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Introduction 
 
In the mid-nineteen eighties, Don Swanson, an information scientist, made a chance discovery by 
connecting two disparate on-line medical literatures, one dealing with Raynaud's disease, the other with 
dietary fish oil (Swanson, 1986a; Swanson, 1987). Patients with Raynaud's disease suffer from intermittent 
blood flow in the extremities - fingers, toes, and ears.  At the time, there was neither a general treatment, 
nor a cure. Swanson formulated the explanatory hypothesis that fish oil may be a beneficial treatment, 
which was later verified by clinical trials. Swanson's discovery highlights a more widely occurring 
phenomenon. In order to deal with the information explosion, disciplines and expertise are becoming 
increasingly specialized and insular with little awareness of kindred, or potentially allied, specializations. 
As a consequence, disparate bodies of knowledge form, and with them “undiscovered public knowledge” 
(Swanson, 1986b). Automated, or semi-automated knowledge discovery systems can help counter this 
growing lack of awareness by suggesting potentially relevant connections between these islands of 
knowledge.  
 
Swanson's discovery is an example of an abductive scientific discovery. Gabbay and Woods (2005a) have 
convincingly argued that abduction has its roots in cognitive economy. Put crudely, it is cheaper to “guess”, 
than to pursue a deductive agenda in relation to a problem at hand. It is interesting to briefly consider 
Gabbay and Woods' conjecture within the framework of Gärdenfors' three level model of cognition 
(Gärdenfors, 2000). How information is represented varies greatly across the different levels. The 
subconceptual level is the lowest level where information is carried by a connectionist representation. 
Within the uppermost level information is represented symbolically. It is the intermediate, conceptual level 
(or “conceptual space”), which is of particular relevance to this account. Here properties and concepts have 
a geometric representation in a dimensional space.  For example, the property of “redness” is represented as 
a convex region in a tri-dimensional space determined by the dimensions hue, chromaticity and brightness. 
The point left dangling for the moment is that representation at the conceptual level is rich in associations, 
both explicit and implicit. We subscribe to the view that associations and analogies generated within 
conceptual space play an important role in hypothesis generation. Gärdenfors (2000, p48) alludes to this 
point when he states, “most of scientific theorizing takes place within the conceptual level”. His conjecture 
is aligned with Gabbay and Woods' insights regarding the cognitive economic basis of abduction: Within 
the conceptual space, inference takes on a decidedly associational character because associations are often 
based on context-sensitive similarity (e.g., semantic or analogical similarity), and notions of similarity are 
naturally expressed within a dimensional space. Inference at the symbolic level, however, is a linear, 
deductive process. It may well be that because associations are formed below the symbolic level of 
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cognition, significant cognitive economy results. This is not only interesting from a cognitive point of view, 
but also opens the door to providing both a principled and computationally tractable abductive logical 
system.  
 
In light of the introductory remarks above, it is our conviction that it would be misguided to adopt a 
traditional, symbolic perspective of an abductive logical system by assuming a propositional knowledge 
representation and proof-theoretic approaches for driving it. Gabbay and Woods (2003) argue that this 
perspective is conceptually incomplete - it ignores what is going on ``down below”. In terms of 
Gärdenfors’ model, ``down below” can be interpreted as the conceptual and subconceptual levels of 
cognition. Even if one does not accept Gabbay and Woods’ objection, another can be mounted from an 
operational stance. Textual information cannot automatically be rendered into a propositional 
representation. In addition, deductive approaches have well documented and daunting complexity results. 
Granted, the complexity challenges can be to a degree circumvented by the use of heuristics, but the dearth 
of large-scale symbolic logical systems reasoning over text suggests significant operational challenges not 
likely to be surmounted soon. For these reasons, we feel strongly that from both the conceptual and 
operational perspectives, a purely symbolic approach does not pave the way towards abductive logical 
systems on the scale needed to replicate Swanson-like discoveries.  It is our conviction that in order to 
construct such systems, a cognitively motivated knowledge representation is required. More specifically, 
we advocate semantic spaces as a computational approximation of Gärdenfors' conceptual space. 
Hypotheses generated from semantic spaces do not have a proof-theoretic basis, but rather they are 
computations of associations by various means within the space. In ensuing sections we will show how 
conceptual space can be approximated computationally by means of semantic space. In addition, its 
feasibility for abduction will be demonstrated by replicating Swanson’s discovery by operational means. 
 
