introduction, the four-valued non-deterministic
semantics for Tm can be described in terms of the concepts of actually true and contingently
true, hence the predicate symbols in a structure A for Tm∗ can be interpreted in terms of
two mappings aA and cA. To this end, in this paper we will consider semantical structures
for a non-deterministic four-valued first-order modal logic as being pairs A = 〈U, ·A〉 such that
the interpretation under ·A of function symbols and individual constants is defined as usual
in Tarskian first-order structures. On the other hand, each n-ary predicate symbol P will be
interpreted as a pair PA(P ) = (aA(P ), cA(P )) of subsets of Un.6 The function aA says whenever
a tuple of individuals of the domain actually satisfies or not predicate P . In other words, the
function aA assigns to the predicate P its actual extension in A. In turn, the function cA as-
signs to P its contingent extension in A. It says whenever a tuple of individuals of the domain
contingently satisfies or not predicate P . These two modal concepts produce four modal values
that can be interpreted as follows:

T+: necessarily true;

C+: contingently true;

C−: contingently false;

F−: necessarily false / impossible.

Thus, the interpretation of a given n-ary predicate P in a four-valued structure A as above
gives origin to the following configuration over Un:

aA(P ) cA(P )

T+ C+ C−

F−

The truth-value attached to each of the four areas above is the value assigned to the atomic
formula P (τ1, . . . , τn) when the n-tuple (τA1 , . . . , τ

A
n ) of Un associated to (τ1, . . . , τn) in A belongs

to that area. For instance, P (τ1, . . . , τn) gets the value T+ in A iff (τA1 , . . . , τ
A
n ) ∈ aA(P )\ cA(P ).

In Remark 2.6 it will be shown that this approach is equivalent to consider, for every n-
ary predicate symbol P , a function PA : Un → V4, where V4 is the set of four truth-values
corresponding to the four areas in the figure above.7

In order to better understand the first-order expansion of this semantics in a intuitive way,
let us consider the following sentences as example:

(1) Socrates is mortal

6This idea was inspired on the first-order extension of Kleene’s three-valued logic K3 proposed by Kripke
in [28].

7Observe that the interpretation of predicate symbols as mappings from the domain of a first-order structure
into the domain of an algebra corresponds to what is usually done in the realm of algebraic semantics for first-
order logics.
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The sentence (1) is necessarily true when the individual Socrates is in the actual extension
of the predicate “mortal” but not in the contingent extension of it. But (1) is only contingently
true when Socrates is both in the actual and in the contingent extension of the predicate
“mortal”. If Socrates is not in the actual but is in the contingent extension of the predicate
“mortal”, we say that (1) is contingently false. Finally, if Socrates is neither in the actual nor
in the contingent extension of the predicate “mortal”, we conclude that (1) is impossible.

Consider now the universal sentence:

(2) All are mortals

The sentence (2) will be necessarily true when it is necessarily true for each individual of
the domain. In this case, the actual extension of the predicate “mortal” must coincide with
the domain. Besides, the contingent extension of “mortal” must be empty. The sentence (2) is
only contingently true if: (i) there is at least one individual of the domain that has contingently
the propriety of being mortal; and (ii) each individual of the domain is necessarily mortal or
only contingently mortal. In order to guarantee both conditions, we require that the actual
extension of “mortal” coincides with the domain, but its contingent extension must not be
empty.

We say that (2) is contingently false if at least one individual of the domain has not the
propriety of being mortal. Besides, any individual of the domain could be mortal, that is, they
have contingently the propriety of being mortal. The idea here is that the actual extension of
“mortal” does not coincide with the domain but the union of the actual and the contingent
extension of “mortal” does. Finally, (2) is impossible when it is not possible to at least one
individual to have the propriety of being mortal, that is, at least one thing is not actually neither
contingently mortal. We can state that condition saying that there is at least one individual of
the domain that is not in the union of the actual and the contingent extension of “mortal”.

With respect to equality, consider the sentence:

(3) Phosphorus is Hesperus

In Kripke semantics (with constant or varying domains), proper names refer to the same
individual through all the possible worlds. Because of this, they are called rigid designators. If
two proper names refer to the same individual of the domain in some possible world, they will
refer to the same one through all the possible worlds, that is, equalities are always necessary.8

Conversely — with certain restrictions on the accessibility relation between the worlds in our
Kripkean models — if two proper names refer to different individuals in some possible world,
they will refer to different ones through all the possible worlds. That means, inequalities are
necessary too.9

Those considerations force us to admit that, in Kripke semantics, (3) is either necessarily
true or necessary false, that is, impossible. In this section, we will present an analogous approach
considering first-order version of Ivlev semantic, that is, (3) will receive only two values: the
value “necessarily true” when “Phosphorus” and “Hesperus” refer to the same individual in
the domain; the value “impossible” if they don’t. However, this can be seen as an arbitrary
option. In Subsection 3.1, we will discuss how Ivlev’s semantics can also deal with contingent
identities in a natural way.

8See [29, p. 48]. The sentence (3) is an example given by Kripke in [29, p. 28–29].
9In [20, p. 311], the authors showed also that in Kripkean models in which the relation between possible

world is, at least, reflexive and symmetrical, the following holds:

(x 6≈ y) → �(x 6≈ y).

This proves that in some Kripkean systems not only equalities of any kind (between constants or functions) are
necessary but also that inequalities of any kind are necessary.
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2 The first-order non-normal modal logic Tm∗

In this section the intuitive ideas described in Section 1 will be formalized. Recall that Tm
is one of the (non-normal) propositional modal systems introduced by Ivlev in [23], but also
studied independently by Kearns in [25], and more recently by Omori and Skurt in [32] and
by us in [10, 11, 12]. An outstading feature of Tm is that it is semantically characterized by
a four-valued non-deterministic matrix (or Nmatrix), by using the terminology and formalism
introduced by Avron and Lev in [1] (see also [2]). Thus, Ivlev’s modal logics constitute an early
antecendent of Nmatrices (called quasi matrices by Ivlev in [23]).

2.1 The logic Tm and two ways of defining quantifiers over it

The propositional modal logic Tm is defined over the propositional signature Σ, which con-
sists of the connectives ¬ (negation), � (necessary) and → (implication). Semantically, Tm
is characterized by a four-valued non-deterministic matrix MTm = 〈ATm, D〉 such that ATm =
〈V4, ·

Tm〉 is a multialgebra over Σ (recall [12, Definition 2.1]) with domain V4 = {T+, C+, C−, F−}
and D = {T+, C+} is the set of designated truth-values. From now on the multioperation #Tm

associated to each connective # will be simply denoted by #̃, when there is no risk of confusion.
The connectives of Σ are interpreted in ATm as follows:

x ¬̃x
T+ {F−}
C+ {C−}
C− {C+}
F− {T+}

x �̃x
T+ {T+, C+}
C+ {C−, F−}
C− {C−, F−}
F− {C−, F−}

→̃ T+ C+ C− F−

T+ {T+} {C+} {C−} {F−}
C+ {T+} {T+, C+} {C−} {C−}
C− {T+} {T+, C+} {T+, C+} {C+}
F− {T+} {T+} {T+} {T+}

Disjunction and conjunction can be defined in Tm as follows: α ∨ β := ¬α → β and
α ∧ β := ¬(α → ¬β), while possibility is given as usual by ♦α := ¬�¬α. The corresponding
multioperators are defined in ATm as follows:

x ♦̃x
T+ {T+, C+}
C+ {T+, C+}
C− {T+, C+}
F− {C−, F−}

∨̃ T+ C+ C− F−

T+ {T+} {T+} {T+} {T+}
C+ {T+} {T+, C+} {T+, C+} {C+}
C− {T+} {T+, C+} {C−} {C−}
F− {T+} {C+} {C−} {F−}

∧̃ T+ C+ C− F−

T+ {T+} {C+} {C−} {F−}
C+ {C+} {C+} {F−, C−} {F−}
C− {C−} {F−, C−} {F−, C−} {F−}
F− {F−} {F−} {F−} {F−}

It is easy to see that x ∨̃ y = ¬̃(¬̃x ∧̃ ¬̃y) and x ∧̃ y = ¬̃(¬̃x ∨̃ ¬̃y) for every x, y ∈ V4. That
is, the De Morgan rules are valid in ATm.

In Subsection 2.2 a first-order extension of Tm called Tm∗ will be proposed.10 The se-
mantics of Tm∗ will be given by means of first-order structures A evaluated over the Nmatrix

10The first-order extension of other Ivlev-like modal systems as the ones studied in the first part of this
paper [12] can be done in an analogous way, by means of straightforward adaptations.
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MTm. This approach to first-order logics with a non-deterministic semantics based on Nmatri-
ces was already considered in the literature for several paraconsistent logics known as logics of
formal inconsistency, see [3] and [13]. The latter considers a family of Nmatrices defined over
certain non-deterministic algebras called swap structures. These structures, which generalize
the finite-valued Nmatrices, were developed in [14] for several Ivlev-like modal logics. As we
shall see, the semantics for Tm∗ adapted from [3] and [13] will be equivalent to the semantical
approach informally described in the previous section.

The first step is extending the Nmatrix MTm with a multioperator Q̃4 : (P(V4) − {∅}) →
(P(V4) − {∅}) for every quantifier Q ∈ {∀, ∃}. The idea is that a given valuation over the ex-
tended Nmatrix will choose a value, for a given formula of the form Qxϕ, within the set Q̃4(X),
where X is the set of instances of ϕ(x) over the given first-order structure A.11 Accordingly
to the previous approaches to quantified Nmatrices, which are inspired in algebraic quantified
logics, it is natural that ∀̃4(X) and ∃̃4(X) be defined as the conjunction and the disjunction
of the members of X according to the respective multioperators of ATm. This produces the
following:

X ∀̃4(X)
{T+} {T+}
{C+} {C+}

{T+, C+} {C+}
{C−, C+} {F−, C−}

{C−, C+, T+} {F−, C−}
{C−} {C−}

{C−, T+} {C−}
F− ∈ X {F−}

X ∃̃4(X)
T+ ∈ X {T+}
{C+} {C+}

{C+, F−} {C+}
{C+, C−} {T+, C+}

{C+, C−, F−} {T+, C+}
{C−} {C−}

{C−, F−} {C−}
{F−} {F−}

It is easy to see that ∀̃4(X) = ¬̃∃̃4(¬̃X) and ∃̃4(X) = ¬̃∀̃4(¬̃X), where, for every ∅ 6=
X ⊆ V4, ¬̃X = {¬̃x : x ∈ X}. However, since we are interested in the satisfaction of the
Barcan formulas (see Subsection 3.4), and taking into consideration the semantic intuitions of
the sentence (2) explored in section 1, stricter (deterministic) forms of quantification will be
considered in Tm∗, namely ∀̃d

4 and ∃̃d
4, given by the tables above.

X ∀̃d
4(X)

{T+} {T+}
{C+} {C+}

{T+, C+} {C+}
{C−, C+} {C−}

{C−, C+, T+} {C−}
{C−} {C−}

{C−, T+} {C−}
F− ∈ X {F−}

X ∃̃d
4(X)

T+ ∈ X {T+}
{C+} {C+}

{C+, F−} {C+}
{C+, C−} {C+}

{C+, C−, F−} {C+}
{C−} {C−}

{C−, F−} {C−}
{F−} {F−}

It is easy to see that the deterministic quantifiers correspond, respectively, to the deter-
ministic conjunction and disjunction of the members of X according to the order given by the
chain F− ≤ C− ≤ C+ ≤ T+. Clearly ∀̃d

4(X) = ¬∃̃d
4(¬X) and ∃̃d

4(X) = ¬∀̃d
4(¬X) for every

∅ 6= X ⊆ V4.
As we shall see in Subsection 3.3, in order to analyze the distinction between the de re and

de dicto modalities, both kinds of quantifiers Q̃4 and Q̃d
4 will be relevant.

