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Abstract

The study of perfect, local and bipartite IMTL-algebras presented in [29] is generalized
in this paper to the general non-involutive case, i. e. to MTL-algebras. To this end we
describe the radical of MTL-algebras and characterize perfect MTL-algebras as those for
which the quotient by the radical is isomorphic to the two-element Boolean algebra, and
a special class of bipartite MTL-algebras, BP0, as those for which the quotient by the
radical is a Boolean algebra. We prove that BP0 is the variety generated by all perfect
MTL-algebras and give some equational bases for it. We also introduce a new way to build
MTL-algebras by adding a negation fixpoint to a perfect algebra and also by adding some
set of points whose negation is the fixpoint. Finally, we consider the varieties generated
by those algebras, giving equational bases for them, and we study which of them define a
fuzzy logic with standard completeness theorem.

Keywords: Algebraic logic, bipartite algebras, filters, fuzzy logics, Glivenko-style the-
orems, IMTL-algebras, local algebras, radical, MTL-algebras, perfect algebras, standard
algebras, standard completeness.

1 Introduction

In [21] Petr Hájek presented a new logic, called BL, intended to be the basic fuzzy logic. He
gave an algebraic semantics for BL logic introducing the variety of BL-algebras. Indeed, BL
is weaker than all the systems of fuzzy logic based on continuous t-norms and their residua
known at that time:  Lukasiewicz logic, Product logic and Gödel logic. Afterwards Cignoli,
Esteva, Godo and Torrens proved in [7] that BL is the logic of all continuous t-norms and their
residua. However, the sufficient and necessary condition for a t-norm to have a residuated
implication is the left-continuity; hence it makes sense to consider fuzzy logics based not on
continuous t-norms but on left-continuous t-norms. To this goal, Esteva and Godo proposed
in [14] a new logic, called MTL, as the basic fuzzy logic in this more general sense. The
proposal was successful when Jenei and Montagna proved in [26] that MTL is indeed the
logic of all left-continuous t-norms and their residua.
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Furthermore, in [14] a new class of algebras is defined, the variety of MTL-algebras, that
we denote by MTL. This variety contains all BL-algebras and it is an equivalent algebraic
semantics for MTL, so MTL is an algebraizable logic in the sense of Blok and Pigozzi [3] and
there is an order-reversing isomorphism between the set of axiomatic extensions of MTL and
the set of subvarieties of MTL. Therefore, the algebraic research on varieties of MTL-algebras
is equivalent to the task of finding axiomatic extensions of MTL and, among them, new t-
norm based fuzzy logics. Some parts of the lattice of varieties of BL-algebras are well-known
[10], but in the general framework of MTL very few algebraic investigations have been carried
out till now. We only had the description of all varieties of NM-algebras given in [19], the
description of all varieties of semisimple 4-contractive IMTL-algebras in [20], the structure of
standard ΠMTL-chains [23, 24], some varieties of MTL-algebras where the lattice operations
are definable [18] and, finally, some methods to construct IMTL-algebras [25]. In order to
characterize one of those methods, the one called by Jenei disconnected rotation, the authors
have generalized in [29] some notions that had been used in the study of MV-algebras (see
[11, 1, 2]). Indeed, in that paper the notions of perfect, local and bipartite algebras are
studied in the wider variety of IMTL-algebras and perfect IMTL-algebras are proved to be
exactly those IMTL-algebras obtained by disconnected rotation.

Our purpose in this paper is to generalize the study of perfect and bipartite algebras to
MTL. This is actually a double generalization since the study of these kinds of algebras
also has been done for BL-algebras in [12]. The content of the paper is as follows. After
some algebraic preliminaries, first we will study the radical of MTL-algebras generalizing the
description that had been given for MV-algebras, BL-algebras and IMTL-algebras. Then
we will define perfect, local and bipartite MTL-algebras and also the class BP0 of algebras
bipartite by all maximal filters and we will study the varieties generated by those algebras.
Finally, we will define new kinds of MTL-algebras by adding new points to perfect algebras.
These constructions will give a characterization of connected rotations as perfect IMTL-
algebras plus an added negation fixpoint, and some new varieties of MTL-algebras, hence
new fuzzy logics; we will axiomatize them and we will decide which of them have standard
completeness theorem, i. e. are t-norm based.

2 Preliminaries

MTL logic is introduced by Esteva and Godo in [14]. It is presented by means of a Hilbert
style calculus in the language L = {∗,→,∧, 0} of type (2, 2, 2, 0). The only inference rule
is Modus Ponens and the axiom schemata are the following (taking → as the least binding
connective):
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(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ ∗ ψ → ϕ
(A3) ϕ ∗ ψ → ψ ∗ ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ ∗ (ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ ∗ ψ → χ)
(A7b) (ϕ ∗ ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ

The usual defined connectives are introduced as follows:

ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);

ϕ↔ ψ := (ϕ→ ψ) ∗ (ψ → ϕ);

¬ϕ := ϕ→ 0;

1 := ¬0.

We denote the set of L-formulas built over a countable set of variables by FmL. Given
Γ∪{ϕ} ⊆ FmL, we write Γ `MTL ϕ if, and only if, ϕ is provable from Γ in the system MTL.

In the same paper some important extensions of MTL are also defined:

IMTL is the axiomatic extension of MTL obtained by adding the law of involution:

¬¬ϕ→ ϕ,

WNM logic (resp. NM logic) is obtained by adding to MTL (resp. to IMTL) the following
axiom:

(ϕ ∗ ψ → 0) ∨ (ϕ ∧ ψ → ϕ ∗ ψ).

Recall also that BL is the axiomatic extension of MTL obtained by adding the divisibility
axiom:

ϕ ∧ ψ → ϕ ∗ (ϕ→ ψ),

 Lukasiewicz logic can be obtained by adding to IMTL the divisibility axiom or by adding
the law of involution to BL,1

Gödel logic can be obtained by adding to MTL (or to BL) the contraction axiom:

ϕ→ ϕ ∗ ϕ,

and the classical propositional calculus can be obtained by adding to any of these logics
the excluded middle axiom:

1  Lukasiewicz logic can be also obtained from MTL by just adding the axiom ((ϕ → ψ) → ψ) → ((ψ →
ϕ)→ ϕ).
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ϕ ∨ ¬ϕ.

Definition 2.1 ([14]). Let A = 〈A, ∗,→,∧,∨, 0, 1〉 be an algebra of type (2, 2, 2, 2, 0, 0). A
is an MTL-algebra iff it is a commutative integral bounded residuated lattice satisfying the
prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1

We define a unary operation by ¬a := a→ 0.
A is an IMTL-algebra iff in addition it satisfies the equation of involution:

¬¬x ≈ x

If the lattice order is total we will say that A is an MTL-chain (resp. IMTL-chain). The
MTL-chains defined over the real unit interval [0, 1] are those where ∗ is a left-continuous
t-norm and are called standard chains. If ◦ is a left-continuous t-norm, [0, 1]◦ will denote the
standard chain given by ◦.

MTL (resp. IMTL) will denote the class of all MTL-algebras (resp. IMTL-algebras). It
is well known that those classes are definable by equations; hence they are varieties.2

Now we can define the equational consequence in MTL:

Definition 2.2. Let EqL be the set of L-equations, i.e. the set of expressions of the form
ϕ ≈ ψ where ϕ,ψ ∈ FmL. Let Σ ∪ {ϕ ≈ ψ} ⊆ EqL. We define:

Σ �MTL ϕ ≈ ψ iff for every A ∈MTL and every evaluation v in A, it holds:
If for every α ≈ β ∈ Σ, v(α) = v(β), then v(ϕ) = v(ψ).

Then the next theorem is easy to prove:

Theorem 2.3. The relation of derivability in MTL and the equational consequence given by
the variety MTL are mutually translatable. Indeed, given Γ∪{γ} ⊆ FmL and Σ∪{ϕ ≈ ψ} ⊆
EqL, we have:

1. Γ `MTL γ iff {ψ ≈ 1 : ψ ∈ Γ} �MTL γ ≈ 1.

2. Σ �MTL ϕ ≈ ψ iff {α↔ β : α ≈ β ∈ Σ} `MTL ϕ↔ ψ.

Moreover, each one of these translations is the inverse of the other one in the following
sense:

3. ϕ ≈ ψ �MTL ϕ↔ ψ ≈ 1 and ϕ↔ ψ ≈ 1 �MTL ϕ ≈ ψ.