In summary, the goal of this account is to introduce semantic spaces to the model-based reasoning and 
abduction community and to illustrate their potential for principled, operational abduction in “the large”. In 
order to construct an operational abductive system, two major questions should be addressed: 

• How should the knowledge be represented? 
• How to generate and justify hypotheses? 

Both of these questions set the tone for following sections. 
 
 

Approximating cognitive knowledge representation by semantic 
space 
 
In order to illustrate how the gap between cognitive knowledge representation and actual computational 
representations can be bridged, the Hyperspace Analogue to Language (HAL) model is used (Lund and 
Burgess, 1996). HAL produces representations of words in a high dimensional space that seem to correlate 
with the equivalent human representations. Burgess, Livesay and Lund (1998) note “...simulations using 
HAL accounted for a variety of semantic and associative word priming effects that can be found in the 
literature...and shed light on the nature of the word relations found in human word-association norm data”. 
 
HAL takes a corpus of text as input and learns a representation of words by accumulating weighted 
associations of co-occurring words in the context of fixed length window. More specifically, given a 
vocabulary of n words drawn from the corpus in question, HAL computes an n x n matrix by moving a 
window of length l over the corpus by one word increments, ignoring punctuation, sentence and paragraph 
boundaries. All words within the window are considered as co-occurring with strength 1. When the counts 
of the sliding window are aggregated, the strength of association between words becomes proportional to 
the distance between the words, because words that are closer together co-occur in more windows. Each 
row i in the matrix represents the accumulated weights of association of words that occur before i within 
context windows. Conversely, column i represents the accumulated weights of association of words that 
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appear after i within context windows. By way of illustration, Table 1 depicts a HAL matrix constructed 
from the text “Beneficial effect of fish oil on blood viscosity” 1, with n = 8 and l = 5. 
 
In the experiments reported later, the row and column in the HAL matrix corresponding to a given word i 
are added together to produce a single vector representation for that word. In the context of Table 1, the 
term “fish” would be represented by (ben: 3, eff: 4, of: 5, fish: 0, oil: 5, bld: 4, visc: 3). The row and 
column vectors are added together, thus combining pre and post co-occurrence counts and resulting in a 
symmetric matrix. The column vectors are then normalized to unit length. A matrix of such representations 
is termed a HAL space.  
 
In practice, different variations of semantic space are possible. For example, stop words such as “the”, 
“on”, “of” etc. may be ignored. Also, HAL is but one scheme for computing term co-occurrence weights. 
Other weighting schemes include log-likelihood (Dunning, 1994) and odds-ratio (Lowe, 2001).  
 
Table 2 shows part of the normalized HAL vector for the word “Raynaud” computed by applying the HAL 
method to a collection of 111,603 titles of core journal documents drawn from the MEDLINE collection 
(the dimensions are ordered by decreasing strength of association). This example demonstrates how a word 
is represented as a weighted vector whose components correspond to other words. The weights represent 
the strengths of association between “Raynaud” and other words it co-occurred with. The Raynaud vector 
is then an aggregated representation of the contexts in which the word “Raynaud” appears within the 
collection.  
 

 ben eff of fish oil on bld visc 

ben         

eff 5        

of 4 5       

fish  3 4  5       

oil 2 3 4 5     

on  1 2  3 4  5    

bld   1  2 3 4 5   

visc    1  2 3 4 5  

Table 1: Example HAL matrix 

 
 

                                                           
1 The example text is derived from the title of a MEDLINE electronic medical document: “Beneficial effect 
of fish oil on blood viscosity in peripheral vascular disease”. 
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Table 2: Raynaud representation via HAL 

 
The quality of HAL vectors is influenced by the window size: the longer the 
window, the higher the chance of representing spurious associations between 
terms. A window size of eight or ten has been used in various studies (Lund 
and Burgess, 1996; Burgess, Livesay and Lund, 1998; Bruza and Song, 2002).  
 
More formally, a semantic space S used in this article is an n x n matrix, where 
n is the size of the term vocabulary. S[i,j] denotes the strength of co-occurrence 
of the terms i and j. The vector representation of a word j is the j’th column of 
S, and is denoted: .  The length of the vector, , is given by: js js
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A vector  is normalized to unit length by dividing each of its components by 
the length of the vector: 

js

Raynaud 
Dimension Value 
nifedipine 0.44 
sleroderma 0.36 
ketanserin 0.22 
synthetase 0.22 
sclerosis 0.22 
prostaglandin 0.22 
dazoxobin 0.22 
E1 0.15 
calcium 0.15 
vasolidation 0.15 
platelet 0.15 
….. …. 
blood 0.07 
viscosity 0.07 
vascular 0.07 
... ... 
fish 0.0  

||
)(

j

j
j s

s
snormalize = .  