11For ‘instances of ϕ(x) over A’ we mean the set of denotations of ϕ over the structure A, when x takes all
the possible values in the domain of A, assuming that any variable occurring free in ϕ other than x has ben
interpreted by a given assignment over A. The technical details will be given in Subsection 2.3.
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2.2 The logic Tm∗ and its axiomatics

To our purposes, we will consider first-order modal languages based on the propositional signa-
ture Σ described at the beginning of Subsection 2.1, expanded with the universal quantifier ∀,12

and defined over first-order signatures, which are defined as usual. Thus, a first-order signature
is a collection Θ formed by the following symbols: (i) a non-empty set of predicate symbols
P, with the corresponding arity ̺(P ) ≥ 1 for each P ∈ P;13 (ii) a possible empty set F of
function symbols, with the corresponding arity ̺(f) ≥ 1 for each f ∈ F ; (iii) a possible empty
set of individual constants C. It will also assumed a fixed denumerable set V ar = {x1, x2, . . .}
of individual variables.14

Give a first-order signature Θ, the set Ter(Θ) of terms over Θ is defined recursively as
follows: (i) a variable or a constant is a term; (ii) if f is a n-ary function and τ1, . . . , τn are
terms, then fτ1 . . . τn is a term. The set For(Θ) of well-formed formulas (wffs) is also defined
recursively as follows: (i) for each n-ary predicate P , if τ1, . . . , τn are terms, then Pτ1 . . . τn is
a wff (called atomic); in particular, if τ1 and τ2 are terms then ≈ τ1τ2, which will be written as
(τ1 ≈ τ2), is an atomic wff; (ii) if α is a wff and x is a variable, then (¬α), (�α) and (∀xα) are
also wffs; (iii) if α and β are wffs, then (α→ β) is also a wff; (iv) nothing else is a wff. We will
eliminate parenthesis when the readability is unambiguous.

The following abbreviations will be used in Tm∗: α ∨ β := ¬α→ β (disjunction); α ∧ β :=
¬(α → ¬β) (conjunction); ♦α := ¬�¬α (possibility); ∃xα := ¬∀x¬α (existential quantifier).
Let α be a wff of a first-order modal language For(Θ) over a first-order signature Θ. The
notion of free and bounded occurrences of a variable in a formula, as well as the notion of term
free for a variable in a formula, closed term (that is, without variables) and closed formula (or
sentence, that is, a formula without free occurrences of variables) are defined as usual (see,
for instance, [30]). The set of closed formulas and closed terms over Θ will be denoted by
Sen(Θ) and CTer(Θ), respectively. We write α[x/τ ] to denote the formula obtained from α
by replacing simultaneously every free occurrence of the variable x by the term τ . If α is a
formula and y is a variable free for the variable x in α, α[x ≀ y] denotes any formula obtained
from α by replacing some, but not necessarily all (maybe none), free occurrences of x by y.

Definition 2.1 (da Costa). Let ϕ and ψ be formulas. If ϕ can be obtained from ψ by means

of addition or deletion of void quantifiers,15 or by renaming bound variables (keeping the same
free variables in the same places), we say that ϕ and ψ are variant of each other.

Definition 2.2 (Hilbert calculus for Tm∗). The first-order modal logic Tm∗ is defined by a

Hilbert calculus which consists of the following axiom schemas and inference rules:16

12As discussed in the previous subsection, conjunction ∧, disjunction ∨ and existential quantifier ∃ can be
defined in terms of the other symbols, hence it will be ommited from the list of primitive symbols.

13Indeed, it will be assumed a symbol ≈ for the identity predicate such that ̺(≈) = 2.
14Most part of modal logic manuals — for instance [20], [17] and [19] — do not use function symbols among

the symbols of their first-order modal signature (an exception is [8, p. 241]). However, it is standard the use
of function symbols in first-order signatures for classical logic, see for instance [30, p. 49] and [16, p. 70]. It
seems that this absence in approaches to first-oder modal logic is related to the problem of contingent identities,
as we will discuss in Subsection 3.1. We choose a wider approach by including function symbols, since in this
new semantic the treatment of contingent identities is radically different comparing to Kripkean approach. As
a result, some problems concerning references through the possible worlds will simply disappear.

15That is, a quantifier ∀xα such that x does not occur free in α.
16Recalling that ♦α is an abbreviation for ¬�¬α.
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(Ax1) α → (β → α)

(Ax2) (α → (β → γ)) → ((α → β) → (α → γ))

(Ax3) (¬β → ¬α) → ((¬β → α) → β)

(Ax4) ∀xα → α[x/τ ] if τ is free for x in α

(Ax5) ∀x(α → β) → (α → ∀xβ) if α contains no free occurrences of x

(Ax6) α → β if α is a variant of β

(Ax7) ∀x(x ≈ x)

(Ax8) (x ≈ y) → (α→ α[x ≀ y]) if y is a variable free for x in α

(N=) (x ≈ y) → �(x ≈ y)

(P=) ¬(x ≈ y) → �¬(x ≈ y)

(K) �(α → β) → (�α → �β)

(K1) �(α → β) → (♦α → ♦β)

(K2) ♦(α → β) → (�α → ♦β)

(M1) �¬α → �(α → β)

(M2) �β → �(α → β)

(M3) ♦β → ♦(α → β)

(M4) ♦¬α → ♦(α → β)

(T) �α → α

(DN1) �α → �¬¬α

(DN2) �¬¬α → �α

(BF) ∀x�α → �∀xα

(CBF) �∀xα → ∀x�α

(NBF) ∀x♦α → ♦∀xα

(PBF) ♦∀xα → ∀x♦α

(MP) : β follows from α and α→ β

(Gen) : ∀xα follows from α

The notion of derivation in Tm∗ is defined as usual. We will use the conventional notation
Γ ⊢Tm

∗ α in order to express that there is a derivation in Tm∗ of α from Γ.
As it could be expected, given that the rule of necessitation is not present in Tm∗, this logic

satisfies the restricted version of the Deduction metatheorem (DMT), as usually presented in
first-order logics (see [30]):

Theorem 2.3 (Deduction Metatheorem (DMT) for Tm∗). Suppose that there exists in Tm∗

a derivation of ψ from Γ∪{ϕ}, such that no application of the rule (Gen) has, as its quantified
variable, a free variable of ϕ (in particular, this holds when ϕ is a sentence). Then Γ ⊢Tm

∗

ϕ→ ψ.17

Remark 2.4. It is well-known that normal modal logics admit two different notions of con-

sequence relation with respect to Kripke semantics: the local one and the global one (see, for

17A more general version for quantified classical logic, which also holds for Tm
∗, can be found in [30, p. 67].
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instance, [6, Defs. 1.35 and 1.37]). According to this, given a class M of Kripke models, a
formula ϕ follows locally from a set Γ of formulas if, for any M ∈ M and every world w in
M , ϕ is true in 〈M,w〉 whenever every formula in Γ is true in 〈M,w〉. In turn, ϕ follows
globally from Γ in M if, for any M ∈ M, ϕ is true in 〈M,w〉 for every w whenever every
formula in Γ is true in 〈M,w〉 for every w. From this, DMT holds in a propositional nor-
mal modal logic only for the local (semantical) consequence relation, and this is the perspective
adopted with most normal modal logics, in which a modal logic can be studied simply in terms
of validity of formulas. The same approach is assumed for first-order normal modal logics,
ensuring the preservation of the deduction metatheorem. From the proof-theoretical perspective,
the preservation of DMT even by considering the generalization inference rule (Gen) and the
necessitation rule forces to redefine the notion of derivation from premises in the corresponding
Hilbert calculi for such modal logics. In this way, derivations are represented exclusively in
terms of theoremhood (hence DMT holds by definition). Namely: Γ ⊢ ϕ iff either ⊢ ϕ or there
exist γ1, . . . , γn ∈ Γ such that ⊢ γ1 → (γ2 → (. . .→ (γn → ϕ) . . .)).

Concerning Ivlev-like non-normal modal first-order logics such as Tm∗, DMT holds exactly
under the restrictions imposed in classical first-order logic w.r.t. the application of (Gen) to
the premises. This is a consequence of assuming for Tm∗ (as well as for the other first-order
systems to be considered in this paper) the usual notion of derivation from premises in Hilbert
calculi (which, in the case of first-order logics such as classical first-order logic, only works for
global semantics).18

Another consequence of discarding the necessitation rule in the Ivlev-like systems is that the
Replacement Metatheorem, which holds in every normal modal logic based on (propositional or
first-order) classical logic, is no longer valid. That is, these logic are not self-extensional.19

2.3 Four-valued non-deterministic semantics for the logic Tm∗

In this section a suitable semantics of first-order structures for Tm∗ will be provided, formalizing
the intuitions given in Section 1. As we shall see in Remark 2.6, this semantics follows the lines
of the non-deterministic first-order structures for paraconsistent logics based on Nmatrices given
in [13] which, by its turn, is adapted from the standard algebraic approach to first-order logic.

Definition 2.5. Let Θ be a first-order signature. A first-order structure for Tm∗ is a pair

A = 〈U, ·A〉, such that U is a non-empty set and ·A is an interpretation function for the symbols
of Θ defined as follows:

• For each n-ary predicate P , PA = (aA(P ), cA(P )) such that aA(P ) ⊆ Un and cA(P ) ⊆ Un;
it will be required that aA(≈) = {(a, a) : a ∈ U} and cA(≈) = ∅;

• For each individual constant c, cA is an element of U ;

• For each n-ary function f , fA is a function from Un to U .

Remark 2.6. Within the semantics for first-order languages defined over algebraic structures,

a predicate symbol of arity n is interpreted by means of a function I(P ) : Un → A, where U is
the domain of the semantical structure and A is the domain of a given algebra of truth-values.
This generalizes the standard Tarskian structures in which I(P ) is a subset of Un, which can be
represented by its characteristic function I(P ) : Un → {0, 1}. This approach was adapted in [13]

18Of course it would be possible to consider the notion of derivation from premises in the Hilbert calculi in
which DMT holds by definition, as described above for standard modal logic.

19The Replacement Metatheorem says that if β is a subformula of α, α′ is the result of replacing zero or
more occurences of β in α by a wff γ, then: ⊢ β ↔ γ implies that ⊢ α ↔ α′ (see, for instance [30, p. 72]).
In [32] it was shown that Replacement does not hold, in general, in Ivlev-like systems.



2 The first-order non-normal modal logic Tm
∗ 10

for non-deterministic first-order structures for paraconsistent logics based on Nmatrices over
multialgebras called swap structures. In such framework, a predicate symbol P is interpreted
as a function I(P ) : Un → B where B is the domain of a given swap structure. It is easy to
see that the notion of semantical structures for Tm∗ given in Definition 2.5 is equivalent to the
above mentioned approach. Indeed, let A = 〈U, ·A〉 be a first-order structure for Tm∗. For every
n-ary predicate symbol P let PA : Un → V4 be the function such that P−1

A (T+) = aA(P )\ cA(P );
P−1

A (C+) = aA(P )∩ cA(P ); P−1

A (C−) = cA(P ) \ aA(P ); and P−1

A (F−) = Un \
(
aA(P )∪ cA(P )

)
.

This defines a first-order structure as in [13]. Conversely, let A be a first-order structure for
Tm∗ as in [13], that is: it is an structure as in Definition 2.5, with the only difference that the
n-ary predicates are interpreted as functions PA : Un → V4. Now, define PA = (aA(P ), cA(P ))
such that aA(P ) = P−1

A (T+) ∪ P−1

A (C+) and cA(P ) = P−1

A (C+) ∪ P−1

A (C−). This gives origin
to a first-order structure for Tm∗ as in Definition 2.5. Therefore, both semantical approaches
are equivalent.