4. γ `MTL γ ↔ 1 and γ ↔ 1 `MTL γ.

Therefore, using the theoretical apparatus introduced by Blok and Pigozzi in [3], we
can say that MTL is an algebraizable logic and MTL is its equivalent algebraic semantics.
Furthermore, we obtain that all axiomatic extensions of MTL are also algebraizable and their
equivalent algebraic semantics are the subvarieties of MTL defined by the translations of the
axioms into equations. In particular:

2For any unexplained notion on Universal Algebra see [5].
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• The equivalent algebraic semantics for IMTL is the variety of IMTL-algebras

• The equivalent algebraic semantics for NM is the variety of NM-algebras, i.e. those
IMTL-algebras satisfying (x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1.

• The equivalent algebraic semantics for WNM is the variety of WNM-algebras, i.e. those
MTL-algebras satisfying (x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1.

• The equivalent algebraic semantics for BL is the variety of BL-algebras, i.e. those
MTL-algebras satisfying x ∧ y ≈ x ∗ (x→ y).

• The equivalent algebraic semantics for Gödel logic is the variety of G-algebras, i.e. those
MTL-algebras satisfying x ∗ x ≈ x.

• The equivalent algebraic semantics for  Lukasiewicz logic is the variety of MV-algebras,
i.e. those IMTL-algebras satisfying x ∧ y ≈ x ∗ (x→ y).

• The equivalent algebraic semantics for the classical propositional calculus is the variety
of Boolean algebras (denoted as BA) i.e. those MTL-algebras satisfying x ∨ ¬x ≈ 1.

It will be useful later on to recall now the definition of some examples of these algebras:

• B2 and B4 will be the Boolean algebras of two elements and four elements respectively,
with the usual definitions.

• For every n ≥ 3,  Ln is the MV-algebra defined over the set {0, 1
n−1 , . . . ,

n−2
n−1 , 1} and

[0, 1]L is the MV-algebra defined over the real unit interval. Recall that the operations
of strong conjunction and negation in all these algebras have the following expressions:
a ∗ b = max{a + b − 1, 0} and ¬a = 1 − a. The remaining operations are defined
from the former in the following way: a → b := ¬(a ∗ ¬b), a ∧ b := a ∗ (a → b) and
a ∨ b := (a→ b)→ b.

• For every n ≥ 3, Gn is the G-algebra defined over the set {0, 1
n−1 , . . . ,

n−2
n−1 , 1} and [0, 1]G

is the G-algebra defined over the real unit interval. Recall that the operations in all
these algebras have the following expressions: a∗b = a∧b = min{a, b}, a∨b = max{a, b}
and

a→ b =
{

1 if a ≤ b,
b otherwise.

• There is, up to isomorphism, only one NM-algebra defined over the real unit interval
[0, 1]. We will denote it as [0, 1]NM . It is given by the nilpotent minimum t-norm
(introduced by Fodor in [16]):

a ∗ b =
{

min{a, b} if a > 1− b,
0 otherwise,

its residuated implication:

a→ b =
{

1 if a ≤ b,
max{1− a, b} otherwise,

a ∧ b = min{a, b} and a ∨ b = max{a, b}.
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The completeness of MTL with respect to the variety MTL can be improved using the
following important theorem:

Theorem 2.4 ([14]). Each MTL-algebra is representable as a subdirect product of MTL-
chains.

Corollary 2.5. Given Γ ∪ {ϕ} ⊆ FmL,
Γ `MTL ϕ if, and only if, {ψ ≈ 1 : ψ ∈ Γ} �{MTL−chains} ϕ ≈ 1.

The same results are true for every axiomatic extension of MTL (i.e. for every subvariety
of MTL).

The completeness with respect to chains was further improved in [26] and in [13] proving
the so-called strong standard completeness theorems for MTL and IMTL, i.e. completeness
with respect to chains defined over [0, 1]. For the further discussion of the paper it will be
convenient to give now a sketch of their proofs.3

Theorem 2.6 ([26]). Let Γ ∪ {ϕ} ⊆ FmL be any set of formulas (maybe infinite). Then:
Γ `MTL ϕ iff {ψ ≈ 1 : ψ ∈ Γ} �[0,1]∗ ϕ ≈ 1 for every left-continuous t-norm ∗.

Proof. The only if part is consequence of the previous corollary. The other implication is
proved by contraposition. Suppose Γ 6`MTL ϕ. Then there is an MTL-chain A and an
evaluation v on A such that v[Γ] ⊆ {1A} and v(ϕ) 6= 1A. Since FmL is countable, we can
suppose that A is also countable. The proof now consists in constructing a standard MTL-
chain [0, 1]∗ and an embedding h : A ↪→ [0, 1]∗. Then, taking the evaluation h ◦ v, we will
have the desired counterexample. The construction has the following steps:

• Consider the set B := {〈0A, 1〉} ∪ {〈a, q〉 : a ∈ A \ {0A}, q ∈ Q ∩ (0, 1]}.

• Consider the lexicographical order � on B.

• Define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 :=
{
min{〈a, q〉, 〈b, r〉} if a ∗ b = min{a, b}
〈a ∗ b, 1〉 otherwise.

• A is embeddable in B by mapping every a ∈ A to 〈a, 1〉.

• B = 〈B, ◦,�〉 is a densely ordered countable monoid with maximum and minimum, so
it is isomorphic to a monoid B′ over Q ∩ [0, 1]. Obviously, A is also embeddable in this
monoid. Let h the such embedding.

• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α⊗ β := sup{h(x ∗ y) : h(x) ≤ α, h(y) ≤ β}.

• ⊗ is a left-continuous t-norm, so it defines a standard MTL-algebra [0, 1]⊗, and h is the
desired embedding.

3The rest of the logics mentioned before enjoy also some version of standard completeness theorem, but we
will not discuss it here. We refer the interested reader to [21, 14, 7].
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Theorem 2.7 ([13]). Let Γ ∪ {ϕ} ⊆ FmL be any set of formulas (maybe infinite). Then:
Γ `IMTL ϕ iff {ψ ≈ 1 : ψ ∈ Γ} �[0,1]∗ ϕ ≈ 1 for every left-continuous t-norm ∗ with an

involutive negation.

Proof. The proof is a modification of the previous one. Suppose that A is a countable IMTL-
chain and v is an evaluation on A such that v[Γ] ⊆ {1A} and v(ϕ) 6= 1A. Now the construction
goes like this:

• For every a ∈ A, suc(a) is defined the successor of a in the order of A if it exists, or
suc(a) = a otherwise.

• B := {〈a, 1〉 : a ∈ A}∪{〈a, q〉 : ∃a′ ∈ A such that a 6= a′ and suc(a′) = a, q ∈ Q∩(0, 1)}.

• Consider the lexicographical order � on B.

• As before, we define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 :=
{
min{〈a, q〉, 〈b, r〉} if a ∗ b = min{a, b}
〈a ∗ b, 1〉 otherwise.

• The operation is modified in the following way:

〈a, q〉 × 〈b, r〉 :=
{
〈0A, 1〉 if a = suc(¬b), q + r ≤ 1
〈a, q〉 ◦ 〈b, r〉 otherwise

• A is embeddable in B by mapping every a ∈ A to 〈a, 1〉.

• B = 〈B,×,�〉 is a densely ordered countable monoid with maximum and minimum, so
it is isomorphic to a monoid B′ over Q ∩ [0, 1]. Obviously, A is also embeddable in this
monoid. Let h be such embedding.

• B′ is completed to [0, 1] by defining:

∀α, β ∈ [0, 1] α⊗ β := sup{h(x ∗ y) : h(x) ≤ α, h(y) ≤ β}.

• ⊗ is a left-continuous t-norm with an involutive negation, so it defines a standard MTL-
algebra [0, 1]⊗, and h is the desired embedding.

Given an MTL-algebra A and an element a ∈ A, we say that a is the fixpoint of A if, and
only if, a = ¬a. In [22] is proved that there exists at most one fixpoint.4

Definition 2.8. Given an MTL-algebra, A, the sets of positive and negative elements are
respectively defined as:

A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}

4Actually, Höhle states it for the involutive algebras, but the same proof gives the result for the general
non-involutive case.
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Consider the terms p(x) := x ∨ ¬x and n(x) := x ∧ ¬x. The next proposition is an easy
but useful result describing these sets:

Proposition 2.9. Let A be an MTL-algebra. Then:

• A+ = {p(a) : a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) : a ∈ A}.