 
HAL is an exemplar of a growing ensemble of computational models emerging from cognitive science, 
which are generically referred to as semantic space (Lund and Burgess, 1996; Landauer and Dumais, 1997; 
Patel, Bullinaria and Levy 1997; Burgess, Livesay and Lund, 1998; Landauer, Foltz and Laham, 1998; 
Levy and Bullinaria, 1999; Lowe, 2000; Lowe, 2001; Sahlgren, 2002). The term “semantic” derives from 
the intuition that words seen in the context of a given word contribute to its meaning. Colloquially 
expressed, the meaning of a word is indicated by the “company it keeps” (Kintsch, 2001). Even though 
there is ongoing debate about specific details of the respective models, they all feature a remarkable level 
of compatibility with a variety of human information processing tasks such as word association. Semantic 
spaces provide a geometric, rather than propositional, representation of knowledge. They can be considered 
to be approximations, albeit rather primitive, of the conceptual space proposed by Gärdenfors (2000).  
 
Within a conceptual space, knowledge has a dimensional structure. As described earlier, colour can be 
represented in terms of three dimensions: hue, chromaticity, and brightness. Gärdenfors argues that a 
property is represented as a convex region in a dimensional space.  In terms of the example, the property 
“red” is a convex region within the tri-dimensional space made up of hue, chromaticity and brightness. The 
property “blue” would occupy a different region of this space.  A domain is a set of integral dimensions in 
the sense that a value in one dimension(s) determines or affects the value in another dimension(s). For 
example, the three dimensions defining the colour space are integral since the brightness of a colour will 
affect both its saturation (chromaticity) and hue. Gärdenfors extends the notion of properties to concepts, 
which are based on domains.  The concept “apple” may have domains taste, shape, colour etc. Context is 
modelled as a weighting function on the domains, for example, when eating an apple, the taste domain will 
be prominent, but when playing with it, the shape domain will be heavily weighted (i.e., it's roundness). 
Observe the distinction between representations at the symbolic and conceptual levels. At the symbolic 
level “apple” can be represented as the atomic proposition apple(x), whereas within conceptual space (the 
conceptual level of cognition), it has a representation involving multiple inter-related dimensions and 
domains. Colloquially speaking, the token “apple” (symbolic level) is the tip of an iceberg with a 
representation rich in association within the conceptual level. Gärdenfors points out that the symbolic and 
conceptual representations of information are not in conflict with each other, but are to be seen as “different 
perspectives on how information is described”. 
 
Barwise and Seligman (1997) also propose a geometric foundation to their account of inferential 
information content by use of real-valued state spaces. In their state space, the colour “red” would be 
represented as a point in a tri-dimensional real-valued space. For example, brightness can be modelled as a 
real-value between white (0) and black (1). Integral dimensions are modelled by so called observation 
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functions defining how the value(s) in dimension(s) determine the value in another dimension. Note this is 
a similar proposal, albeit less expressive, to that of Gärdenfors as the representations correspond to points 
rather than regions in the space. 
 
A HAL representation is an approximation of a Barwise and Seligman state space whereby the dimensions 
are words, and there are no observation functions. A word, or combination of words, like a noun compound 
are represented as a point, or vector, in the space. This point represents the ``state" in the context of the 
associated text collection from which the semantics space is learnt. If the collection changes, the state of the 
word may also change. In other words, HAL, and semantic spaces in general, allow for flexible “meanings” 
of words to be represented. These meanings can be studied longitudinally as they evolve over time 
(McArthur and Bruza, 2003). HAL, however, does not make provision for observation functions, so 
integral dimensions cannot be modeled. Despite HAL being a somewhat primitive approximation2 of 
conceptual space, it nevertheless has an encouraging track record of cognitive validity (Burgess, Livesay, 
and Lund, 1998). 
 
From an operational perspective, semantic spaces have been constructed from very large collections of text, 
for example, a corpus of Usenet news comprising 160 million words (Lund and Burgess, 1996), so they 
have a demonstrated track record of knowledge representation in the large.  
 
In short, semantic spaces are a promising, pragmatic means for large-scale knowledge representation.  
Moreover, due to their cognitive credentials, semantic spaces would seem to be apt foundation for 
underpinning computational variants of human reasoning, like abduction. 
 