Definition 2.7. An assignment over a first-order structure A for Tm∗ is a function s : V ar →

U . Given two assignments s and s′ over A and a variable x, we say that s and s′ are x-
equivalent, denoted by s ∼x s

′, if s(y) = s′(y) for every y ∈ V ar such that y 6= x. The set
of assignments over A will be denoted by A(A). The set of assignments which are x-equivalent
to s will be denoted by Ex(s). If a ∈ U , the assignment s′ ∈ Ex(s) such that s′(x) = a will be
denoted by sxa.

Given A and s, the denotation [[τ ]]As of a term τ in (A, s) is defined recursively as fol-
lows: (i) [[x]]As = s(x) if x is a variable; (ii) [[c]]As = cA if c is a constant; and [[fτ1 . . . τn]]As =
fA([[τ1]]

A
s , . . . , [[τn]]As ). Note that [[τ ]]As ∈ U for every term τ .

Definition 2.8. Given A, a valuation over A is a function v : For(Θ) × A(A) → V4 defined

recursively as follows:

1. For atomic wffs of the form Pτ1 . . . τn,

- v(Pτ1 . . . τn, s) = T+ iff ([[τ1]]
A
s , . . . , [[τn]]As ) ∈ aA(P ) \ cA(P );

- v(Pτ1 . . . τn, s) = C+ iff ([[τ1]]
A
s , . . . , [[τn]]As ) ∈ aA(P ) ∩ cA(P );

- v(Pτ1 . . . τn, s) = C− iff ([[τ1]]
A
s , . . . , [[τn]]As ) ∈ cA(P ) \ aA(P );

- v(Pτ1 . . . τn, s) = F− iff ([[τ1]]
A
s , . . . , [[τn]]As ) ∈ Un \

(
aA(P ) ∪ cA(P )

)
.

2. For atomic wffs of the form (τ1 ≈ τ2),

- v((τ1 ≈ τ2), s) = T+ iff [[τ1]]
A
s = [[τ2]]

A
s ;

- v((τ1 ≈ τ2), s) = F− iff [[τ1]]
A
s 6= [[τ2]]

A
s ;

3. for wffs of the form #α such that # ∈ {¬,�}, then v(#α, s) ∈ #̃v(α, s), where #̃ denotes
the corresponding multioperation of ATm associated to # as described in Subsection 2.1.

4. For wffs of the form (α → β) then v((α → β), s) ∈ v(α, s) →̃ v(α, s), where →̃ denotes
the multioperation of ATm as described in Subsection 2.1.

5. For wffs of the form ∀xα, let X(α, x, v, s) = {v(α, s′) : s′ ∈ Ex(s)} (recall Definition 2.7).
Then v(∀xα, s) ∈ ∀̃d

4

(
X(α, x, v, s)

)
, where ∀̃d

4 is defined as in Subsection 2.1.

6. Let τ be a term free for a variable z in formula ϕ, and let b = [[τ ]]As . Then v(ϕ[z/τ ], s) =
v(ϕ, szb) (recalling the notation from Definition 2.7).

7. If ϕ and ϕ′ are variant, then v(ϕ, s) = v(ϕ′, s) for every s.
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8. If y is a variable free for x in ϕ then v((x ≈ y) → (ϕ→ ϕ[x ≀ y]), s) ∈ {T+, C+}.

Remark 2.9. Recall the sentences (1)-(3) used in Section 1 as motivating examples. Clause

1. in Definition 2.8 intends to capture formally the informal considerations about the sentence
(1) given above. In turn, clause 2. intends to formalize the considerations above about sentence
(3). Clause 5. is the formal counterpart of the considerations about the sentence (2).

The intuition about clauses 3. and 4. was already discussed in [12]. The reader should ask if
those non-deterministic operators, specially with respect to the implication operator, are rather
arbitrary. In some sense, that is true and we agree with that criticism. We think, also, that even
Ivlev would agree with that. Maybe this justifies that he proposed several different modal systems
with respect to the implication operator. Anyway, the multioperator above for the implication is
not completely arbitrary. In [12] we presented some arguments in order to convince the reader
that Ivlev’s multioperator for Tm implication is reasonably natural from an intuitive point of
view. With respect to the negation, we don’t have many options and we showed there that
this operator is the most natural in this context. With respect to the semantical counterpart
of the modal connective �, Ivlev proposed in [23] not only the multioperator described in
Subsection 2.1, but also many others. We choose this one because it does not collapse any
iterations of the modal connective �. In Subsection 3.2 two cases of collapse of modal iterations
will be discussed.

Finally, clauses 6. to 8. are necessary in order to deal within a non-deterministic framework
in a coherent way, as it was already analyzed in [13] for first-order paraconsistent logics. For
instance, the substitution lemma (which is crucial in order to validate (Ax4)) must be guaranteed
by requiring to the valuations to choose in a suitable way, and this is stated by clause 6..

Definition 2.10. Let A be a first-order structure for Tm∗, and let v be a valuation over it.

Then, (A, v) satisfies a wff α if v(α, s) ⊆ {T+, C+} for some assignment s over A. The formula
α is true in (A, v) if it is satisfied by every assignment s. We say that α is valid in Tm∗ if it
is true in every (A, v) . Finally, a formula α is a semantical consequence of a set Γ of formulas
w.r.t. first-order structures for Tm∗, denoted by Γ |=Tm

∗ α, if, for every structure A and every
valuation v, if every γ ∈ Γ is true in (A, v) then α is true in (A, v).

Remark 2.11. The notion of semantical entailment in Tm∗ deserves some comments. Observe

that the standard semantics for first-order classical logic w.r.t. Tarskian structures produces a
unique denotation for formulas, given a structure and an assignment. The same holds for first-
order structures defined over complete Boolean algebras, or over complete Heying algebras for
first-order intuitionistic logic, among other examples of first-order algebraizable logics (see, for
instance, the classical references [35, 36]). In the present non-deterministic semantics, it is
possible to make several choices for the denotation of complex formulas in a given structure,
which are performed by the valuations. This is why the basic semantical environment for Tm∗

is given by pairs (A, v), and so the semantical consequence is given by taking assignments over
such pairs, in order to interpret the free variables. The same situation happens with the non-
deterministic semantics for paraconsistent logics presented in [13].

2.4 Soundness

In this section the soundness of Tm∗ w.r.t. its non-deterministic semantics will be stated.

Lemma 2.12. Let s and s′ be two assignments over A which are x-equivalent. Then, v(α, s) =

v(α, s′) for every formula α in which x does not occur free.

Proof. It can be proved easily by induction on the complexity of α.
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Lemma 2.13. Let s be an assignment and v a valuation over a structure A. Then:

(1) v(∀xα → α[x/τ ], s) ∈ {T+, C+} if τ is a term free for x in α.

(2) v(∀x(α → β) → (α → ∀xβ), s) ∈ {T+, C+} if α contains no free occurrences of x.

(3) v(∀x(x ≈ x), s) = T+.

(4) v((x ≈ y) → �(x ≈ y), s) ∈ {T+, C+}

(5) v(¬(x ≈ y) → �¬(x ≈ y), s) ∈ {T+, C+}.

(6) v(∀x�α → �∀xα, s) ∈ {T+, C+}.

(7) v(�∀xα → ∀x�α, s) ∈ {T+, C+}.

(8) v(∀x♦α → ♦∀xα, s) ∈ {T+, C+}.

(9) v(♦∀xα → ∀x♦α.s) ∈ {T+, C+}.

Proof. (1) Suppose that v(∀xα, s) ∈ {T+, C+}. Then {v(α, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}, by
Definition 2.8(5) and by the definition of ∀̃d

4 given in Subsection 2.1. Let b = [[τ ]]As . Then
v(α[x/τ ], s) = v(α, sxb ), by Definition 2.8(6). Since sxb ∈ Ex(s) it follows that v(α, sxb ) ∈
{T+, C+}, by hypothesis. This means that v(α[x/τ ], s) ∈ {T+, C+} and so v(∀xα → α[x/τ ], s) ∈
{T+, C+}.

(2) Assume that v(∀x(α → β), s) ∈ {T+, C+} and v(α, s) ∈ {T+, C+}. As proved in (1),
{v(α → β, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}. Let s′ ∈ Ex(s). Then v(α → β, s′) ∈ {T+, C+}.
But v(α → β, s′) ∈ v(α, s′) →̃ v(β, s′), and v(α, s′) = v(α, s), by Lemma 2.12 (since x does
not occur free in α). Then v(α, s′) ∈ {T+, C+} and so v(β, s′) ∈ {T+, C+}. From this,
{v(β, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}. This shows that v(∀xβ, s) ∈ {T+, C+}, proving (2).

(3) It is an immediate consequence of the definitions.

(4) Suppose that v((x ≈ y), s) ∈ {T+, C+}. By Definition 2.8(2), v((x ≈ y), s) = T+ and so
v(�(x ≈ y), s) ∈ {T+, C+}, by Definition 2.8(3) and by the definition of �̃.

(5) Suppose that v(¬(x ≈ y), s) ∈ {T+, C+}. By Definition 2.8(2), v(¬(x ≈ y), s) = T+ and so
(as in item (4)) v(�¬(x ≈ y), s) ∈ {T+, C+}.

(6) Suppose that v(∀x�α, s) ∈ {T+, C+}. Then {v(�α, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}. By
definition of �̃ (and by Definition 2.8(3)) it follows that {v(α, s′) : s′ ∈ Ex(s)} = {T+}.
By Definition 2.8(5) and by the definition of ∀̃d

4 it follows that v(∀xα, s) = T+. From this
v(�∀xα, s) ∈ {T+, C+}, which proves (6).

(7) Suppose that v(�∀xα, s) ∈ {T+, C+}. Then v(∀xα, s) = T+ and so {v(α, s′) : s′ ∈
Ex(s)} = {T+}. From this, {v(�α, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}, therefore v(∀x�α, s) ∈
{T+, C+}. This proves (7).

(8) Suppose that v(∀x♦α, s) ∈ {T+, C+}. Then {v(♦α, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}.
By definition of ♦̃ (and by Definition 2.8(3)) it follows that F− 6∈ {v(α, s′) : s′ ∈ Ex(s)}.
By Definition 2.8(5) and by the definition of ∀̃d

4 it follows that v(∀xα, s) 6= F−. From this
v(♦∀xα, s) ∈ {T+, C+}, which proves (8).

(9) Suppose that v(♦∀xα, s) ∈ {T+, C+}. Then v(∀xα, s) 6= F− and so F− /∈ {v(α, s′) : s′ ∈
Ex(s)}. From this, {v(♦α, s′) : s′ ∈ Ex(s)} ⊆ {T+, C+}, therefore v(∀x♦α, s) ∈ {T+, C+}.
This concludes the proof.

Lemma 2.14. Let A be a structure, and v a valuation over it. Then:

(1) If α and α→ β are true in (A, v), so is β.

(2) If α is true in (A, v), so is ∀xα.

Proof. It is an easy consequence of the definitions.

Theorem 2.15 (Soundness). Let Γ ∪ {α} be a set of formulas. Then: Γ ⊢Tm∗ α implies that
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Γ |=Tm
∗ α.

Proof. By definition of valuation, axioms (Ax6) and (Ax8) are true in every (A, v). As it
was proved in [12], all the schema axioms from Tm are valid w.r.t. its four-valued Nmatrix
semantics, so they are also valid in Tm∗. By Lemma 2.13, the rest of the schema axioms from
Tm∗ (not considered above) are also true in every (A, v). By Lemma 2.14, the inference rules
of Tm∗ preserve trueness in a given structure and valuation. From this, and assuming that
Γ ⊢Tm∗ α, it is easy to prove, by induction on the length of a derivation in Tm∗ of α from Γ,
that Γ |=Tm

∗ α.