Notice that if ¬a = ¬¬a, then a ∨ ¬a is the fixpoint.

Recall that a filter in an MTL-algebra is any set F such that:

• 1 ∈ F

• If a ∈ F and a ≤ b, then b ∈ F

• If a, b ∈ F , then a ∗ b ∈ F .

F is proper iff 0 /∈ F . F is a prime filter iff F is proper and ∀a, b ∈ A if a ∨ b ∈ F , then
a ∈ F or b ∈ F .

Using Zorn’s Lemma one can prove that for each proper filter F , there is a maximal proper
filter G containing F . Moreover, every maximal filter is prime. Max(A) will denote the set
of all maximal filters. The radical of A is defined as Rad(A) =

⋂
Max(A). Note that in a

chain the set of filters is totally ordered, hence the radical is the maximum proper filter and
Rad(A) ⊆ A+.

Recall this known property of maximal filters:

Proposition 2.10. Let A be an MTL-algebra and M ⊆ A a maximal filter. Then for every
a ∈ A (a /∈M ⇔ ∃n ¬an ∈M).

We state also, for the reader’s convenience, the known correspondence between filters and
congruences in MTL-algebras.

Proposition 2.11. Let A be an MTL-algebra. For every filter F ⊆ A we define Θ(F ) :=
{〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A :
〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of filters onto the set of congruences
and Fi is its inverse.

We will need two special ways to construct IMTL-algebras, the so-called rotation methods,
that were introduced by Jenei (see [25]). To this end we need first the notion of prelinear
semihoop.

Definition 2.12 ([15]). An algebra A = 〈A, ∗,→,∧, 1〉 of type (2, 2, 2, 0) is semihoop iff:

• A = 〈A,∧, 1〉 is an inf-semilattice with upper bound.

• 〈A, ∗, 1〉 is a commutative monoid isotonic w.r.t. the inf-semilattice order.

• For every a, b ∈ A (a ≤ b iff a→ b = 1).

• For every a, b, c ∈ A a ∗ b→ c = a→ (b→ c).
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If in addition satisfies the prelinearity equation, it is a prelinear semihoop.

Proposition 2.13. Filters of MTL-algebras and prelinear semihoops are equivalent notions
in the following sense:

(1) Let A be an MTL-algebra and F ⊆ A a filter. Then restricting the operations of A to
F , we obtain a prelinear semihoop.

(2) Let F be a prelinear semihoop. Then there is an MTL-algebra A such that F ⊆ A, F
is a proper filter of A and the operations of A extend the operations of F .

Proof. (1) Just notice that F is closed under ∗, → and ∧.

(2) It is enough to take the algebra A := B2 ⊕F of [[15], Lemma 3.13], i.e. the addition of
a bottom element to F .

Definition 2.14. Let A be a prelinear semihoop. We introduce the disconnected rotation of
A as an algebra denoted A∗ and defined as follows. Let A× {0} be a disjoint copy of A. For
every a ∈ A we write a′ instead of 〈a, 0〉. Consider 〈A′ = {a′ : a ∈ A},≤〉 with the inverse
order and let A∗ := A ∪ A′. We extend these orderings to an order in A∗ by putting a′ < b
for every a, b ∈ A. Finally, we take the following operations in A∗:

1A
∗

:= 1A, 0A
∗

:= (1A)′, ∧A∗ the minimum w.r.t. the ordering, ∨A∗ the maximum w.r.t.
the ordering,

¬A∗a :=
{
a′ if a ∈ A
b if a = b′ ∈ A′

a ∗A∗ b :=


a ∗A b if a, b ∈ A
¬A∗(a→A ¬A∗b) if a ∈ A, b ∈ A′
¬A∗(b→A ¬A∗a) if a ∈ A′, b ∈ A
0A

∗
if a, b ∈ A′

a→A∗ b :=


a→A b if a, b ∈ A
¬A∗(a ∗A ¬A∗b) if a ∈ A, b ∈ A′
1A

∗
if a ∈ A′, b ∈ A

¬A∗b→A ¬A∗a if a, b ∈ A′

Definition 2.15. Let A be an MTL-algebra satisfying one of the following conditions:

• A does not have zero divisors.

• ∃c ∈ A such that ∀a ∈ A zero divisor, ¬a = c.

Then, the connected rotation of A is denoted A? and defined as follows.
Take

〈
A′ = {a′ : a ∈ A, a 6= 0A},≤

〉
, a disjoint copy of A \ {0A} with the inverse order, and

define ¬A?
0A := 0A and all the operations as in the disconnected rotation.

Proposition 2.16 ([25]). Disconnected rotations are IMTL-algebras without fixpoint and
connected rotations are IMTL-algebras with fixpoint.
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Finally, we need to recall another algebraic property, the congruence extension property
(CEP, for short). Given a class of algebras K of the same type, we say that K has the CEP if,
and only if, for every algebra A ∈ K, every subalgebra B ⊆ A and every congruence θ ∈ Co(B),
there exists a congruence θ′ ∈ Co(A) such that θ = θ′ ∩ B2. This property holds for MTL
as a consequence of the following bridge theorem of Abstract Algebraic Logic connecting the
CEP with the local deduction-detachment theorem:

Theorem 2.17 ([4]). If L is an algebraizable logic and K is its equivalent algebraic semantics,
then:

L has the local deduction-detachment theorem if, and only if, K has the CEP.

Since MTL has local deduction-detachment theorem [14], we obtain:

Corollary 2.18. MTL has the CEP.

3 Main results

3.1 The radical of MTL-algebras

The radical has been a useful notion in the study of MV-algebras and BL-algebras. In [17]
the following characterization of the radical is given for MV-algebras (in the equivalent form
of Wajsberg algebras):

If A is an MV-algebra, then Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

We have obtained the same characterization in the general involutive case, i.e. for IMTL-
algebras, in [29]. Moreover, the radical of BL-algebras has been studied by Sessa and Turunen
in [30], obtaining this description:

If A is a BL-algebra, then Rad(A) = {a ∈ A : ¬¬an > ¬a ∀n ≥ 1}.

Afterwards this result has been improved by Cignoli and Torrens in [8], obtaining:

If A is a BL-algebra, then Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1},

i.e. the same expression as in the involutive case. However, the property of divisibility
was used in the proofs of both characterizations for the radical of BL-algebras. So it was not
obvious how to generalize this result to MTL-algebras. Here we present a new proof for the
whole class of MTL-algebras.

First we do it for chains:

Lemma 3.1. Let A be an MTL-chain. Then,
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof. If a ∈ Rad(A), then for every n ≥ 1, an ∈ Rad(A) ⊆ A+. Since an ≤ a, we obtain
¬a ≤ ¬an < an. Conversely, take a ∈ A such that for every n ≥ 1, an > ¬a. Then,
in particular, for every n, an 6= 0, so the filter generated by a, Fi(a), is proper. Thus,
a ∈ Fi(a) ⊆ Rad(A), since the set of filters of A is totally ordered.

In order to extend the characterization to all MTL-algebras we will need some previous
lemmas.
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Lemma 3.2. Let A be an MTL-algebra and F a maximal filter of A. Then for any subalgebra
B ⊆ A, F ∩B is a maximal filter of B.

Proof. It is straightforward to check that F ∩ B is a filter of B. It is proper because 0 /∈ F .
Moreover, we know that for every a ∈ A, a /∈ F iff ∃n ¬an ∈ F . Therefore it is obvious that
for every a ∈ B, a /∈ F ∩B iff ∃n ¬an ∈ F ∩B. Thus F ∩B is also maximal.

Lemma 3.3. Let A be an MTL-algebra. Then for any subalgebra B ⊆ A, Max(B) = {M∩B :
M ∈Max(A)}. Therefore, Rad(B) = Rad(A) ∩B.

Proof. We know by the previous lemma that for every M ∈ Max(A), M ∩ B ∈ Max(B).
Take F ∈Max(B). Then, by the CEP, there is a proper filter F ′ of A such that F = F ′ ∩B.
But then there is a maximal filter M ∈ Max(A) containing F ′, so F ′ ∩ B ⊆ M ∩ B. Hence,
since F is maximal in B, we obtain F = M ∩B.

Next we will describe some maximal filters in direct products. To this end we will need
some more notation. Given a set of MTL-algebras {Ai : i ∈ I}, ā ∈

∏
i∈I Ai, k ∈ I and

b ∈ Ak, we define σk(ā, b) ∈
∏

i∈I Ai by:

σk(ā, b)i =
{
ai if i 6= k,
b if i = k.