Abduction from semantic space 
 
Swanson’s Raynaud/fish oil discovery was apparently a coincidence (Weeber et al., 2001). By reading two 
distinct and unconnected literatures for different reasons he was able to make the connection between 
Raynaud’s phenomenon and dietary fish oil. The literatures were bridged via intermediate terms as depicted 
in figure 1 (adapted from Weeber et al. 2001).  The basic architecture of the discovery is summarized by A-
B-C, where C denotes the phenomenon, e.g., Raynaud, and A represents the potential cure, or treatment, 
e.g., fish oil. The discovery between C and A is made by means of intermediate B-terms, e.g., “platelet 
aggregation”, “vascular reactivity” and “blood viscosity”. It is important to keep in mind that the 
connection between C and A is indirect. Statistically it is a weak signal. 
 
 

Fish Oil Raynaud 
 
 
 

      
   
       

Blood viscosity

Platelet aggregation 

Vascular reactivity

A C
 
 
 
 
 
 
 
 

Figure 1: Swanson's Raynuad/fish oil discovery  
 
 
Two modes of discovery underpin the A-B-C scheme: open and closed. The open mode of discovery 
involves the generation of a hypothesis, for example, that “fish oil is a treatment for Raynaud's 
phenomenon”. The open discovery mode involves two steps. Firstly, there is the problem of identifying 

                                                           
2 Gärdenfors (2000) argues that information representation undergoes a large dimensional reduction 
between the subconceptual and conceptual levels of cognition. HAL spaces can have a large dimensionality 
so it could be argued that its representations would correspond to the subconceptual level of cognition. This 
distinction is not relevant to the operational aspects of abduction to be presented in the next section. 
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salient B-terms in relation to the abduction trigger C (Raynaud). Secondly, once salient B-terms have been 
identified, these are then used to make connections to potential A-terms (e.g., fish oil). The closed mode of 
discovery involves the justification of the hypothesis. This account of operational abduction will focus on 
the open mode of discovery. 
 
The open mode of discovery can be implemented in semantic space as follows. A large corpus of 
documents is identified which would contain multiple literature “islands” across a variety of 
specializations. A semantic space is constructed from the corpus, for example, by using HAL. The 
abduction trigger is represented in a semantic space by the C vector (Raynaud). The abduction problem is 
reduced to finding a strong association to the A vector (fish oil). The intuition underlying the open mode of 
discovery is if more of the B-terms are shared by the respective A and C vectors, then the connection 
between A and C is stronger. The dot product of the A and C vectors (in both higher and lower 
dimensionality) is a means of computationally realizing this intuition provided the B-terms are prominently 
weighted in the respective representations: 

∑
=

=⋅
n

k
ji jkSikSss

1
],[].,[  

Alternatively, the cosine between A and C can be calculated in order to bridge the connection between 
them (Gordon and Dumais, 1998). When A and C are both normalized to unit length, cosine equates to dot 
product. 

||||
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ji
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Under the assumption that the B-terms are prominently weighted in the A and C representations,  
another computational means to establish the A-C connection, is to consider A and C as points, and to 
measure the distance between them. The closer the points, the stronger the connection. The Minkowski 
family of metrics includes the Euclidean distance metric (r=2) and is given by: 

r
n

k

rjkSikS∑
=

−=
1
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Euclidean distance (r=2) was employed by Burgess and Lund in their experiments evaluating HAL (Lund 
and Burgess, 1996; Burgess, Livesay and Lund, 1998). 
 
Information flow has shown some promise for computing suggestions relevant to the Raynaud/fish oil 
discovery (Bruza, Song and McArthur, 2004). It is essentially a heuristic asymmetric form of dot product. 
Information flows from a source to a target vector and is motivated from information flow in real-valued 
state spaces, of which HAL is an exemplar (Barwise and Seligman, 1997, Song and Bruza, 2003). 
Information flow thresholds the co-occurrence weight of the source vector, the intuition being that 
prominently weighted dimensions in the source vector contribute the most to its essential “meaning” and 
are thus reliable for underpinning the flow computation. Information flow measures how well these 
prominent dimensions map into the target vector: 

∑
∑

∂>

>∧∂>=
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A common setting for the threshold ∂ is the mean weight of non-zero components in source vector . A 
high degree of information flow is achieved when many of the dimensions above the threshold in the 
source vector  are also present in the vector . 