2.5 Completeness

In this section, the completeness of Tm∗ w.r.t. its structures will be obtained. In order to
do this, the completeness proof for classical first-order logic with equality found in [9] will be
adapted. This adaptation is similar to the one found in [13] for first-order paraconsistent logics.
Other details of the proof will be also based on the proof of completeness of the modal logic
Tm given in [10] and [11].

Definition 2.16. Consider a theory ∆ ⊆ For(Θ) and a nonempty set C of constants of the

signature Θ. Then, ∆ is called a C-Henkin theory in Tm∗ if it satisfies the following: for
every formula ψ with (at most) a free variable x, there exists a constant c in C such that
∆ ⊢Tm∗ ψ[x/c] → ∀xψ.

Definition 2.17. Let ΘC be the signature obtained from Θ by adding a set C of new individual

constants. The consequence relation ⊢C
Tm∗ is the consequence relation of Tm∗ over the signature

ΘC.

As it happens with first-order classical logic, the following result can be obtained for Tm∗:

Theorem 2.18. Every theory ∆ ⊆ For(Θ) in Tm∗ over a signature Θ can be conservatively

extended to a C-Henkin theory ∆H ⊆ For(ΘC) in Tm∗ over a signature ΘC as in Defini-
tion 2.17. That is, ∆ ⊆ ∆H and: ∆ ⊢Tm∗ ϕ iff ∆H ⊢C

Tm∗ ϕ for every ϕ ∈ For(Θ). In addition,
if ∆H ⊆ ∆H ⊆ For(ΘC) then ∆H is also a C-Henkin theory.

Recall (see for instance Part I of this paper [12]) that, given a Tarskian and finitary logic
L = 〈For,⊢〉 (where For is the set of formulas of L), and given a set of formulas Γ ∪ {ϕ} ⊆
For, the set Γ is maximal non-trivial with respect to ϕ (or ϕ-saturated) in L if the following
holds: (i) Γ 0 ϕ, and (ii) Γ, ψ ⊢ ϕ for every ψ /∈ Γ. Observe that if Γ is ϕ-saturated then, for
every wff β: Γ ⊢ β iff β ∈ Γ. In addition, for any wff β: either β ∈ Γ or ¬β ∈ Γ (but not both
simultaneously).

By adapting to Tm∗ a classical and general result by Lindenbaum and  Loś (see [42, Theo-
rem 22.2] and [12, Theorem 4.8]) we obtain the following:

Theorem 2.19. Let Γ ∪ {ϕ} ⊆ For(Θ) such that Γ 0Tm∗ ϕ. Then, there exists a set of

formulas ∆ ⊆ For(Θ) which is ϕ-saturated in Tm∗ and such that Γ ⊆ ∆.

Now, a canonical structure will be defined.

Proposition 2.20. Let ∆ be a set of formulas over a signature Θ which is ϕ-saturated for a

given formula ϕ in Tm∗. Suppose that, in addition, ∆ is a C-Henkin theory for a set C of
constants in Θ. Define over C the following relation: c ∼ d iff ∆ ⊢Tm∗ (c ≈ d). Then ∼ is an
equivalence relation.
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Proof. It is an immediate consequence of the properties of the identity predicate in Tm∗.

For every c ∈ C let c̃ = {d ∈ C : c ∼ d} and U∆ = {c̃ : c ∈ C}.

Definition 2.21. Let ∆, ϕ and C as in Proposition 2.20. The canonical structure A∆ =

〈U∆, ·
A∆〉 is such that:

(a) For each n-ary predicate P , PA∆ = (aA∆(P ), cA∆(P )) is such that:

- (c̃1, . . . , c̃n) ∈ aA∆(P ) iff Pc1 . . . cn ∈ ∆;

- (c̃1, . . . , c̃n) ∈ cA∆(P ) iff ¬(¬�Pc1 . . . cn → �¬Pc1 . . . cn) ∈ ∆.

(b) For each n-ary function symbol, fA∆ is given by fA∆(c̃1, . . . , c̃n) := c̃ where c ∈ C is such
that (fc1 . . . cn ≈ c) ∈ ∆.

(c) For each individual constant c, cA∆ := d̃, where d ∈ C is such that (c ≈ d) ∈ ∆.

Proposition 2.22. The canonical structure A∆ = 〈U∆, ·
A∆〉 is well-defined.

Proof. The proof is an easy adaptation of the one for classical first-order logic, see for in-
stance [9, Lemma 2.12]. With respect to the definition of the functions aA∆(P ) and cA∆(P ),
it is enough to observe that if (ci ≈ di) ∈ ∆ for 1 ≤ i ≤ n then: ϕ[x1/c1, · · · , xn/cn] ∈
∆ iff ϕ[x1/d1, · · · , xn/dn] ∈ ∆, for every formula ϕ whose free variables occur in the list
x1, . . . , xn.

Definition 2.23. Let A∆ = 〈U∆, ·
A∆〉 be the canonical structure for a set of formulas ∆ as in

Definition 2.21. The canonical valuation v∆ over A∆ is defined as follows, for any assignment
s such that s(xi) = c̃i for every i ≥ 1:

(a) v∆(α, s) = T+ iff �α[x1/c1, · · · , xn/cn] ∈ ∆;

(b) v∆(α, s) = C+ iff α[x1/c1, · · · , xn/cn] ∈ ∆ and ¬�α[x1/c1, · · · , xn/cn] ∈ ∆;

(c) v∆(α, s) = C− iff ¬α[x1/c1, · · · , xn/cn] ∈ ∆ and ¬�¬α[x1/c1, · · · , xn/cn] ∈ ∆;

(d) v∆(α, s) = F− iff �¬α[x1/c1, · · · , xn/cn] ∈ ∆,

where the free variables occurring in α belong to the list x1, . . . , xn.

Lemma 2.24. Let A∆ = 〈U∆, ·
A∆〉 be the canonical structure for a set of formulas ∆ as

in Definition 2.21. Then, v∆ is a Tm∗-valuation over A∆. In addition, for every formula
β ∈ For(Θ) such that the variables occurring in it belong to the list x1, . . . , xn, and for every
assignment s such that s(xi) = c̃i for every i ≥ 1: v∆(β, s) ∈ {T+, C+} iff β[x1/c1, · · · , xn/cn] ∈
∆.

Proof. First, observe that v∆ is a well-defined function. It follows by the same arguments
given in the proof of Proposition 2.22, by axiom (T) and by the properties of ϕ-saturated sets,
namely: for every wff β, either β ∈ ∆ or ¬β ∈ ∆ (but not both simultaneously). The fact
that, for every β ∈ For(Θ), v∆(β, s) ∈ {T+, C+} iff β[x1/c1, · · · , xn/cn] ∈ ∆ (for s(xi) = c̃i) is
a consequence of the definition of v∆ and the considerations above. Thus, it suffices to prove
that v∆ satisfies the clauses 1-8 of Definition 2.8. The proof for clauses 1-5 of such definition
will be done by induction on the complexity of the formula α. Observe that, if τ is a term such
that the variables occurring in it belong to the list x1, . . . , xn and s(xi) = c̃i for every i ≥ 1,
then

(∗) [[τ ]]A∆

s = c̃ iff (τ [x1/c1, · · · , xn/cn] ≈ c) ∈ ∆.
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Clause 1: α is an atomic formula of the form Pτ1 . . . τk. Suppose that the variables occurring
free in α belong to the list x1, . . . , xn and s(xi) = c̃i for every i ≥ 1. Let [[τi]]

A∆

s = d̃i for
1 ≤ i ≤ k.

(a) Suppose that v∆(Pτ1 . . . τk, s) = T+. Thus, (�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.
By (T), (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. By (∗), Pd1 . . . dk ∈ ∆. By Defini-
tion 2.21(a), (d̃1, . . . , d̃k) ∈ aA∆(P ) and so ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) ∈ aA∆(P ). Besides,
(�α → (¬�α → β))[x1/c1, · · · , xn/cn] ∈ ∆, since it is an instance of a theorem
of classical logic. Then (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆, by
(MP). So, ¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆, by ∆-maximali-
ty. By reasoning as above, we conclude that ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) /∈ cA∆(P ).

Conversely, suppose that ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) ∈ aA∆(P ) \ cA∆(P ). By reasoning
as above, (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Since ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) /∈ cA∆(P )
then, by ∆-maximality, (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Sup-
pose now that (¬�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. From this we conclude, by
(MP), that (�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. But then, as a consequence of
axiom (T) we get that (¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and so ∆ would be
inconsistent. Thus, (¬�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆ and so, by maximality,
(�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Therefore, v∆(Pτ1 . . . τk, s) = T+.

(b) Observe that v∆(Pτ1 . . . τk, s) = C+ iff

(Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and (¬�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.

In this case ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) ∈ aA∆(P ). Suppose now, by absurd, that

(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.

By (MP), it would follows that (�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. By (T), we
would have (¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and so ∆ would be inconsistent.
From that, we infer that (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆ and,
so, by ∆-maximality, ¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Thus,
([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) ∈ cA∆(P ).

Conversely, suppose now that ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) ∈ aA∆(P ) ∩ cA∆(P ). By rea-
soning as in the previous cases, it follows that (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆
and ¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Now, suppose that
(�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. But

(�Pτ1 . . . τk → (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk))[x1/c1, · · · , xn/cn] ∈ ∆,

since it is an instance of a theorem of classical propositional logic. Thus, by (MP),
we would have that (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and so ∆
would be inconsistent. Hence, (�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆, and so

(¬�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆,

by ∆-maximality. Therefore, v∆(Pτ1 . . . τk, s) = C+.

(c) Note that v∆(Pτ1 . . . τk, s) = C− iff

(¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and (¬�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.

So (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆, by ∆-maximality. Hence, ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) /∈
aA∆(P ). Suppose now that (¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.
As (¬δ → β) → (¬β → δ) is a theorem of classical logic, we have that

(¬�¬Pτ1 . . . τk → �Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.



2 The first-order non-normal modal logic Tm
∗ 16

Hence, (�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Thus, (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈
∆ by (T), and so ∆ would be inconsistent. Therefore,

(¬�¬Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆.

We conclude that ¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆, by ∆-
maximality, and so ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) ∈ cA∆(P ).

Conversely, suppose that ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) ∈ cA∆(P ) \ aA∆(P ). By reasoning
as in the previous cases, it follows that (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆ and
¬(¬�¬Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. By ∆-maximality,

(¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.

If (�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆, then we would have that (¬�¬Pτ1 . . . τk →
�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and so ∆ woud be inconsistent. Hence,

(�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆

and so, by ∆-maximality, (¬�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Therefore, we
conclude v∆(Pτ1 . . . τk, s) = C−.

(d) v∆(Pτ1 . . . τk, s) = F− iff (�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Thus, by (T),
(¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆, by ∆-
maximality. Therefore ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) /∈ aA∆(P ). By (Ax1) and (MP),

(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆.

Since ∆ is consistent, ¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆. From
this, it follows that ([[τ1]]

A∆

s , . . . , [[τk]]A∆

s ) /∈ cA∆(P ).

Suppose now that ([[τ1]]
A∆

s , . . . , [[τk]]A∆

s ) /∈ aA∆(P )∪ cA∆(P ). As above, it is concluded
that (Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆ and also

¬(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆.

Thus
(¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆ and

(¬�Pτ1 . . . τk → �¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆,

by ∆-maximality. If (�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆, then

(Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆,

by (T), and so ∆ would be inconsistent. Thus (�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] /∈ ∆
and so, by ∆-maximality, (¬�Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Hence, by (MP),
(�¬Pτ1 . . . τk)[x1/c1, · · · , xn/cn] ∈ ∆. Therefore, v∆(Pτ1 . . . τk, s) = F−.