Lemma 3.4. Let {Ai : i ∈ I} be a set of MTL-algebras and consider their direct product∏
i∈I Ai. Then, for every k ∈ I and every Mk ∈ Max(Ak), the set Mk ×

∏
i 6=k Ai is a

maximal filter of
∏

i∈I Ai.

Proof. It is easy to check that Mk×
∏

i 6=k Ai is a proper filter of
∏

i∈I Ai. Moreover, for every
ā ∈

∏
i∈I Ai, ā /∈ Mk ×

∏
i 6=k Ai iff ak /∈ Mk iff ∃n ¬an

k ∈ Mk iff ∃n ¬ān ∈ Mk ×
∏

i 6=k Ai.
Thus, Mk ×

∏
i 6=k Ai is a maximal filter.

Lemma 3.5. Given any set of MTL-algebras {Ai : i ∈ I}, Rad(
∏

i∈I Ai) =
∏

i∈I Rad(Ai).

Proof. By applying the definition of the radical and the previous lemma we obtain:
Rad(

∏
i∈I Ai) =

⋂
Max(

∏
i∈I Ai) ⊆

⋂
{Mk×

∏
i 6=k Ai : k ∈ I,Mk ∈Max(Ak)} =

∏
i∈I

⋂
Max(Ai) =∏

i∈I Rad(Ai).
Conversely, take a ∈

∏
i∈I Rad(Ai) and M ∈ Max(

∏
i∈I Ai). We must prove that a ∈ M .

Suppose not. Then, by the maximality of M , there is m ∈M such a ∗m = 0, i.e. ai ∗mi = 0,
for every i ∈ I. Therefore, mi ≤ ¬ai, for every i ∈ I. Since each ai ∈ Rad(Ai), this implies
mi ∈ (Ai)−, for every i ∈ I, so m2 = 0, contradicting m ∈M .

Theorem 3.6. Let A be an MTL-algebra. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof. A is representable as a subdirect product of some set of MTL-chains {Ai : i ∈ I}.
Using previous lemmas we can compute the radical of A in following way:

Rad(A) = Rad(
∏

i∈I Ai) ∩ A =
∏

i∈I Rad(Ai) ∩ A =
∏

i∈I{ai ∈ Ai : an
i > ¬ai ∀n ≥

1} ∩A = {a ∈ A : an > ¬a ∀n ≥ 1}.

Corollary 3.7. For every MTL-algebra A, Rad(A) ⊆ A+.

Corollary 3.8. Let A be an MTL-algebra. Then:
A+ is a filter iff A+ = Rad(A).

Proof. As in the involutive case (see [29]).
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3.2 Perfect, local and bipartite MTL-algebras

Definition 3.9. Let A be an MTL-algebra. We define the order of a ∈ A as:

ord(a) =
{
min{n : an = 0} if it exists,
∞ otherwise.

Definition 3.10. An MTL-algebra A is perfect if, and only if, ∀a ∈ A (ord(a) < ∞ iff
ord(¬a) =∞).

Some easy examples of perfect MTL-algebras are B2, the Chang algebra defined in [6]
(page 474) and all WNM-chains with no negation fixpoint.

Definition 3.11. An MTL-algebra A is local if, and only if, for every a ∈ A ord(a) <∞ or
ord(¬a) <∞.

It is clear that all the chains are local algebras. Also all perfect algebras are local. In fact,
we have this characterization:

Proposition 3.12. An MTL-algebra is local iff it has a unique maximal filter.

Proof. As in the involutive case (see [29]).

Corollary 3.13. Let A be an MTL-algebra.
A is local iff Rad(A) = {a ∈ A : ord(a) =∞}.

In order to state a classification theorem of local algebras, we define two new classes of
MTL-algebras.

Definition 3.14. An MTL-algebra A is locally finite5 iff for every a ∈ A \ {1} ord(a) <∞.
A is peculiar iff is local and ∃a, b ∈ A \ {0, 1} such that ord(a) = ∞, ord(b) < ∞ and
ord(¬b) <∞.

Theorem 3.15. Let A be a local MTL-algebra such that A � B2. Then A satisfies one, and
only one, of the following:

• A is perfect.

• A is locally finite.

• A is peculiar.

Perfect algebras cannot have negation fixpoint, but this is not the case of the other types
of local algebras. For instance, on one hand, [0, 1]L is a locally finite MTL-algebra and, on
the other hand, [0, 1]NM and in general all WNM-chains with negation fixpoint are peculiar.

Definition 3.16. Let A be an MTL-algebra. Given a filter F ⊆ A, we define the set F :=
{a ∈ A : ¬a ∈ F}.

Notice that if A is an IMTL-algebra and F ⊆ A, then F = ¬F = {¬a : a ∈ F}.
5We follow here the nomenclature introduced by Chang for MV-algebras. Do not confuse this with the

general notion of locally finite algebra in Universal Algebra, i.e. those algebras where the all finitely generated
subalgebras are finite.
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Proposition 3.17. Let F ⊆ A be a filter of A. Then the subuniverse of A generated by F is
F ∪ F .

Definition 3.18. An MTL-algebra A is bipartite if, and only if, there is a maximal filter
F ⊆ A such that A = F ∪ F . In this case we say that A is bipartite by F .

Definition 3.19. Let A be an MTL-algebra. A ∈ BP0 if, and only if, for every F ∈Max(A),
A = F ∪ F , i.e. A is bipartite by all maximal filters.

As perfect algebras, bipartite algebras do not have negation fixpoint. Notice that all the
examples of perfect algebras mentioned before are also in BP0. B4 is an example of an algebra
in BP0 which is not perfect. Besides, not all bipartite algebras are in BP0; for instance,  L3×B2

and G3 × B2 are bipartite algebras (involutive and non-involutive, respectively) that are not
in BP0.

However, in MTL-chains, perfect and bipartite algebra and algebras from BP0 turn out
to be the same:

Theorem 3.20. Let A be an MTL-chain. The following are equivalent:

(1) A = Rad(A) ∪Rad(A).

(2) A is bipartite.

(3) A ∈ BP0.

(4) Rad(A) = A+ and A has no fixpoint.

(5) A is perfect.

(6) A |= Bp(x) ≈ 1.

(7) A/Rad(A) ∼= B2.

where Bp(x) = (¬(¬x)2)2 ↔ ¬(¬x2)2.

Proof. (1)⇒ (2), (2)⇒ (3), (3)⇒ (4) and (4)⇒ (5) are straightforward.

(5)⇒ (6): If the chain is perfect, then one can check that for every a ∈ A+, (¬(¬a)2)2 = ¬(¬a2)2 =
1 and for every a ∈ A−, (¬(¬a)2)2 = ¬(¬a2)2 = 0.

(6)⇒ (7): Suppose that A satisfies the equation. Notice that in this case the set of positive
elements is a proper filter. Indeed, if a ∈ A+, then ¬a ∈ A−, so (¬a)2 = 0. Therefore
(¬(¬a)2)2 = 1 = ¬(¬a2)2 and this implies a2 ∈ A+. Now, take a, b ∈ A+ such that
a ≤ b. Then a2 ≤ a ∗ b and a2 ∈ A+, so a ∗ b ∈ A+. Thus A+ = Rad(A). Consider
the algebra A/Rad(A) and take a ∈ A. If a is positive, then a → 1 = 1 ∈ Rad(A)
and 1 → a = a ∈ Rad(A), so a/Rad(A) = 1/Rad(A). If a is negative, then a →
0 = ¬a ∈ Rad(A) and 0 → a = 1 ∈ Rad(A), so a/Rad(A) = 0/Rad(A). Therefore
A/Rad(A) ∼= B2.

(7)⇒ (1): Suppose that the quotient by the radical is the two element Boolean algebra. Take
an arbitrary a ∈ A and suppose a /∈ Rad(A). Then a/Rad(A) 6= 1/Rad(A), so
a/Rad(A) = 0/Rad(A) and hence ¬a/Rad(A) = 1/Rad(A), i.e. ¬a ∈ Rad(A).

13



Theorem 3.21. Let A be an MTL-algebra. Then:
A is perfect iff A = Rad(A) ∪Rad(A).