is

is js
 
Abduction and dimensional reduction 
 
Gärdenfors (2000, p220) contends that the information received by the senses and processed by the lower, 
subconceptual level of cognition is high dimensional, rich and unstructured. This statement is strongly 
related to research into consciousness summarized by Gabbay and Woods (2005a), and covered in more 
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detail by Austin (1998). Information-theoretic research suggests that the senses process between 107 and 
1011 bits per second. For any given second, only about 16 to 20 bits of information enter into consciousness 
(Austin, 1998 p278). It is clear that a lot is going on “down below”. In the light of this, Gärdenfors reflects, 
“What is needed is some way of transforming the input into a mode that can be handled on the conceptual 
or symbolic level. This basically involves finding a more economic form of representation: going from the 
subconceptual to the conceptual level usually involves a reduction of the number of dimensions that are 
represented” (Italics in the original). Gärdenfors’ reflection is clearly in tune with Gabbay and Woods’ 
(2003) conjecture mentioned earlier - practical reasoning, like abduction, has its roots in cognitive 
economy.  
 
The connection between dimensional reduction and cognition also appears to have an operational reflection 
in semantic space. For example, the reduction of semantic spaces into a lower dimensionality via singular 
value decomposition (SVD) has facilitated the replication of a number of cognitive effects, most notably in 
the semantic space model produced by Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997; 
Landauer, Foltx and Laham, 1998). In this connection, Burgess, Livesay and Lund (1998, p219) also 
mention that some of the cognitive effects replicated using a 140,000 dimension HAL semantic space, 
could also have been achieved within a dimensionality of one or two hundred. 
 
The relation between SVD and operationally abducing Swanson-like discoveries is the following. In text, 
some terms are not explicitly mentioned, but remain implicit to the discourse. A vector representation of a 
term t in a lower dimensional space includes weighted associations corresponding to the strength of 
“guesses” regarding how strongly terms implicitly co-occur with t. For example, the value in the “fish” 
component of the Raynaud vector in table 2 is zero as “fish” never explicitly co-occurs with the term 
“Raynaud” because the two literatures were disjoint. However, when the corresponding HAL space of 
28,779 dimensions is reduced to a dimensionality of 50 by SVD, the corresponding Raynaud vector in the 
reduced space shows a weight of 0.00054 in the fish component. Admittedly this weight is small in an 
absolute sense, but nevertheless promotes the component “fish” to within the top 1143 out of 28,779 (4%) 
components within the Raynaud vector. This effect, can be viewed as an operational realization of “hasty'', 
or pre-inductive generalization (Gabbay and Woods, 2003). Pre-indictive generalisation is mechanism for 
producing suggestions, and is therefore relevant to abduction. 
 
SVD is a powerful technique from linear algebra (Golub and Van Loan, 1996). The SVD theorem states 
that any nxm matrix S with rank r can be decomposed into three matrices: where U and V are 
unitary nxr and mxr matrices respectively.  is an rxr diagonal matrix whose values are monotonically 
increasing singular values of S. The columns of U and V are the eigenvectors of SS

TUDVS =
D

T and STS respectively. 
 
Dimensional reduction is performed by taking only the first k eigenvectors (k < m) and singular values to 
approximate S by Sk=UkDkVk

T, where Uk and Vk are nxk and mxk matrices composed of the first k columns 
of U and V respectively. The Eckart-Young theorem states that Sk is the closest rank-k approximation to S 
in the sense of the matrix 2-norm. Stated formally, 
 

2)(
min BSS

kBrankk −=
=

 

 
An intuition which can be ascribed to the Eckhart-Young theorem is that SVD tries to capture as much of 
the variation in the data in S within the given number of dimensions (k). Bear in mind that data often 
exhibits regularities, for example, clustering. One of the assumptions behind semantic space models is that 
words with similar “meanings” will tend to cluster. In this connection, consider figure 2. The left hand 
cluster contains 30 points in 3D and the right hand cluster 20 points. Dimensional reduction from 3D to 2D 
involves projecting the points down onto the 2D plane defined by the 2 eigenvectors, which define the axes 
of the plane. Observe how the first eigenvector drives an axis between the two clusters, with a bias towards 
the left cluster as it has more points. The second eigenvector drives an axis along the two clusters. It is as if 
the first eigenvector functions like a weighted average of the two clusters thus giving a global 
representation encompassing the two clusters. The second tries to capture the remaining variation by 
positioning itself optimally so the separation between points in 3D is also manifested when projected down 
on this second axis (eigenvector). The Eckhart-Young theorem essentially says that the low dimensional 
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subspace is conditioned so as to preserve as much as possible, on average, the length of vectors that are 
projected into it. 
 