Clause 2: α is an atomic formula of the form (τ1 ≈ τ2). As in Clause 1, suppose that the
variables occurring in τ1 and τ2 belong to the list x1, . . . , xn and s(xi) = c̃i for every
i ≥ 1. Let [[τi]]

A∆

s = d̃i for 1 ≤ i ≤ 2.

(a) Suppose that v∆((τ1 ≈ τ2), s) = T+. Thus, (�(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆
and so, by (T), (τ1 ≈ τ2)[x1/c1, · · · , xn/cn] ∈ ∆. Then, (d1 ≈ d2) ∈ ∆ and so
[[τ1]]

A∆

s = [[τ2]]
A∆

s .

Conversely, suppose that [[τ1]]
A∆

s = [[τ2]]
A∆

s . Then, (d1 ≈ d2) ∈ ∆ and so (τ1 ≈
τ2)[x1/c1, · · · , xn/cn] ∈ ∆. Then, by (N=), (�(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆.
Thus, v∆((τ1 ≈ τ2), s) = T+.
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(b) Suppose that v∆((τ1 ≈ τ2), s) = F−. Thus, (�¬(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆.
By (T), (¬(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆. As ∆ is nontrivial,

(τ1 ≈ τ2)[x1/c1, · · · , xn/cn] /∈ ∆.

Hence, (d1 ≈ d2) /∈ ∆ and so [[τ1]]
A∆

s 6= [[τ2]]
A∆

s .

Suppose now that [[τ1]]
A∆

s 6= [[τ2]]
A∆

s . Thus, (τ1 ≈ τ2)[x1/c1, · · · , xn/cn] /∈ ∆ and so
(¬(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆, by ∆-maximality. Then, by (P=), (�¬(τ1 ≈
τ2))[x1/c1, · · · , xn/cn] ∈ ∆. In other words, v∆((τ1 ≈ τ2), s) = F−.

Clauses 3-4: α is of the form ¬β, �β or β → γ. The proof is analogous to the one for Tm
given in [10, Lemma 4] (see also [11, Lemma 4]).

Clause 5: α is of the form ∀xβ. As above, suppose that the variables occurring free in α belong
to the list x1, . . . , xn and s(xi) = c̃i for every i ≥ 1. Assume, without loss of generality,
that x 6= xi for 1 ≤ i ≤ n.

(a) Suppose that v∆(∀xβ, s) = T+. Then, (�∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆. By (CBF)
and (MP) we have that (∀x�β)[x1/c1, · · · , xn/cn] ∈ ∆. Thus, by (Ax4), we have that
(�β)[x1/c1, · · · , xn/cn][x/c] ∈ ∆, for every c ∈ C. This means that v∆(β, s′) = T+

for every s′ ∈ Ex(s). Then, v∆(∀xβ, s) ∈ ∀̃d
4

(
X(β, x, v∆, s)

)
, where the notation is as

in Definition 2.8(5).

(b) Suppose that v∆(∀xβ, s) = C+. Thus, (∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆ and, in addition,
(¬�∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆. By (Ax4), β[x1/c1, · · · , xn/cn][x/c] ∈ ∆ for every
c ∈ C. This means that v∆(β, s′) ⊆ {T+, C+} for every s′ ∈ Ex(s). If v∆(β, s′) = T+

for every s′ ∈ Ex(s) then (�β)[x1/c1, · · · , xn/cn][x/c] ∈ ∆, for every c ∈ C. Let
c ∈ C such that ∆ ⊢Tm∗ ψ[x/c] → ∀xψ, for ψ = (�β)[x1/c1, · · · , xn/cn]. From
this, (∀x�β)[x1/c1, · · · , xn/cn] ∈ ∆. By (BF), (�∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆, hence
∆ would be trivial. This shows that v∆(β, s′) = C+ for some s′ ∈ Ex(s). Then,
v∆(∀xβ, s) ∈ ∀̃d

4

(
X(β, x, v∆, s)

)
, where the notation is as in Definition 2.8(5).

(c) Suppose that v∆(∀xβ, s) = C−. Then,

(¬∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆ and

(¬�¬∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆.

By (PBF), (∀x¬�¬β)[x1/c1, · · · , xn/cn] ∈ ∆. Since ∆ is C-Henkin,

(¬β)[x1/c1, · · · , xn/cn][x/c′] ∈ ∆

for some c′ ∈ C. On the other hand, (¬�¬β)[x1/c1, · · · , xn/cn][x/c] ∈ ∆ for ev-
ery c ∈ C, by (Ax4). In particular, (¬�¬β)[x1/c1, · · · , xn/cn][x/c′] ∈ ∆. This
means that v∆(β, s′) = C− for some s′ ∈ Ex(s) (namely, for s′ = sxa with a = c̃′).
If v∆(β, s′′) = F− for some s′′ ∈ Ex(s) then (�¬β)[x1/c1, · · · , xn/cn][x/c′′] ∈ ∆
for some c′′ ∈ C, hence ∆ would be trivial. Therefore v∆(β, s′′) 6= F− for every
s′′ ∈ Ex(s) and so v∆(∀xβ, s) ∈ ∀̃d

4

(
X(β, x, v∆, s)

)
, where the notation is as in Defi-

nition 2.8(5).

(d) Suppose that v∆(∀xβ, s) = F−. Thus,

(¬∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆ and

(�¬∀xβ)[x1/c1, · · · , xn/cn] ∈ ∆.



2 The first-order non-normal modal logic Tm
∗ 18

As (γ → ¬δ) → (δ → ¬γ) is a theorem of classical logic we have, by (NBF), that
(¬∀x¬�¬β)[x1/c1, · · · , xn/cn] ∈ ∆. Since ∆ is a C-Henkin theory and (¬γ → δ) →
(¬δ → γ) is a theorem of classical logic, it follows that

(�¬β)[x1/c1, · · · , xn/cn][x/c′] ∈ ∆

for some constant c′ in C. This means that v∆(β, s′) = F− for some s′ ∈ Ex(s)
(namely, for s′ = sxa with a = c̃′). Therefore v∆(∀xβ, s) ∈ ∀̃d

4

(
X(β, x, v∆, s)

)
, where

the notation is as in Definition 2.8(5).

Clause 6: (Substitution) Let τ be a term free for a variable z in a formula ψ, and let b = c̃ =
[[τ ]]A∆

s . By (Ax8) (the Leibinz rule), v∆(ψ[z/τ ], s) = v∆(ψ[z/c], s) = v∆(ψ, szb).

Clause 7: (Variant) Let ψ and ψ′ two formulas such that their free variables belong to the
list x1, . . . , xn, and s(xi) = c̃i for every i ≥ 1. Observe that, if ψ and ψ′ are vari-
ant, so are ψ[x1/c1, · · · , xn/cn] and ψ′[x1/c1, · · · , xn/cn], as well as the pairs of formulas
(#ψ)[x1/c1, · · · , xn/cn] and (#ψ′)[x1/c1, · · · , xn/cn], for # ∈ {¬,�,¬�,�¬,¬�¬}. On
the other hand, if ψ and ψ′ are variant then ψ ∈ ∆ iff ψ′ ∈ ∆, by (Ax6). From this,
v∆(ψ, s) = v∆(ψ′, s) and so v∆ satisfies clause 7 of Definition 2.8.

Clause 8: (Leibniz rule) Suppose that y is a variable free for x in a formula ψ. By (Ax8),
(x ≈ y) → (ψ → ψ[x ≀ y]) ∈ ∆. Therefore v∆((x ≈ y) → (ψ → ψ[x ≀ y]), s) ∈ {T+, C+}.

This concludes the proof.

Theorem 2.25 (Completeness). Let Γ∪{α} ⊆ For(Θ) be a set of formulas. Then: Γ |=Tm∗ ϕ

implies that Γ ⊢Tm
∗ ϕ.

Proof. Let Γ ∪ {ϕ} ⊆ For(Θ) such that Γ 0Tm∗ ϕ. Then, by Theorem 2.18, there exists a C-
Henkin theory ∆H over ΘC in Tm∗ for a nonempty set C of new individual constants such that
Γ ⊆ ∆H and, for every α ∈ For(Θ): Γ ⊢Tm∗ α iff ∆H ⊢C

Tm∗ α. From this, ∆H 0C
Tm∗ ϕ. Then,

by Theorem 2.19, there exists a set of formulas ∆H in ΘC extending ∆H which is ϕ-saturated
in Tm∗. By Theorem 2.18, ∆H is also a C-Henkin theory over ΘC in Tm∗.

Consider now the canonical structure A
∆H for ∆H over signature ΘC , as in Definition 2.21,

and let v
∆H be the canonical valuation over A

∆H as in Definition 2.23. Let s be an assignment
over A

∆H , and let s(xi) = c̃i for every i ≥ 1. If γ ∈ Γ such that the variables occurring
in it belong to the list x1, . . . , xn then, by (Gen) and by (Ax4), γ[x1/c1, · · · , xn/cn] ∈ ∆.
From this, v

∆H (γ, s) ∈ {T+, C+}. This shows that every γ ∈ Γ is true in (A
∆H , v∆H). On

the other hand, ϕ /∈ ∆H . If ϕ is a closed formula then ϕ is not true in (A
∆H , v∆H ), by

the last assertion of Lemma 2.24. Otherwise, let n = Max {i : xi occurs free in ϕ}. Let
ψ0 = ∀x1 · · · ∀xn−1ϕ. By (Ax4), ∀xnψ0 6∈ ∆H . Since ∆H is a C-Henkin theory, there exists
cn ∈ C such that ψ0[xn/cn] 6∈ ∆H . Let ψ1 = ∀x1 · · · ∀xn−2ϕ[xn/cn]. By reasoning as above,
there exists cn−1 ∈ C such that ψ1[xn−1/cn−1] 6∈ ∆H . Inductively, it can be proven that there
are constants c1, . . . , cn ∈ C such that ϕ[x1/c1, · · · , xn/cn] /∈ ∆. Let s0 be an assignment
such that s0(xi) = c̃i for every 1 ≤ i ≤ n. Then, by the last assertion of Lemma 2.24,
v
∆H (ϕ, s0) /∈ {T+, C+}, showing that ϕ is not true in (A

∆H , v∆H ). Now, let A be the reduct of
A

∆H to signature Θ, and let v : For(Θ)×A(A) → V4 be the restriction of v
∆H to For(Θ), that

is: v(α, s) = v
∆H(α, s) for every α ∈ For(Θ) and every s in A(A) = A(A

∆H ). Clearly, v is a
valuation over A and s0 is an assignment over it such that v(ϕ, s0) /∈ {T+, C+}, hence ϕ is not
true in (A, v) (as noted above, if ϕ is a closed formula then s0 can be arbitrary), while every
γ ∈ Γ is true in (A, v). This shows that Γ 6|=Tm∗ ϕ.
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3 Philosophical questions concerning first-order modal logic

In this section a brief philosophical discussion will be considered concerning first-order modal
languages, analyzing the rôle that the new semantics proposed in the previous sections can
play with respect to this debate. In particular, the problem of the contingent identities and the
distinction between de re and de dicto modalities will be discussed. Of course we do not defend
that the modal non-deterministic semantic presented here can solve those problems: we just
want to invite the reader to rethink them from a different perspective. We are aware that the
philosophical discussion about quantified modal logics is deep and rich: in this paper, which
is mostly of technical character, we are just scratching the surface concerning these complex
philosophical issues. A more detailed conceptual discussion is left for a future work.