Proof. Suppose that A is perfect. By Corollary 3.13 we know that Rad(A) = {a ∈ A :
ord(a) = ∞} and then the result follows immediately. Conversely, if A = Rad(A) ∪ Rad(A)
then every a ∈ Rad(A) has infinite order and every a ∈ Rad(A) has finite order, hence the
algebra is perfect.

Corollary 3.22. Every perfect algebra is bipartite.

Proof. If the algebra is perfect, then it is local, so the radical is the only maximal filter and
the result is obvious.

Another easy consequence is the following proposition about perfect subalgebras:

Corollary 3.23. Given an MTL-algebra A, Rad(A) ∪ Rad(A) is a perfect subalgebra and
contains all perfect subalgebras.

Theorem 3.24. Let A be an MTL-algebra. Then the following are equivalent:

(1) A is perfect.

(2) A/Rad(A) ∼= B2.

Proposition 3.25. Let A be an MTL-algebra and let M ⊆ A be a prime filter. Then the
following are equivalent:

(1) A+ ⊆M and A has no fixpoint.

(2) M is maximal and A = M ∪M .

(3) A/M ∼= B2.

Proof.(1)⇒ (2): If a ∈ A, then by Proposition 2.9, a ∨ ¬a ∈ A+ ⊆ M , but since M is prime,
a ∈M or ¬a ∈M .

(2)⇒ (3): On one hand, M is prime, so A/M is a chain. On the other hand, for every a ∈ A,
a/M ∨ ¬(a/M) = (a ∨ ¬a)/M = 1/M , hence A/M is Boolean, so it must be the two
element Boolean algebra.

(3)⇒ (1): Take any a ∨ ¬a ∈ A+. (a ∨ ¬a)/M = a/M ∨ ¬(a/M) = 1/M , so a ∨ ¬a ∈M .

Lemma 3.26. Let A be an MTL-algebra and let F ⊆ A be a proper filter. Then: A/F ∈ BA
iff {a ∨ ¬a : a ∈ A} ⊆ F .

Proof. Suppose that the quotient is a Boolean algebra and take a ∈ A+. Then a/F∨¬(a/F ) =
(a ∨ ¬a)/F = 1/F . Thus: a = a ∨ ¬a ∈ F . Conversely, it is straightforward to check that
A/F satisfies the law of the excluded middle.
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Theorem 3.27. For every MTL-algebra A the following are equivalent:

(1) A ∈ BP0.

(2) A/Rad(A) ∈ BA.

(3) Rad(A) = A+ and A has no fixpoint.

Proof.(1)⇔ (2): For every maximal filter M , A = M ∪ M iff (by Theorem 3.25) A+ is con-
tained in every maximal filter iff A+ ⊆ Rad(A). By Lemma 3.26, this is equivalent to
A/Rad(A) ∈ BA.

(2)⇒ (3): By Lemma 3.26, we obtain A+ ⊆ Rad(A) and the other inclusion is always true.

(3)⇒ (2): Also by Lemma 3.26.

From (2) of the last theorem and Theorem 3.24 we obviously obtain the following result:

Corollary 3.28. Every perfect MTL-algebra is in BP0.

Theorem 3.29. BP0 is a variety. One equational base is obtained by adding the next set of
equations to the usual axiomatization for MTL:

{(¬x ∧ ¬¬x)→ (x ∨ ¬x)n ≈ 1 : n ≥ 1}

Proof. Let A be an MTL-algebra. A ∈ BP0 iff A+ ⊆ Rad(A) and there is no fixpoint iff for
every a ∨ ¬a ∈ A+ and every n ≥ 1, (a ∨ ¬a)n ≥ ¬(a ∨ ¬a) = ¬a ∧ ¬¬a.

Corollary 3.30. BP0 is the variety generated by all perfect MTL-algebras.

Proof. Let K be the variety generated by all perfect MTL-algebras. By Corollary 3.28, K ⊆
BP0. The other inclusion follows from the subdirect representation theorem and Theorem
3.20.

Corollary 3.31. There is a simpler axiomatization for BP0 obtained by adding to the axioms
of MTL only the equation Bp(x) ≈ 1.

Proof. Let K be the variety of MTL-algebras satisfying this equation. We will prove K = BP0.
If A ∈ K, then by the subdirect representation theorem A is representable as a subdirect
product of chains satisfying the equation. By Theorem 3.20, these chains are in BP0, so
A ∈ BP0. Conversely, take A ∈ BP0. Then A is isomorphic to a subdirect product of
MTL-chains in BP0, so A satisfies the equation.

As in [29], we can prove the following Glivenko-style theorem6 for the logic BP0 associated
to the variety BP0:

Theorem 3.32. Let `CPC denote the relation of derivability in the classical propositional
calculus. Then, for every ϕ ∈ FmL, `CPC ϕ iff `BP0 (¬(¬ϕ)2)2.

6For a general study of this type of theorems in the framework of natural expansions of BCK logic see [9].
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Proof. Suppose that `CPC ϕ. It suffices to prove that for each chain A ∈ BP0, A |=
(¬(¬ϕ)2)2 ≈ 1. Let A be such a chain and v : FmL → A an evaluation. We know that
A/Rad(A) ∼= B2, so v(ϕ)/Rad(A) = 1/Rad(A), i.e. v(ϕ) ∈ A+, hence (¬(¬v(ϕ))2)2 = 1.
Conversely, if `BP0 (¬(¬ϕ)2)2, then B2 |= (¬(¬ϕ)2)2 ≈ 1, i.e. B2 |= ϕ ≈ 1, hence `CPC ϕ.

Concerning the structure of the class of bipartite MTL-algebras, we obtain the following
results:

Proposition 3.33. The class of bipartite MTL-algebras is closed under subalgebras.

Theorem 3.34. Let {Ai : i ∈ I} be a set of MTL-algebras and take their direct product A.
If there is a j ∈ I such that Aj is bipartite, then A is bipartite.

Proof. Using the same reasoning as in Theorem 4.5 of [11].

Corollary 3.35. The class of bipartite MTL-algebras is closed under direct products.

Corollary 3.36. The variety generated by all bipartite MTL-algebras is MTL.

Proof. Let A be an arbitrary MTL-algebra. Consider A×B2, that is a bipartite MTL-algebra
since B2 is bipartite. Thus, taking the projection over the first component, we obtain A as
a homomorphic image of a bipartite algebra. Therefore, every MTL-algebra is in the variety
generated by all bipartite algebras.

3.3 Adding the fixpoint to perfect algebras

In this section we will use perfect MTL-algebras to construct new kinds of MTL-algebras and
we will study the varieties and the logics that they define.

Definition 3.37. For every natural number n ≥ 1, we define a WNM-chain Wn = 〈Wn, ∗,→
,∧,∨, 0Wn , 1Wn〉 by taking Wn = {1Wn > a0 > a1 > . . . > an−1 > 0Wn} and ¬ai = a0 for
every i < n. As in every WNM-chain, the operations ∗ and → are defined as:

a ∗ b =
{
a ∧ b if a > ¬b,
0Wn otherwise.

a→ b =
{

1Wn if a ≤ b,
¬a ∨ b otherwise.

for every a, b ∈Wn.
Moreover, we define the WNM-chain Wω = 〈Wω, ∗,→,∧,∨, 0Wω , 1Wω〉 by taking an infi-

nite set {ak : k < ω}, letting Wω = {1Wω > a0 > a1 > . . . > an > an+1 > . . . > 0Wω} and
defining the operations in the same way.

Notice that  L3
∼=W1.

Definition 3.38. Let A be a perfect MTL-algebra and 1 ≤ n ≤ ω. We define an MTL-algebra
A⊕Wn, whose carrier is A∪ (Wn \ {0Wn , 1Wn}), the orderings in A and Wn are extended by
letting a < b < c for every a ∈ A−, b ∈Wn \ {0Wn , 1Wn} and c ∈ A+, and the operations are
defined as 0A⊕Wn = 0A, 1A⊕Wn = 1A and:
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a ∗A⊕Wn b :=


a ∗A b if a, b ∈ A
0A if a, b ∈Wn \ {0Wn , 1Wn}
b if a ∈ A+, b ∈Wn \ {0Wn , 1Wn}
0A if a ∈ A−, b ∈Wn \ {0Wn , 1Wn}

a→A⊕Wn b :=



a→A b if a, b ∈ A
1C if a, b ∈Wn \ {0Wn , 1Wn}, a ≤ b
a→Wn b if a, b ∈Wn \ {0Wn , 1Wn}, a > b
1A if a ∈ A−, b ∈Wn \ {0Wn , 1Wn}
1A if a ∈Wn \ {0Wn , 1Wn}, b ∈ A+

a0 if a ∈Wn, b ∈ A−
b if a ∈ A+, b ∈Wn

It is routine to check that the definition is sound. We will also use the notation A+n for
this algebra and we will call it a perfect algebra plus n points. Notice that one of the added
points, namely a0, is a negation fixpoint; so when n = 1 we will call A+1 a perfect algebra
plus fixpoint.