 

Figure 2: Eigenvectors in 2D generated from 3D data points 

Generalizing the above example to n dimensions leads to the intuition that the lower dimensional 
approximation to S yields to “guesses” of (implicit) term co-occurrence. If a group of terms commonly co-
occur together then they are likely to be combined together in an eigenvector. This has the effect that if one 
of these terms occurs in a document then the other terms will also be included. This effect causes Sk to have 
non-zero entries where S had zero values, the positive weight in Sk reflecting the strength of the pre-
inductive generalization.  
 
SVD is used as the basis of Latent Semantic Analysis which has a promising track record of cognitive 
validity across a number of information processing tasks. Landauer, Foltz and Laham (1998) allude to 
SVD’s abductive capability as follows, “This text segment [Y] is best described as having so mush of 
Abstract Concept 1 and so much of Abstract Concept 2, and this word [X] has so much of Concept 1 and so 
much of Concept 2, and combining those two pieces of information, my best guess is that word X actually 
appeared 0.6 times in context Y” (Emphasis ours). An “abstract concept” is related to the spectral 
decomposition of SVD: 
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where the column vectors u of U and v of V are interpreted as describing abstract concepts, and σ is a  
singular value along the diagonal in D. The notion of “abstract concept” is a reference to eigenvector and 
has an intriguing ring to it. Ding (2005) refers to the reduced space as “intrinsic semantic space”, 
presuming the projection is optimal3. Are, then, the axes (eigenvectors) of the reduced space, the 
fundamental axes of “meaning” embedded in matrix S? The literature tends toward the agnostic in relation 
to this fascinating question, notwithstanding LSA’s track record. We feel, however, that there is quite some 
mileage left in this question when it is placed in an abductive perspective. Principal component analysis 

                                                           
3 “Optimal” can best be conceived of in relation to a specific task. For example, using semantic space to 
replicate human word association norms. 
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(PCA) is kindred technique to SVD. Gärdenfors (2000, p242) observes, “Thus the first principal component 
(read eigenvector) is the spatial direction in the data set that has the highest variation and is thus the 
maximally “explanatory” dimension”. Gärdenfors admits that equating variation to explanatory power is 
debatable, but nevertheless the question beckons as to whether eigenvectors in reduced space support the 
inference of  Swanson-like explanatory hypotheses. This question will be taken up again in the context of 
the experimental results presented in the next section. 
 
SVD can be used for operational abduction in the same way in the reduced space as is done in the non-
reduced space. The association mechanisms presented above can be used in the reduced space to compute 
potential A-C connections. 
 
In summary, this section has detailed a number of mechanisms for computing associations from semantic 
spaces. The next section reports on how they perform in the context of operational abduction by assessing 
their ability to replicate the Swanson Raynaud/fish oil discovery. 
 

Abduction at work 
 
The experiments reported in this section summarize results and insights gleaned from our attempts to 
operationally abduce the Swanson Raynaud/fish oil discovery from semantic spaces (Bruza, Song and 
McArthur, 2004; Cole et al., 2005). In the construction of a semantic space from a text corpus, there are a 
variety of operational decisions to be made. For example: which stop word list to use, whether or not to 
stem terms, which term weighting best fosters discovery, which mechanism to use to discover potential A-
C connections, and whether or not to employ dimensional reduction. Many of these decisions have to do 
with reducing, or conditioning the space to emphasize those dimensions likely to bear on the discovery. 
Fundamentally, this has much to do with the problem of relevance, which will be addressed shortly. The 
goal of the experiments is to evaluate the effect of these decisions on the open discovery problem. 
 
A corpus of 111,603 MEDLINE core clinical journal articles from the period 1980-1985. (This period is 
before Swanson’s discovery). Only the titles of the articles were used as Swanson's original discovery was 
made solely on the basis of document titles.  
 
Two stop words lists were employed: A standard collection of stop words commonly used in information 
retrieval experiments and a list of tailoured stop words for literature based discovery from Swanson’s 
Arrowsmith system (Swanson and Smalheiser, 1997). After applying the normal stop word list there were 
34,716 distinct words in the collection, while after applying the Arrowsmith stop words the number of 
distinct words fell to 28,779. Three weighting schemes were used: HAL, log-likelihood, odds-ratio. Three 
discovery mechanisms were employed: Cosine, Euclidean distance, Information flow. The semantic space 
was optionally reduced in dimension using singular value decomposition. Stemming was found to have 
little or no positive impact on the results and so all results reported are from experiments performed without 
stemming. 
 