3.1 Contingent identities

We saw that, in standard Kripkean models, identities involving proper names are always neces-
sary, since they are rigid designators. But Kripke thesis is stronger than that: he also defends
that, differently from proper names, identities involving definite descriptions are contingent.20

Consider, for instance, Kripke’s example:

(4) Richard Nixon is the winner of the presidential elections of the United States in 1968.

The sentence (4) is an identity involving a proper name and a definite description. Kripke
argues that, although (4) is true, it might be false. Indeed, Richard Nixon could have lost the
presidential elections. In contrast, Richard Nixon is, necessarily, Richard Nixon.

The relation between proper names and definite description is not as simple as Kripke
argues. As showed by Ruth C. Barcan, the following sentence is a theorem of any Kripke’s
first-order modal system:21

(x ≈ y) → �(x ≈ y)

Let f1 be the function for “the winner of the presidential elections of x in 1968”; let c1 be
the constant for “Richard Nixon”; and let c2 be the constant for “United States”. Thus, (4)
can be symbolized by:

(4’) (c1 ≈ f1c2)

Therefore, by the theorem above and (MP), we infer from (4’) the following:

�(c1 ≈ f1c2)

This force us to accept that, in Kripkean systems, not only equalities involving proper
names, but also those involving definite descriptions are necessary too, against Kripke’s own
thesis.22 Indeed, the fact that x and y may be replaced by any term makes the distinction
between rigid designator (that is, constants) and definite description (that is, functions) totally
irrelevant.

The point here is that some kind of equalities seems to be contingent from an intuitive
perspective, as pointed out by Hughes and Cresswell. That is the case of the sentence:

(5) The person who lives next door is the mayor.

20In [29, p. 41].
21It was first shown in [5] that it holds for Lewis system S2 and S4, but is easy to check that it holds in any

Kripkean normal modal system.
22See footnote 9.
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Surely, (5) is contingent, since it is clearly possible that the person who lives next door
might not have been the mayor. However, according to the theorem above, if (5) is true, then
it is necessarily true.

There are two ways, however, to overcome this difficulty. The first one is suggested by
Kripke himself and it is inspired on Russellian distinction between wider and narrow scope.23

First of all, we define the uniqueness quantification as follows:

∃!xα ≡def ∃x(α ∧ ∀y(α[x/y] → (x ≈ y)))

Let P1 be the predicate “x is a person who lives next door” and P2 be “x is a mayor”. Thus,
(5) is symbolized by:

(5’) ∃!xP1x ∧ ∃!xP2x ∧ ∀x(P1x→ P2x)

In this interpretation,24 (5’) can be clearly contingently true in Kripkean models. Consider,
for instance, the following model: in the world w1 the individual d1 is the only one who is in
the extension of P1 and the only one who is in the extesion of P2. But in the world w2 related
to w1, the individual d1 is the only one who is in the extension of P1, the individual d2 is the
only one who is in the extension of P2 and d1 6= d2. Clearly, the sentence (5’) is true in w1 but
false in w2. Therefore, (5’) is contingently true in w1.

Analogously, let P3 be the predicate “x is winner of the presidential election of the United
States in 1968”. Thus, (4) can be formalized by:

(4”) ∃!x(P3x ∧ (x ≈ c1))

Consider, now, the following model: c1 is the name of the individual d1; in the world w1,
the individual d1 is the only one who is in the extension of P3. But in the world w2 related to
w1, the individual d2 is the only one who is in the extension of P3 and d1 6= d2. Clearly, the
sentence (4”) is true in w1 but false in w2. Therefore, (4”) is contingently true in w1.

The second path is through the intuitive Carnapian notion of intensional objects.25 From a
more contemporaneous perspective, we could understand Carnapian proposal as follows.26 Let
us consider constant domains semantics, for instance. Those models will be enriched by a set
I of allowable intensional objects, such that an intensional object i is a function such that for
each possible word w, i(w) is a member of the domain, saying that the intensional object is in
w. Thus, if “the person who lives next door” is the function i and “the mayor” is the function
i′, we can say that (5) is contingently true because i(w) = i′(w), but it could be at least some
word w′ related to w such that i(w′) 6= i′(w′). Analogously, if “the winner of the presidential
election of the United States in 1968” is the function i and d1 is the individual refereed by the
constant c1, we can say that (4) is contingently true because i(w) = d1, but it could be at least
some word w′ related to w such that i(w′) 6= d1.

23In Kripke’s words: “someone might say that the man who taught Alexander might not have taught Alexan-
der; though it could not have been true that: the man who taught Alexander didn’t teach Alexander. This is
Russell’s distinction of scope.” See [29, p. 62]. With respect to definite description and Russell’s distinction of
scope, see [39]. Russell uses the expressions “primary occurrence” and “secondary occurrence”.

24See [20, p. 318–322].
25Carnap in [7, p. 1–39] did not use the expression “intensional object”. He said that terms and predicates

of the language (that he calls “predicators”) have an intension and an extension. While “rational animal”
and “feather biped” have the same extension, that is, hold for the same individuals, they don’t have the
same meaning and, thus, they are different with respect to the intension. In contrast, “rational animal’ and
“human” have the same intension and the same extension too. The intension of an individual constant is called
individual concept. Predicators and individual constants are extensionally equivalent if they are equivalent in
some description state, while the are intensionally equivalent if they are equivalent in all description state. As
pointed out by Carnap, the notion of intension tries to capture the Fregean notion of sense in [18].

26We are following here [20, p. 344–347].
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In contrast, in Ivlev semantics we can deal with contingent identities without taking any of
those paths. For that, let us consider the following axioms:

(C=1) ¬�(x ≈ y)

(C=2) ¬�¬(x ≈ y)

Let call Tm∗

c
the system obtained replacing (N=) and (P=) with (C=1) and (C=2). It is

clear that axioms (C=1) and (C=2) are considered for the purpose of capturing the notion of
contingent identities. From a semantical point of view, we change in Definition 2.8 clause 2.
by the following:

- v((τ1 ≈ τ2), s) = C+ iff [[τ1]]
A
s = [[τ2]]

A
s ;

- v((τ1 ≈ τ2), s) = C− iff [[τ1]]
A
s 6= [[τ2]]

A
s .

With few adjustments in Lemma 2.24, it is easy to obtain completeness for Tm∗

c
. Thus, the

proof for this case now runs as follows (recalling the notation stated in the proof of Lemma 2.24):

(a) Suppose that v∆((τ1 ≈ τ2), s) = C+. Thus, (τ1 ≈ τ2)[x1/c1, · · · , xn/cn] ∈ ∆ and so
(d1 ≈ d2) ∈ ∆. From this, [[τ1]]

A∆

s = [[τ2]]
A∆

s .

Conversely, suppose that [[τ1]]
A∆

s = [[τ2]]
A∆

s . Then, (d1 ≈ d2) ∈ ∆ and so

(τ1 ≈ τ2)[x1/c1, · · · , xn/cn] ∈ ∆.

By (C=1), (¬�(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆. Thus, v∆((τ1 ≈ τ2), s) = C+.

(b) Suppose that v∆((τ1 ≈ τ2), s) = C−. Thus, (¬(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆. As ∆ is
nontrivial, (τ1 ≈ τ2)[x1/c1, · · · , xn/cn] /∈ ∆. Hence, (d1 ≈ d2) /∈ ∆ and so [[τ1]]

A∆

s 6= [[τ2]]
A∆

s .

Suppose now that [[τ1]]
A∆

s 6= [[τ2]]
A∆

s . Thus, (τ1 ≈ τ2)[x1/c1, · · · , xn/cn] /∈ ∆ and so (¬(τ1 ≈
τ2))[x1/c1, · · · , xn/cn] ∈ ∆, by ∆-maximality. By (C=2),

(¬�¬(τ1 ≈ τ2))[x1/c1, · · · , xn/cn] ∈ ∆.

In other words, v∆((τ1 ≈ τ2), s) = C−.

The considerations above are enough to realize that, in Ivlev semantics, the problem of con-
tingent identities is independent of both the Russellian distinction between narrow/wider scope
and the Carnapian distinction between intentional/extensional objects. From a philosophical
point of view, this means that it is possible to support that there are contingent identities with-
out being compromised with the Russellian theory of definite description or with the Carnapian
concept of intentional objects.

The reader may be asking why we should choose between a modal logic where the identities
are always necessary and another one where all them are always contingent. In fact, it seems
that identities like those of sentence (5) are contingent, while identities in an arithmetical
context, for example, are always necessary. Indeed, such a radical choice is unnecessary. We
can just use two different symbols, one for each kind of identity relation. For instance, if ≈
is the identity symbol for necessary identities, the symbol ≈c could be used for contingent
identities. In this case, we should add to Tm∗ the versions of (Ax7), (Ax8), (C=1) and (C=2)
using the new symbol ≈c. Mathematical statement could be formalized with ≈, while factual
or empirical identities (or, in Kripkean theory, identities involving some non-rigid designator)
should be formalized using ≈c.

The reader might argue that the option of defining two types of equality is also available in
possible worlds semantics. That’s true. However, besides considering two different equalities ≈
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and ≈c, in Ivlev semantics we can define a third one with the following meaning: two individuals
are equal if and only if necessarily they are identical (in the first sense stated above). For this,
we define:

τ1 ≅ τ2 := �(τ1 ≈ τ2).

Semantically, this produces the following:

- v((τ1 ≅ τ2), s) ∈ {T+, C+} iff [[τ1]]
A
s = [[τ2]]

A
s ;

- v((τ1 ≅ τ2), s) ∈ {C−, F−} iff [[τ1]]
A
s 6= [[τ2]]

A
s .

Observe that this non-deterministic possibility is not available in the possible worlds seman-
tics, since Krikpe’s models are deterministic. This turns evident the wide expressive power of
the present non-deterministic semantical framework for first-order modal logics.

3.2 Iterations between modal operators

Let’s recall the following definition presented in subsection 2.1:

♦α := ¬�¬α

There are two simple ways to obtain new first-order alethical systems that extend Tm∗. First,
we can add axioms in order to iterate � and ♦. This alternative, from a semantical point of
view, means constraining the set of values of a non-deterministic matrix that interprets �.

We will consider, for instance, two ways to iterate the modal operators by means of the
following axioms:

(4) �α → ��α

(5) ♦�α → �α

In order to validate axioms (4) and (5), the valuation functions of Definition 2.8 should
preserve, respectively the following multioperators:

(4) (5)

x �̃x ♦̃x
T+ {T+} {T+}
C+ {C−, F−} {T+, C+}
C− {C−, F−} {T+, C+}
F− {C−, F−} {C−, F−}

x �̃x ♦̃x
T+ {T+} {T+}
C+ {F−} {T+}
C− {F−} {T+}
F− {F−} {F−}

We saw in the last subsection that there are two different ways of dealing with equalities.
From that and from the two axioms presented above, we can define four new systems:

- T4m∗ = Tm∗ ∪ {(4)}

- T45m∗ = T4m∗ ∪ {(5)}

- T4m∗

c
= Tm∗

c
∪ {(4)}

- T45m∗

c
= T4m∗

c
∪ {(5)}

Again, with few adjustments in Lemma 2.24, we can obtain the completeness results for
any of those four new systems.27 In fact, for each kind of equality, we can generate 14 different
modal systems.28 The details on the completeness proof are purely technical and not so difficult
to obtain.

27Based on [10] and [11].
28Keeping the (N)matrices of negation and implication fixed, as argued in [12].



3 Philosophical questions concerning first-order modal logic 23

3.3 De re and de dicto collapse

Kneale draws our attention to the fact that the formulas ♦∀xα and ∃x�α are stronger than
∀x♦α and �∃xα, respectively.29 In fact, considering S5∗ as the constant domain expansion of
the propositional modal system S5, we have:

♦∀xα �S5∗ ∀x♦α but ∀x♦α 2S5∗ ♦∀xα

∃x�α �S5∗ �∃xα but �∃xα 2S5∗ ∃x�α .