We must be careful to avoid any misunderstanding here. We know that perfect algebras
cannot have fixpoint. Therefore, we are not saying that A+n is a perfect algebra with fixpoint;
this would not make sense. On the contrary, we are just saying that A+n is a perfect algebra
plus n points, in the sense that it is obtained by adding n new points to a given perfect
algebra A. Thus, A+n is not perfect and it has negation fixpoint.

Notice that if we start with an IMTL-algebra, this definition is only preserving the invo-
lution when n = 1. Moreover, the construction of A+1 is canonical in the sense that it is the
only possible way to add the fixpoint to a perfect algebra:

Theorem 3.39. Let A be an MTL-algebra with negation fixpoint such that A = A+ ∪ A−
and Rad(A) = A+. Let a be the fixpoint. Then, a ∗ b = a for every b ∈ A+ and a ∗ b = 0 for
every b ∈ A−.

Proof. Take b > a. We know that a ∗ b ≤ a. Suppose a ∗ b < a. Then, ¬(a ∗ b) ∈ A+, hence
b ∗ ¬(a ∗ b) ∈ A+. This implies a > ¬(b ∗ ¬(a ∗ b)), in contradiction with a ∗ (b ∗ ¬(a ∗ b)) =
(a∗b)∗¬(a∗b) = 0. If b ∈ A−, then ¬b ∈ A+, so a ≤ ¬b and this is equivalent to a∗b = 0.

Besides, the construction of adding the fixpoint to perfect algebras can be characterized
in terms of coproducts:7

Definition 3.40. Let {Aj | j ∈ J} ∪ {A} ⊆ MTL be MTL-algebras. We say that A is the
coproduct of the family {Aj | j ∈ J} iff there exist homomorphisms {hj : Aj → A | j ∈ J}
such that for every B ∈ MTL and every family of homomorphisms {fj : Aj → B | j ∈ J},
there is a unique f : A → B such that f ◦ hj = fj for every j ∈ J . In this case we write
A =

∐
j∈J Aj, or A = A1 q . . .qAn when the family is finite.

7We assume the basic knowlegde on category theory. It can be found in [28]. We thank professor Antonio
Di Nola for leading our attention to this categorial aspect of the construction.
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The existence of the coproduct for every family of MTL-algebras and its construction
when it exists is an open problem. Nevertheless, we can prove that the coproduct of any
perfect MTL-algebra with Wn exists for every 1 ≤ n ≤ ω and we can even describe it:

Theorem 3.41. If A is a perfect MTL-algebra and 1 ≤ n ≤ ω, then A+n = AqWn.

Proof. Let h1 : A → A+n the identity mapping and h2 :Wn → A+n the identity mapping on
{ak : k < ω} extended with h2(0Wn) = 0A and h2(1Wn) = 1A. Given an arbitrary B ∈ MTL
and arbitrary homomorphisms f1 : A → B and f2 :Wn → B, the homomorphism f : A+n → B
defined by f(a) = f1(a) for every a ∈ A and f(a) = f2(a) for every a ∈ Wn \ {0Wn , 1Wn},
does the job.

The class of perfect IMTL-algebras plus fixpoint coincides with the class of all connected
rotations of MTL-algebras without zero divisors:

Theorem 3.42. Let A be an IMTL-algebra. The following are equivalent:

(1) A is a perfect algebra plus fixpoint.

(2) A is isomorphic to the connected rotation of an MTL-algebra without zero divisors.

Proof.(1)⇒ (2): Let a be the fixpoint of the algebra. Consider the MTL-algebra B defined by
Rad(A)∪{a} such that 0B = a. Since the radical is closed under ∗, B is an MTL-algebra
without zero divisors. Thus A ∼= B?.

(2)⇒ (1): If A ∼= B? for some MTL-algebra B without zero divisors, then is clear that all the
positive elements have infinite order and all the negative elements have finite order, so
it is a perfect algebra plus the fixpoint.

Proposition 3.43. Let A be a perfect MTL-algebra and n any ordinal number such that
1 ≤ n ≤ ω. Then, A+n/Rad(A+n) ∼=Wn.

Proof. Recall that Rad(A+n) = A+. So, on one hand, it is clear that 1A
+n
/Rad(A+n) = A+

and 0A
+n
/Rad(A+n) = A−. On the other hand, for every a, b ∈ Wn \ {0Wn , 1Wn} such that

a < b, we have b → a = a0 /∈ Rad(A+n), thus a/Rad(A+n) 6= b/Rad(A+n). Therefore, the
function defined by:

f(x/Rad(A+n)) :=


1Wn if x = 1A

+n

0Wn if x = 0A
+n

x if x ∈Wn \ {0Wn , 1Wn}

is an isomorphism from A+n/Rad(A+n) to Wn.

However, in this case the quotient by the radical does not characterize perfect algebras
plus fixpoint. This is false even for MV-algebras. Take for instance the MV-algebra  Lω

3 .
Indeed,  Lω

3 /Rad( Lω
3 ) ∼=W1 but  Lω

3 is not a perfect algebra plus fixpoint.

Definition 3.44. For every 1 ≤ n ≤ ω, let BP+n
0 be the variety generated by all perfect

MTL-algebras plus n points.
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Obviously, BP0 ∩ IMTL ( BP+1
0 ∩ IMTL, since  L3 ∈ (BP+1

0 ∩ IMTL) \ (BP0 ∩ IMTL).

It is also clear that we have the following chain of strict inclusions:

BP0 ( BP+1
0 ( . . . ( BP+n

0 ( BP+(n+1)
0 ( . . . ( BP+ω

0 .

Proposition 3.45. BP+ω
0 is the minimum variety containing BP+n

0 for every finite n, i.e.
BP+ω

0 =
∨

1≤n<ω BP
+n
0 .

Proof. It is obvious that
∨

1≤n<ω BP
+n
0 ⊆ BP+ω

0 . To prove the other inclusion, consider any
equation ϕ ≈ ψ ∈ EqL such that is not verified by all algebras in BP+ω

0 . We must show that
ϕ ≈ ψ is not verified by all algebras in

∨
1≤n<ω BP

+n
0 . Suppose that {x1, . . . , xn} is the set

of variables appearing in ϕ ≈ ψ. There is a chain C ∈ BP+ω
0 and an evaluation v in C such

that v(ϕ) 6= v(ψ). If C is perfect or C = A+k for some k < ω and some perfect algebra A,
the proof finishes. Suppose that C = A+ω for some perfect algebra A. Then the subalgebra
generated by the set A+ ∪ A+ ∪ {v(x1), . . . , v(xn)} is also not satisfying the equation and it
belongs to the variety BP+(n+1)

0 .

Theorem 3.46. We can obtain an equational base for BP+ω
0 by adding to the axioms of MTL

the following:

1. Bp(x) ∨ (¬x↔ ¬¬x) ≈ 1

2. (x∨¬x→ y∨¬y)∨((y∨¬y → ¬y∧¬¬y)→ y∨¬y)∨(((x∨¬x)2 → y∨¬y)→ y∨¬y) ≈ 1

3. Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x→ x ∗ p(y)) ≈ 1

Proof. Let K be the variety of MTL-algebras where these equations are valid. Let A be a
perfect MTL-algebra plus ω points. One can easily check that A |= ((¬(¬x)2)2 ↔ ¬(¬x2)2)∨
(¬x ↔ ¬¬x) ≈ 1. Let’s prove that also the second equation is valid in A. Take a, b ∈ A. If
¬a is the fixpoint, then a ∨ ¬a→ b ∨ ¬b = 1 and the equation is satisfied. Suppose now that
¬b is the fixpoint and ¬a 6= ¬¬a. a ∨ ¬a > b ∨ ¬b, so (a ∨ ¬a)2 > b ∨ ¬b. Thus, (a ∨ ¬a)2 →
b∨¬b = b∨¬b and the equation is satisfied too. Finally, suppose that neither ¬a nor ¬b are
the fixpoint. Then b∨¬b→ ¬b∧¬¬b ∈ A−, hence (b∨¬b→ ¬b∧¬¬b)→ b∨¬b = 1. Finally,
let’s prove that also the third equation is valid in A. Take a, b ∈ A. Suppose Bp(a) 6= 1 and
¬¬b 6= ¬b (otherwise the equation is clearly satisfied). Then, we have a /∈ Rad(A) ∪Rad(A)
and p(b) ∈ A+, so a ∗ p(b) = a and the equation is also satisfied. Therefore, BP+ω