Discovery of B-terms 
 
The guiding intuition behind the discovery of B-terms follows Gordan and Lindsay’s conjecture that the 
best B-terms are those that are semantically and statistically close to the C-term  (Gordon and Lindsay, 
1996).  This view was supported by Gordon and Dumais, where a semantic neighbourhood4 was computed 
around the Raynaud vector in a lower dimensional space computed via SVD (Gordon and Dumais, 1998). 
We have found in our experiments that priming the semantic space with log-likelihood weighting and then 
ranking all the dimensions within the C vector on decreasing weight has encouraging success in promoting 
salient B-terms (“platelet”, “vascular”, “blood”, “viscosity”), irrespective of whether the stop words are 
tailoured, or not (Cole et al., 2005) . The semantic space was not reduced.  This result is welcome as it 

                                                           
4 The cosine of the C vector and all other vectors are computed and ranked on decreasing order of cosine. 
The vectors of terms semantically related to C are typically highly ranked. 
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removes the computational cost of computing both the semantic neigbourhood and performing dimensional 
reduction. In addition, log-likelihood weighting may reduce the dependency on tailoured stop words, which 
are time consuming to manually compile and maintain. 
 
Discovery of the A-C connection 
 
Once a set of B−terms has been discovered, they can be used to prime an A − C discovery in the following 
way. The C vector (corresponding to “Raynaud”) is normalized to unit length. Thereafter, those dimensions 
corresponding to the B−terms are given a maximal weight of one. This corresponds to the situation where 
the scientist is giving positive relevance feedback with respect to those terms (s)he assesses as salient to 
addressing the phenomenon represented by C. In the results reported below, the known B−terms “blood”, 
“viscosity”, “vascular”, and “platelet” were boosted manually. Cosine and Euclidean distance are measured 
to all terms in the vocabulary, and ranked. Terms that co-occur in a title with Raynaud are discarded from 
the ranking as only indirect connections are of interest. The ranks of the terms “fish” and “oil” are then 
inspected. Both the actual rank, and the percentage distance from the top of ranking are reported. 
Comparisons with the information flow metric are made on the basis of previously published results. 
 
 

Semantic Space fish oil 

Cosine, Normal, HAL 368 (1.06%) 982 (2.83%) 

Cosine, Normal, LL 4493 (12.94%) 374 (1.08%) 

Cosine, Normal, Odds 197 (0.57%) 445 (1.28%) 

Cosine, ARR., HAL 515 (1.79%) 915 (3.18%) 

Cosine, ARR., LL 700 (2.43%) 270 (0.94%) 

Cosine, ARR., Odds 346 (1.20%) 384 (1.33%) 

Eucl., Normal, HAL 89 (0.26%) 35 (0.10%) 

Eucl., Normal, LL 13254 (38.18%) 363 (1.05%) 

Eucl., Normal, Odds 12 (0.03%) 5 (0.01%) 

Eucl., ARR, HAL 23 (0.08%) 14 (0.05%) 

Eucl., ARR., LL 9016 (31.33%) 100 (0.35%) 

Eucl., ARR., Odds 5 (0.02%) 4 (0.01%) 

Flow, ARR, HAL 17 (.06%) 27 (0.09%) 
 

Table 3: A-C similarities in higher space after boosting B−term weights in the Raynaud vector. 

 
Discovery based on Euclidean distance in a semantic space primed with odds ratio terms weights 
performed outstandingly well by promoting both “fish” and “oil” to a very high degree. It does not depend 
on tailoured stop words, which is a significant benefit. It should be noted that all of the successful 
replications of the Raynaud/fish oil discovery of which the authors are aware, have relied on external props, 
like specialized stop words, external knowledge sources, or significant manual intervention. Information 
flow also showed encouraging performance, but its performance depends on tailoured stop words. Overall, 
the results suggest that once relevant B-terms have been indentified, it is certainly possible to bridge the A-
C connection by operational means. 
 
The effect of dimensional  reduction 
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Despite SVD’s inherent abductive character, its performance in replicating the Swanson discovery is 
disappointing (Gordon and Dumais, 1998). It has had more notable success in discovering B-terms. Table 4 
depicts the Raynaud vector of Table 2 in a reduced space of 50 dimensions computed by SVD. Note how a 
couple of the salient B-terms have been significantly promoted, in particular “platelet” and “blood” which 
occur at positions 1 and 6 respectively. These terms however have been promoted at the expense of 
“viscosity” which is a relatively rare term within the corpus. SVD, because it tries to capture as much 
variation in the data as quickly as possible, tends to neglect infrequent terms in lower dimensions. 
Dimensional reduction has also introduced spurious terms such as “cancer” and “chemotherapy” into the 
Raynaud vector due to the co-occurence of these terms with the terms that Raynaud co-occurs with. These 
can be characterised as pre-inductive generalizations that went wrong. Note also that dimensional reduction 
has produced a small non-zero entry for fish. While small, this value is within the top 4% of the values in 
the Raynaud vector. 