The author defends that the difference between ∃x�α and �∃xα is the formal counterpart
of Abelardus’ distinction between necessity de rebus and necessity de sensu. This distinction
was found later on by Peter of Spain as the modal statements de re and de dicto.

According to Kneale, Abelard says that assertions of necessity de rebus and de sensu seem
to entail each other. It is interesting to note that this philosophical position attributed to
Abelard cannot be expressed in Kripke’s framework. The reason is that, in S5∗, none of such
necessities entails each other. But S5∗ models are the strongest ones within this framework, in
the sense that if two formulas are logically independent w.r.t. those models, so they are also
independent in any other Kripkean model.

The most astonishing result showed by Tichý in [41] is that the distinction between de re
and de dicto formulas is not eliminable, even by supplementing S5 with the axiom schema
expressing the so-called Principle of Predication of von Wright, as cited below:

(PP) Properties divide into two types: those whose belonging to an object is always either
necessary or impossible and those whose belonging to an object is always contingent.

This principle is symbolized by Tichý as follows (see [41, p. 391]):

(PP ∗) ∀x(�α(x) ∨�¬α(x)) ∨ ∀x(♦α(x) ∧ ♦¬α(x))

for any wff α(x) in which x is the unique variable (possibly) occurring free. Tichý proved that
de re formulas are not eliminable in S5∗ + (PP ∗). As a consequence of this, since S5∗ +
(PP ∗) is stronger than any Kripkean first-order standard semantics, Tichy’s result holds, as a
corollary, for any Kripkean system.

In contrast, we can easily check that de re and de dicto modalities entail each other in Tm∗.
This is a direct consequence of (NBF), (PBF) and the definition of ∃ and ♦. However, it could
be possible to separate these notions if we consider the first definition of the universal quantifier
we propose here, as being a (non-deterministic) Tm∗-conjunction, namely the multioperator
∀̃4, instead of the deterministic operator ∀̃d

4 adopted for Tm∗ (recall Subsection 2.1). Indeed,
consider an unary predicate symbol P and let A be a first-order structure for Tm∗ such that
∅ 6= aA(P ) ⊂ cA(P ) = U . Then, for every v and s, {v(P (x), s′) : s′ ∈ Ex(s)} = {C−, C+}.
This produces the following scenario:

X ♦̃(X) ∀̃4(♦̃(X)) ∀̃4(X) ♦̃(∀̃4(X))
{C−, C+} {T+, C+} {C+} {F−, C−} V4

Therefore, by taking v(♦∀xPx, s) = C−, the formula ∀x♦Px → ♦∀xPx will be refuted. That
is, (NBF) will be invalidated. Of course this is equivalent to invalidate the consequence relation
�∃xPx |= ∃x�Px. Indeed, in the same situation as above, by considering the first defini-
tion of the existential quantifier as being a (non-deterministic) Tm∗-disjunction, namely the
multioperator ∃̃4 instead of ∃̃d

4, we will have:

29See [26, p. 622–633].
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X ∃̃4(X) �̃(∃̃4(X)) �̃(X) ∃̃4(�̃(X))
{C−, C+} {T+, C+} V4 {F−, C−} {C−}

and so, by taking v(�∃xPx, s) = C+ the modal inference �∃xPx |= ∃x�Px will be invalidated.
Observe that, in order to axiomatize ∀̃4 in Tm∗, it is enough to delete axiom (NBF) from the
axiomatization of Tm∗ given in Definition 2.2. It is also worth noting that the non-deterministic
quantifier ∀̃4 (as well as its dual ∃̃4) still satisfies the Barcan formulas (BF) and (CBF) (of
course, in the case of the existential quantifier, both formulas must be expressed in terms of
♦). Thus, the use of this quantifier just blocks (NBF), while preserving both Barcan formulas.
In particular, (PBF) is validated by the non-deterministic quantifier ∀̃4. Indeed, it is easy to
check that the situation concerning (PBF) is as follows:

X ♦̃(∀̃4(X)) ∀̃4(♦̃(X))
F− /∈ X V4 or {T+, C+} {C+}
F− ∈ X {C−, F−} {F−}

The definition of an intuitive notion of universal quantifier in Tm∗ which also rejects (PBF)
deserves future research.

Some philosophers may defend that the distinction between de re and de dicto modalities
is very important from a metaphysical point of view. Others, like Abelardo, could claim that
there is no such distinction. The point here is that Kripke’s relational semantics is not neutral
with respect to that polemics: it forces us to go against Abelard, that is, it forces us to admit
a metaphysical distinction that, according to Quine, throws us into the jungle of Aristotelian
essentialism.30 In contrast, Tm∗ offers a formal interpretation of “necessary” such that, in
Quinean terms, is much more civilized.

3.4 Barcan Formulas

Finally, a famous problem of quantified modal logic will be briefly discussed here from the
perspective of the non-deterministic semantics: the so-called Barcan formulas (BF) and (CBF),
which were already mentioned above.

In standard Kripke semantics with constant domains, the formula (BF) is valid in those
models in which the relational accessibility between possible world is, at least, reflexive and
symmetrical,31 while (CBF) is not valid in general. On the other hand, there are variable
domains in which neither (BF) nor (CBF) are valid.32 Thus, Kripke models offer an apparatus
sufficiently refined to invalidate (CBF) and, in some cases, even (BF).

As analyzed above, both laws (BF) and (CBF) hold in any model of Tm∗ — even when
considering non-deterministic quantifers in order to block (NBF). From this, the reader could
ask if Ivlev’s semantics is less expressive than Kripke models with variable domains, as long as

30See [33]. It seems that Tm
∗ semantics is immune to Quine’s three criticisms to modal logic. The first of

these criticisms is that, in the propositional context, being necessary would be equivalent to being tautological.
But this is not the case in Ivlev semantics, for a very simple reason: we can prove that α ∨ ¬α is always true,
but if the value of α is C+, we could choose a false value for �(α∨¬α). The second criticism concerns, roughly
speaking, to the fact that identities are always necessary. As we have seen, this is not necessarily the case in
our approach. The third criticism concerns the modal commitment of a kind of essentialism that, as argued
above, does not apply to our systems.

31See [20, p.244-249].
32In varying domain models, (BF) is valid if and only if they are anti-monotonic, that is, if a world w is

related to w′, then the domain of w′ is a subset of the domain of w. In contrast, (CBF) is valid if and only the
models are monotonic, that is, if w is related to w′, then the domain of w is a subset of the domains of w′. See
[17, p. 108-112].



3 Philosophical questions concerning first-order modal logic 25

the former collapses formulas that are distinguishable in Kripke’s approach. It will be argued
that this kind of conclusion is, at the very least, hasty, and that the situation is a little more
complex than it seems.

Given a wff α, consider the following notation:

�nα ≡def �� . . .�
︸ ︷︷ ︸

n times

α

Now, let us consider now the following generalized Barcan and generalized converse Barcan
formulas:

(BFn) ∀x�nα→ �n∀xα

(CBFn) �n∀xα → ∀x�nα

In any modal logic that validates the necessitation rule and axiom (K), if (BF) holds, then
(BFn) will hold too. Those considerations also apply to (CBF) and (CBFn).

That is not the case in Ivlev’s semantics. Consider, for instance, a signature with an unary
predicate symbol P . Let A be a structure for Tm∗ with domain U such that aA(P ) = U and
cA(P ) = ∅. Observe that v(Px, s) = T+ (hence v(∀xPx, s) = T+) for every v and s. Now, let v
be a valuation over A such that v(�Px, s) = T+ and v(�∀xPx, s) = C+, for any s. From this,
{v(��Px, s′) : s′ ∈ Ex(s)} is a set of designated values, for any s. Hence v(∀x��Px, s) is
designated, for any s. On the other hand, v(��∀xPx, s) is not designated, for every s. Then,
(A, v) does not validate (BF2). This argument can be easily generalized to any (BFn) for n > 2.

Consider now a valuation v′ over the structure A defined above such that, for any s,
v(�Px, s) = C+ and v(�∀xPx, s) = T+. Thus, {v(��Px, s′) : s′ ∈ Ex(s)} is a set of
non-designated values, for any s, and so v(∀x��Px, s) is not designated, for any s. On the
other hand, v(��∀xPx, s) is designated, for every s. This shows that (A, v) does not validate
(CBF2) and, again, the argument can be easily generalized to any (CBFn) for n > 2.

From a philosophical point of view, the formula ∀x�Px can be interpreted as saying that
all the objects of the domain have essentially the propriety P . As we saw in Subsection 3.3,
this is a case of the de re modality. The formula �∀xPx, in turn, is a de dicto modality.33

An essentialist does not want the collapse of modalities de re and de dicto. That is why
the non-deterministic semantics proposed here could not be interesting for this philosophical
perspective. In contrast, this Nmatrix semantics separates levels of essentialism: someone could
hold that there is no first-level essentialism, while accepting the second-level one: the fact that
all object have a property as essentially essential does not imply that it is necessarily necessary
that all the objects have this property. This new philosophical perspective could be called a
multi-leveled essentialism.

It is worth noting that, for Kripke, the relation between worlds must be, at least, reflexive.34

In this case, axiom (T) holds, hence the collapse of (BF) and (BFn) is unavoidable, and the
same holds for (CBF) and (CBFn). In turn, the system Tm∗ is an interesting case in which,
even with axiom (T) holding, there is no collapse at all, as we have seen above.

Finally, let us consider the strict implication, which is defined as usual as

33In this sense, essentialism is “the doctrine that (at least some) objects have (at least some) essential
properties. This characterization is not universally accepted, but no characterization is; and at least this one has
the virtue of being simple and straightforward” (see [38]). According to the author, the modal characterization
of the essencialism is “P is an essential property of an object o just in case it is necessary that o has P , whereas
P is an accidental property of an object o just in case o has P but it is possible that o lacks P”. Formally, if
c is an individual constant representing o, we symbolize “P is an essential propriety of o” by �Pc, whereas “P
is an accidental property of P” is symbolized by Pc ∧ ♦¬Pc.

34Segerberg defends that, against “followers of Kripke’s terminology”, normal modal logics should cover those
models whose accessibility relation is empty, see [40, p. 12].
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α J β ≡def �(α→ β)

Let us consider the following version of (BF) and (CBF):35

(BFJ) ∀x�α J �∀xα

(CBFJ) �∀xα J ∀x�α

In Kripke semantics, (BF) implies (BFJ), by the necessitation rule. But that is not the case
with Nmatrix semantic: just take an instance of (BF) as contingently true in some (A, v).36

The argument is analogous with respect to (CBF) and (CBFJ).
Because of this, it is not possible to support an essentialist view with respect to strict

implication but not with respect to material implication in the usual Kripkean context. We
could call the stricter rules (BFJ) and (CBFJ) as strict essentialism. In this sense, the non-
deterministic semantics of Tm∗ can model a version of essentialism, namely (BF) and (CBF),
which is weaker than strict essentialism.

For these reasons, we believe that the non-deterministic semantics for first-order modal
logics proposed here can uncover subtleties that were previously invisible to us. This is a
natural consequence of the fact that our eyes are too accustomed to facing these problems
through the glasses of the possible worlds semantics.

4 Considering other Ivlev-like modal systems

The previous sections were devoted to analyze first-order extensions of the four-valued Ivlev sys-
tem Tm. In previous papers ([10, 11, 12]) we investigated other Ivlev-like modal propositional
systems, characterized by four-valued, six-valued and eight-valued Nmatrices.

Concerning four-valued systems, the extension to first-order languages of some of them,
such as T4m and T45m, were mentioned in Subsection 3.2. The soundness and completeness
results, as well as all topics discussed above about Tm∗, can be easily adapted to the systems
T4m∗ and T45m∗.