0 ⊆ K.
In order to prove the other inclusion and taking into account the representation theorem

in subdirect products of chains, we only need to check that all chains in K are either perfect
or perfect plus some points. Let C be such a chain and take a ∈ C+; we will see that a2 ∈ C+.
Suppose that it is not true. Then there are two possibilities: either a2 is the fixpoint or it
is smaller than its negation. If a2 = b = ¬b, then the second equation would imply (a →
b) ∨ ((b→ b)→ b) ∨ ((a2 → b)→ b) = (a→ b) ∨ b ∨ b = a→ b = 1, so a ≤ b, a contradiction.
Suppose now, that a2 < ¬a2. By the first equation ¬(¬a2)2 = (¬(¬a)2)2 = (¬0)2 = 1,
so (¬a2)2 = 0, i. e. ¬a2 ≤ ¬¬a2. This means that a2 < ¬a2 ≤ ¬¬a2, so ¬a2 = ¬¬a2.
Therefore ¬a2 is the fixpoint. Using values a and ¬a2 in the second equation we obtain:
(a → ¬a2) ∨ ((¬a2 → ¬a2) → ¬a2) ∨ ((a2 → ¬a2) → ¬a2) = (a → ¬a2) ∨ ¬a2 ∨ ((a2 →
¬a2) → ¬a2) = (a → ¬a2) ∨ ((a2 → ¬a2) → ¬a2) = 1, so one of the two disjuncts must
be 1. a > ¬a2, thus a2 → ¬a2 ≤ ¬a2, but this is absurd since a2 → ¬a2 = 1. Thus,
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given a, b ∈ C+ such that a ≤ b, we have a ∗ b ≥ a2 ∈ C+; therefore, C+ is closed under ∗. If
C = Rad(C)∪Rad(C), the chain is perfect. Suppose not. Then for every a /∈ Rad(C)∪Rad(C),
we have ¬a = ¬¬a. Indeed, a ≤ ¬a (because a /∈ Rad(C) = C+), and ¬a ≤ ¬¬a (because
¬a /∈ Rad(C) = C+). Thus, a ≤ ¬a ≤ ¬¬a, and this implies ¬a = ¬¬a. Moreover, given
a /∈ Rad(C) ∪ Rad(C), and b ∈ C+, the third equation implies a ∗ b = b, so C is perfect plus
some points.

Theorem 3.47. If 1 ≤ n < ω, we can obtain an equational base for BP+n
0 by adding to the

axioms of MTL the following:

1. Bp(x) ∨ (¬x↔ ¬¬x) ≈ 1

2. (x∨¬x→ y∨¬y)∨((y∨¬y → ¬y∧¬¬y)→ y∨¬y)∨(((x∨¬x)2 → y∨¬y)→ y∨¬y) ≈ 1

3. Bp(x) ∨ (¬y ↔ ¬¬y) ∨ (x→ x ∗ p(y)) ≈ 1

4.
∨

0≤i≤nBp(xi) ∨
∨

0≤i<j≤n(xi ↔ xj) ≈ 1

Proof. Let K be the variety defined by these equations. Let A+n be a perfect algebra plus n
points. By the previous theorem the first three equations are valid in this algebra. Let’s check
the fourth one. Consider a0, . . . , an ∈ A+n. If there is some i such that ai ∈ Rad(A+n) ∪
Rad(A+n), then Bp(ai) = 1. If for every i ai /∈ Rad(A+n) ∪ Rad(A+n), then there must be
some i, j such that ai = aj , since there are only n elements in these conditions, so ai ↔ aj = 1
and the equation is also satisfied. Therefore, BP+n

0 ⊆ K. Conversely, take any chain C ∈ K.
On one hand, by the proof of the previous theorem we know that C is perfect or perfect plus
some points. On the other hand, the fourth equation implies that there are at most n points
not belonging to Rad(C) ∪Rad(C). Therefore, we obtain C ∈ BP+n

0 , hence K ⊆ BP+n
0 .

Corollary 3.48. An equational base for BP+1
0 ∩ IMTL is obtained by adding to the axioms

of IMTL the following:

1. Bp(x) ∨ (x↔ ¬x) ≈ 1

2. (x∨¬x→ y∨¬y)∨ ((y∨¬y → y∧¬y)→ y∨¬y)∨ (((x∨¬x)2 → y∨¬y)→ y∨¬y) ≈ 1

Notice that the equation Bp(x)∨(¬y ↔ ¬¬y)∨(x→ x∗p(y)) ≈ 1 of the last two theorems
is strictly necessary. Indeed, if A is any perfect MTL-algebra, we can define an MTL-algebra
B whose carrier is A∪{a, b}, the ordering in A is extended by letting x < b < a < y for every
x ∈ A−, y ∈ A+, and the operations are defined as 0B = 0A, 1B = 1A and:

x ∗B y :=


x ∗A y if x, y ∈ A
0A if x, y ∈ {a, b}
b if x ∈ A+, y ∈ {a, b}
0A if x ∈ A−, y ∈ {a, b}

and → is its residuum. Then, B is neither in BP+ω
0 nor in BP+2

0 , and it does not satisfy
the equation Bp(x)∨ (¬y ↔ ¬¬y)∨ (x→ x∗p(y)) ≈ 1, even though it satisfies the remaining
equations.
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If BP+1
0 , IBP+1

0 , BP+n
0 and Wn are respectively the logics associated to the varieties

BP+1
0 , BP+1

0 ∩ IMTL, BP+n
0 and V(Wn) for every 2 ≤ n ≤ ω, and L3 is the three-valued

logic of Lukasiewicz, i.e. the logic associated to the variety V( L3), we can prove the following
Glivenko-style theorems for these logics:

Theorem 3.49. For every ϕ ∈ FmL, we have:

(i) `L3 ϕ if, and only if, `BP+1
0

t(ϕ) ∨ t(ϕ↔ ¬ϕ) ∗ ϕ.

(ii) `L3 ϕ if, and only if, `IBP+1
0

t(ϕ) ∨ t(ϕ↔ ¬ϕ) ∗ ϕ.

(iii) `Wn ϕ if, and only if, `BP+n
0

t(ϕ) ∨ t(¬ϕ↔ ¬¬ϕ) ∗ ϕ, for every 2 ≤ n ≤ ω.

where t(x) = ¬(¬x2)2.

Proof. We will prove the first case as an example. The remaining ones are analogous. Suppose
that `L3 ϕ and take any chain A ∈ BP+1

0 . We must prove that A |= t(ϕ)∨ t(ϕ↔ ¬ϕ)∗ϕ ≈ 1.
Let v : FmL → A be an evaluation. We know that A/Rad(A) ∼=  L3, so v(ϕ)/Rad(A) =
1/Rad(A), i.e. v(ϕ) ∈ A+ = Rad(A), hence t(v(ϕ)) = 1. Conversely, if `BP+1

0
t(ϕ) ∨ t(ϕ ↔

¬ϕ) ∗ ϕ, then in particular  L3 |= t(ϕ) ∨ t(ϕ ↔ ¬ϕ) ∗ ϕ ≈ 1. Let v be any evaluation on  L3.
We have t(v(ϕ))∨ t(v(ϕ)↔ ¬v(ϕ)) ∗ v(ϕ) = 1. The assumptions v(ϕ) = 0 and v(ϕ) = 1

2 lead
to contradiction, so it must be v(ϕ) = 1, and this finishes the proof.

Finally, we will discuss which of those varieties define new fuzzy logics with strong standard
completeness theorem. We will prove the theorem for BP+ω

0 , BP0, BP+1
0 ∩ IMTL and BP+1

0 .
For BP+ω

0 the original method of Jenei and Montagna [26], that we have sketched in Theorem
2.6, will be enough to prove it, and for BP0, BP+1

0 ∩ IMTL and BP+1
0 we will need some

modifications of the method. For the remaining varieties, BP+n
0 (for every 1 < n < ω) and

BP0 ∩ IMTL we will prove that there is no standard completeness.

Theorem 3.50. The logic associated to the variety BP+ω
0 is strong standard complete.

Proof. Let A ∈ BP+ω
0 be a countable perfect chain plus infinitely many points. Using the

method of Jenei and Montagna we obtain an MTL-chain B over [0, 1] and an embedding
h : A → B. It is easy to check that Rad(B) = B+, so B ∈ BP+ω

0 .

Theorem 3.51. The logic associated to BP0 is strong standard complete.

Proof. Let A ∈ BP0 be a countable chain. We know that A is perfect. If A− has no maximum,
the method of Jenei and Montagna would not work. Indeed, the resulting chain over [0, 1]
would have a negation fixpoint, so it would not belong to BP0. To avoid this problem and
make sure that A− has a maximum element, we add a couple of new elements a, b /∈ A
requiring:

• a < x for each x ∈ A+,

• b < a,

• x < b for each x ∈ A−,
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• ¬a = b,

• ¬b = a,

• a ∗ x = x ∗ a = a for each x ∈ A+ ∪ {a},

• a ∗ x = x ∗ a = 0 for each x ∈ A− ∪ {b},

• b ∗ x = x ∗ b = b for each x ∈ A+ and

• b ∗ x = x ∗ b = 0 for each x ∈ A− ∪ {b}.

A is a subalgebra of this extended chain. Therefore, we can suppose without losing
generality that A− has a maximum, say b. Now we apply the usual method of Jenei and
Montagna. First we obtain a densely ordered countable monoid B over the set {〈0A, 1〉} ∪
{〈a, q〉 : a ∈ A\{0A}, q ∈ Q∩(0, 1]}, with the lexicographical order and the following monoidal
operation:

〈a, q〉 ◦ 〈c, r〉 :=
{
min{〈a, q〉, 〈c, r〉} if a ∗ c = min{a, c}
〈a ∗ c, 1〉 otherwise.

Notice that for every 〈c, r〉 > 〈b, 1〉 (i.e. c > b) we have 〈c, r〉n > 〈b, 1〉 for every n ≥ 1.
Notice also that given 〈c, r〉 ≤ 〈b, 1〉 we can define ¬〈c, r〉 := max{〈a, q〉 : 〈a, q〉 ◦ 〈c, r〉 =
〈0A, 1〉} and we get ¬〈c, r〉 > 〈b, 1〉.
B is isomorphic to a monoid over Q ∩ [0, 1] and it is completed to [0, 1] by defining

α⊗ β := sup{p ◦ q : p, q ∈ Q, p ≤ α, q ≤ β} and we obtain an MTL-chain C over [0, 1] and an
embedding h : A → C. It is easy to check that C is perfect.

Theorem 3.52. The logic associated to the variety BP+1
0 ∩IMTL is strong standard complete.

Proof. Let A ∈ BP+1
0 ∩ IMTL be a countable chain. As we have seen, A is either perfect or

perfect plus fixpoint. It is enough to suppose that A is a countable perfect chain plus fixpoint
and show that it can be embedded in a standard chain of BP+

0 ∩IMTL over [0, 1]. Let a ∈ A be
the fixpoint. If we use the usual method we first obtain an algebra over a densely ordered set
B, as we have described in the preliminaries. For every q ∈ Q ∩ (0, 1) the element 〈a, q〉 ∈ B
is such that ¬〈a, q〉 = 〈a, 1〉, so the resulting standard chain will not be perfect plus fixpoint.

In order to solve this problem, we consider the construction of Jenei and Montagna applied
to the prelinear semihoop defined by Rad(A), but giving an algebra C over [0.6, 1] instead
of being over [0, 1] as usual. We have an embedding h : Rad(A) → [0.6, 1] such that is a
homomorphism with respect to ∗, is monotonic and h(1A) = 1. We extend h to ĥ : A→ [0, 1]
in the following way:

• ĥ(x) = h(x), if a ∈ Rad(A),

• ĥ(¬x) = 1− h(x), if ¬a ∈ ¬Rad(A), and

• ĥ(a) = 1
2 .

Consider now the algebra B over [0.5, 1] given by the ordinal sum of the G-chain over
[0.5, 0.6] and C. B is an MTL-algebra without zero divisors. Consider its connected rotation
B? defined over [0, 1]. Then, B? ∈ BP+

0 ∩ IMTL and ĥ is an embedding from A into B?, so
the theorem holds.
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Theorem 3.53. The logic associated to the variety BP+1
0 is strong standard complete.

Proof. Let A ∈ BP+1
0 be a countable perfect chain plus fixpoint. Let a ∈ A be the fixpoint.

The usual method would produce the same problem as in the previous proof, so we will
modify it again. If A+ has minimum or A− \ {a} has maximum we embed A into a new
countable perfect chain plus fixpoint in the following way. Let B be the disconnected rotation
of a countable cancellative hoop such that A ∩ B = ∅. We will define a new chain over
C := (A \ {a})∪ (B \ {0B, 1B}) by extending the operations and the order of A and B in this
way:

• x < y for each x ∈ B \ {0B, 1B} and each y ∈ A+,

• x < y for each x ∈ A− \ {a} and each y ∈ B \ {0B, 1B},

• x ∗ y = y ∗ x = y for each x ∈ A+ and each y ∈ B \ {0B, 1B},

• x ∗ y = y ∗ x = x ∗B y for each x, y ∈ B \ {0B, 1B} such that x > ¬y,

• x ∗ y = y ∗ x = 0A for each x, y ∈ B \ {0B, 1B} such that x ≤ ¬y, and

• x ∗ y = y ∗ x = 0A for each x, y ∈ A− \ {a}.

Let→ be the residuum of ∗. With this order and these operations C is a countable perfect
MTL-algebra. Then, considering C+1 we obtain a countable perfect chain plus fixpoint where
it is possible to embed A and with no minimum in the set of positives and no maximum in
the set of negatives minus the fixpoint. Thus we can suppose without losing generality that
A is such that A+ has no minimum and A− \ {a} has no maximum.

Now we will use the construction of Jenei and Montagna slightly modified. Indeed, we
define a densely ordered countable monoid with the lexicographical order and the usual op-
erations, but over the set {〈0A, 1〉, 〈a, 1〉}∪ {〈b, q〉 : b ∈ A \ {0A, a}, q ∈ Q∩ (0, 1]}. To be sure
that this also works we only need to check the left-continuity of the monoidal operation on
〈a, 1〉. Let {〈bi, qi〉 : i ∈ ω} be such that sup{〈bi, qi〉 : i ∈ ω} = 〈a, 1〉 and take an arbitrary
element 〈c, p〉. We must prove sup{〈bi, qi〉 ◦ 〈c, p〉 : i ∈ ω} = 〈a, 1〉 ◦ 〈c, p〉. If c ≤ a then
〈a, 1〉 ◦ 〈c, p〉 = 〈0A, 1〉 and 〈bi, qi〉 ◦ 〈c, p〉 = 〈0A, 1〉 for every i ∈ ω, so it holds. Suppose that
c > a. 〈a, 1〉 ◦ 〈c, p〉 = 〈a, 1〉 and for every i ∈ ω we have:

〈bi, qi〉 ◦ 〈c, p〉 :=
{
〈bi ∗ c, qi〉 if bi ∗ c = bi
〈bi ∗ c, 1〉 otherwise.

Now using that sup{bi ∗ c : i ∈ ω} = a ∗ c the proof finishes.

Finally, we prove that the remaining varieties do not define a logic with standard com-
pleteness:

Theorem 3.54. The logic associated to BP0 ∩ IMTL has no standard completeness.

Proof. This is clear because all IMTL-chains over [0, 1] have negation fixpoint, so there are
no perfect standard IMTL-chains.

Theorem 3.55. For every 1 < n < ω, the logic associated to BP+n
0 has no standard com-

pleteness.
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Proof. Observe that the only standard chains in BP+n
0 are perfect chains plus fixpoint, hence

if the standard completeness was true we would have BP+n
0 = V({standard BP+n

0 -chains}) =
BP+1

0 , a contradiction.
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[15] F. Esteva, L. Godo, P. Hájek, F. Montagna. Hoops and Fuzzy Logic, J. Logic
Computat., Vol. 13 No. 4 (2003) 531–555.

[16] J. Fodor. Nilpotent minimum and related connectives for fuzzy logic, Proc. FUZZ-
IEEE’95, 1995, pp. 2077–2082.
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