Recall from Section 1 that the four-valued non-deterministic semantics for Tm can be
described in terms of the concepts of actually true and contingently true. From this, the
predicate symbols in a structure A for Tm∗ are interpreted in terms of the mappings aA and cA

(which, as observed in Remark 2.6, is equivalent to consider a function PA : Un → V4, for every
n-ary predicate symbol P ). However, as discussed in Part I of this paper (see [12, Section 1]),
this is a particular case of a more general situation involving eight truth-values, each of one
explained in terms of the modal concepts of necessarily true, possibly true and actually true:

T+: necessarily, possibly and actually true;

C+: contingently and actually true;

F+: impossible, possibly false but actually true;

I+: necessary true, impossible and actually true;

T−: necessarily and possibly true but actually false;

C−: contingently and actually false;

35In fact, those are the original formulas considered by Ruth C. Barcan in [4].
36That is, consider a pair (A, v) and an instance γ of (BF) such that, for every s, v(γ, s) = C+. Then, �γ is

an instance of (BFJ) such that v(�γ, s) is not designated, for evey s.
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F−: impossible, possibly false and actually false;

I−: necessarily true, impossible and actually false.

Under this perspective, + = {T+, C+, F+, I+} represents being actually true (the designated
truth-values), while being actually false is given by − = {T−, C−, F−, I−} (the undesignated
truth-values). This produces an eight-valued non-normal version of K that we called Km.
However, as observed in Part I, the values I+ and I− represent very artificial situations. This
lead us to consider six-valued structures, apt to deal with a deontic non-normal logic called
Dm, as well as some other axiomatic extensions of it. The interpretation of a predicate symbol
P in eight-valued structures for Km and in six-valued structures for Dm, respectively, are
represented as follows:

aA nA

pA

T+

T−C+

I−I+F+

C−

F−

aA

nA pA

F+ C+ T+T+ T− C−

F−

Recall from [12, Section 4] that the multioperations for the Nmatrix characterizing the logic
Km are as follows, where ♦α := ¬�¬α, α ∨ β := ¬α → β and α ∧ β := ¬(α → ¬β) and + is
the set of designated values:

¬̃ �̃ ♦̃

T+ {F−} + +
C+ {C−} − +
F+ {T−} − −
I+ {I−} + −
T− {F+} + +
C− {C+} − +
F− {T+} − −
I− {I+} + −

→̃ T+ C+ F+ I+ T− C− F− I−

T+ {T+} {C+} {F+} {I+} {T−} {C−} {F−} {I−}
C+ {T+} {T+, C+} {C+} {I+} {T−} {T−, C−} {C−} {I−}
F+ {T+} {T+} {T+} {I+} {T−} {T−} {T−} {I−}
I+ {I+} {I+} {I+} {I+} {I−} {I−} {I−} {I−}
T− {T+} {C+} {F+} {I+} {T+} {C+} {F+} {I+}
C− {T+} {T+, C+} {C+} {I+} {T+} {T+, C+} {C+} {I+}
F− {T+} {T+} {T+} {I+} {T+} {T+} {T+} {I+}
I− {I+} {I+} {I+} {I+} {I+} {I+} {I+} {I+}
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∨̃ T+ C+ F+ I+ T− C− F− I−

T+ {T+} {T+} {T+} {I+} {T+} {T+} {T+} {I+}
C+ {T+} {T+, C+} {C+} {I+} {T+} {T+, C+} {C+} {I+}
F+ {T+} {C+} {F+} {I+} {T+} {C+} {F+} {I+}
I+ {I+} {I+} {I+} {I+} {I+} {I+} {I+} {I+}
T− {T+} {T+} {T+} {I+} {T−} {T−} {T−} {I−}
C− {T+} {T+, C+} {C+} {I+} {T−} {T−, C−} {C−} {I−}
F− {T+} {C+} {F+} {I+} {T−} {C−} {F−} {I−}
I− {I+} {I+} {I+} {I+} {I−} {I−} {I−} {I−}

∧̃ T+ C+ F+ I+ T− C− F− I−

T+ {T+} {C+} {F+} {I+} {T−} {C−} {F−} {I−}
C+ {C+} {F+, C+} {F+} {I+} {C−} {F−, C−} {F−} {I−}
F+ {F+} {F+} {F+} {I+} {F−} {F−} {F−} {I−}
I+ {I+} {I+} {I+} {I+} {I−} {I−} {I−} {I−}
T− {T−} {C−} {F−} {I−} {T−} {C−} {F−} {I−}
C− {C−} {F−, C−} {F−} {I−} {C−} {F−, C−} {F−} {I−}
F− {F−} {F−} {F−} {I−} {F−} {F−} {F−} {I−}
I− {I−} {I−} {I−} {I−} {I−} {I−} {I−} {I−}

The Nmatrix for Dm is obtained from this by eliminating the values I+ and I−, while the
Nmatrix for Tm is obtained by additionally removing the values F+ and T−. Indeed, and
as shown in [12, Proposition 5.5], ATm ⊆sm ADm ⊆sm AKm. Here, ADm and AKm denote
respectively the multialgebras for Dm and Km, and ⊆sm is the ‘submultialgebra’ relation.37

From an axiomatic point of view, Dm is obtained from Tm by replacing (T) by an attenuated
version of this axiom, namely, the well-known deontic axiom:

(D) �α → ♦α

From this, first-order extensions Dm∗ and Km∗ of Dm and Km can be defined, in the same
way as Tm∗ was obtained. Indeed, the definition of the corresponding Hilbert calculi is obvious:
it is enough to add to the Hilbert calculi introduced in Part I for these logics the axioms and the
inference rule for the universal quantifier considered for Tm∗. With respect to semantics, let
Vk be the set of k truth-values considered above, for k = 6, 8. Then, it is enough to expand the
corresponding multialgebras with suitable multioperators Q̃k : (P(Vk) − {∅}) → (P(Vk) − {∅})
for every quantifier Q ∈ {∀, ∃} and k = 6, 8 extending the corresponding multifunctions over the
four-element domain Vk defined in Subsection 2.1. From the eight-valued multifuncions ∧̃ and
∨̃ for conjunction and disjunction displayed above it is straightforward to define, respectively,
∀̃k and ∃̃k for k = 6, 8 in an analogous way as it was done in the four-valued case (we invite
the reader to complete the details). Moreover, in order to validate (NBF), the deterministic
version Q̃d

k of these quantifiers can be easily defined by removing the occurrences of F− or
T+ from Q̃k(X) in the instances of X where Q̃k(X) is not a singleton. Namely, for k = 6, 8:
∀̃d
k(X) := {C−} for X = {C+, C−} or X = {C+, C−, T+}, while ∃̃d

k(Y ) := {C+} for Y =
{C+, C−} or Y = {C+, C−, F−}. We can extend this approach by considering the systems
D4m∗, D45m∗, K4m∗ and K45m∗ obtained from the corresponding propositional systems
studied in Part I. Then, soundness and completeness of these systems with respect to the

37By comparing the figure for aA(P ) and cA(P ) displayed in Section 1 with the ones for aA(P ), nA(P ) and
pA(P ) displayed above it is easy to see that, when deleting the additional values, nA(P ) = aA(P ) \ cA(P ) and
pA(P ) = aA(P ) ∪ cA(P ) for every predicate symbol P .
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first-order Nmatrix semantics is easily obtained by adapting and extending the corresponding
proofs for Tm∗ detailed in the previous sections. Of course every n-ary predicate symbol P
should be interpreted in a six-valued or eight-valued first-order structure A as a triple PA :=
(aA(P ), nA(P ), pA(P )) of subsets of Un.38 Once again, the details of these constructions are left
to the interested reader.

None of the above mentioned six-valued and eight-valued systems validate axiom (T). In-
validating (T) is not just a merely formal curiosity. We know that (BF) and (BFJ) collapse
in reflexive Kripkean models. In Tm∗, (BFJ) implies (BF) and that seems to be a natural
property, since strict implication is stronger than material implication. But that collapse is a
direct consequence of axiom (T). The same consideration can be done with respect to (CBF)
and (CBFJ). In any Ivlev-like first-order system in which (T) does not hold, the formulas (BF)
and (BFJ) will be totally independent, and the same holds for (CBF) and (CBFJ).

5 Final Remarks

In this article, our investigations on non-normal modal logics with finite-valued non-deterministic
matrix semantics developed in Part I (see [12]) were extended to first-order languages. By sim-
plicity, and in order to fix the main ideas and the many advantages that this proposal can offer
to the subject of first-order modal logics, just the quantified version of system Tm, called Tm∗,
was analyzed in detail. The extension of this approach to other modal systems based on T4m,
T45m, Dm, D4m, D45m, Km, K4m or K45m should not be too difficult, as outlined in
Section 4.

Concerning the formulas (BF) and (CBF), we have proposed here a semantics in which
these two formulas, at least at the first level, collapse (see Subsection 3.4). But this is not a
consequence of the semantic clauses of atomic and propositional formulas. In fact, if our clauses
regarding the universal operator were different, we could invalidate any of these formulas, as in
the case of axiom (NBF) (recall Subsection 3.3). As mentioned there, it should be interesting
considering another notion of universal quantifier in which (PBF) would be blocked as well.

It worth noting that the way adopted in this paper defining the deterministic versions of
the quantifiers intends to be the closest formal counterpart to our language intuitions involving
terms like “necessarily” and “for all”. This is not to say that we cannot discover another formal
versions as much (or even more) intuitive than those presented here. We have not ruled out
this possibility yet.

It is well-known that first-order classical logic is not decidable. But certain fragments of this
logic are, in turn, decidable. An interesting case is its monadic fragment, that is, the fragment
in which every predicate is unary and no function symbols are allowed. By contrast, Kripke has
shown that almost all monadic first-order modal systems are undecidable.39 But this result does
not automatically apply to Tm∗ or any monadic fragment of the systems treated here. In fact,
all propositional Ivlev-like systems proposed in Part I are decidable. It would be interesting to
know how many of their monadic extensions are decidable.

Even though Tm∗ is a system that does not compromise with the Kripkean thesis that
proper names are rigid designators while definite descriptions are non-rigid designators, it would
be interesting to consider a four-valued non-deterministic modal semantics in which this occurs.

38As a matter of fact, the observation made in Remark 2.6 for Tm
∗ can be applied to these six-valued

and eight-valued modal systems. Namely, interpreting a n-ary predicate symbol P by means of a triple PA =
(aA(P ), nA(P ), pA(P )) is equivalent to consider functions PA : Un → Vk for k = 6, 8. The latter approach is
analogous to the non-deterministic first-order structures for paraconsistent logics based on Nmatrices considered
in [13].

39See [27].
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A possible way would be extending the interpretation mappings a and c to function symbols,
while the individual constants would receive a unique interpretation in a given structure A.
Besides, individual variables would receive two kind of interpretations by means of the as-
signments, the actual one and the contingent one. We are aware, however, of the technical
difficulties of this possible solution.

First-order logic has difficulties for dealing with non-existent object that has a name, like
“Pegasus”. That happens because to each constant in the language we associate an individual
in the domain. Since the existential quantifier traverses individuals in the domain of structure,
in classical logic being named is equivalent to existing. Thus, if Pegasus is a winged horse, then
Pegasus is a name of an individual of the domain and, thus, Pegasus exists. But we know that
Pegasus is a winged horse that does not exist. In order to block this inference, we should use the
so called Free Logics. It is a relevant philosophical problem to decide whether Pegasus is a being
that does not exist but possibly exists. Free Logics have made a very fruitful contribution to
these investigations, especially when combined with semantics of possible worlds.40 We have no
reason to be skeptical of the success of addressing these problems combining non-deterministic
semantics with Free Logics.
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