 
Table 4: Raynaud vector in the 
low dimensional space (k=50) 
 

We found that when the Arrowsmith stop words were used 
dimensional reduction did improve the strength of the A—C 
connection. However the improvement was much less that achieved 
by boosting salient B-terms. When the normal stop words were used, 
dimensional reduction reduced the strength of the A—C connection. 
This is because the reduced space becomes dominated by terms such 
as “patient” and “trial” that are not relevant to the A—C connection. 
All in all, this suggests that SVD is sensitive to the frequency bias of 
more commonly occurring terms. While dimensional reduction using 
SVD clearly has abductive capability, more research is required to 
properly harness it’s capability. SVD’s intriguing potential is 
succinctly expressed by Landauer, Foltz and Laham (1998), “The 
relationships inferred by LSA are also not logically defined, and they 
are not assumed to be consciously rationalizable as these could be. 
Instead, they are relations of similarity – or of context sensitive 
similarity – but they nevertheless have mutual entailments of the 
same general nature and also give rise to fuzzy indirect inferences 
that may be weak or strong and logically right or wrong”. 

 

 
 
 

platelet 0.17 

pulmonary 0.07 

renal 0.07 

cancer 0.07 

lung 0.07 

blood 0.07 

ventricular 0.07 

chemotherapy 0.07 

….   

fish 0.00075 

The Architecture of an Abductive Knowledge Discovery system 
 
There have been quite a number of attempts at replicating the Swanson’s Raynaud/fish oil discovery and a 
subsequent discovery linking migraines with magnesium (Gordon and Lindsay, 1996; Swanson and 
Smalheiser,  1997; Gordon and Dumais, 1998; Weeber et al., 2001; Bruza, Song and McArthur, 2004; 
Srinivasan, 2004, Cole et al., 2005). Most have not positioned their work from an abductive perspective. In 
addition, there is a great variation in the technical details of the operational systems involved. In this 
section, the architecture of abduction is motivated from a cognitive perspective. This architecture not only 
serves as a high level blue print for operational abduction, but also provides a framework for general 
discussion regarding previous work. 
 
Gabbay and Woods (2005b) contend that the (human) abductive reasoner solves “The Cut Down” problem. 
This can be imagined as funnel taking a space of possibilities and refining them through successive filters 
until the hypothesis, (or hypotheses), to be discharged, comes dripping out as a premiss (or premises). More 
specifically, Gen is a sublogic of hypothesis generation, resulting in a space of hypotheses S. The members 
of S are each a “possible hypothesis for possible conjecture”. Next, the engagement sublogic, Engage, 
engages those elements of S relevant to the abduction problem at hand. The result of Engage is a proper 
subset of S, namely R, the set of relevant hypotheses for possible conjecture. In turn, the plausibility filter 
contracts R to a set of possibilities for actual conjecture, represented by P. Finally, the discharge sublogic 
Dis transforms the plausible hypotheses into a premise (or premises) by subjecting it (or them) to a test 
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filter of which Woods and Gabbay identify two varieties: “The filter of independent confirmation” and 
“The filter of theoretical fruitfulness”. The distinction between hypothesis and premise is important. 
Swanson may have actually conjectured several hypotheses in relation to Raynaud’s, but “fish oil” was the 
only premiss he discharged by writing an article. In summary, the triple (S, R, P) represents a filtration 
structure on the initial space of possibilities, in which succeeding spaces are cut downs of their 
predecessors. 
 
It is apparent from the literature, and from the experiments documented in the previous section, that it is not 
difficult to come up with operational variants of Gen producing S. For example, cosine, Euclidean distance, 
and information flow are all examples of mechanisms for operationally realizing the sublogic Gen. The real 
challenge is gaining sufficient operational command of the relevance filter. Relevance is a subtle, 
multidimensional and dynamic concept. By way of illustration, the “Nifedepine” dimension in the Raynaud 
HAL vector of table 2 expresses a relevant, strong association, as Nifedepine was used as a treatment for 
Raynaud’s phenomenon in clinical trials, without success. Bear in mind, however, this association is not 
relevant for finding a treatment for Raynaud’s. Therefore, this association should not figure highly, if at all, 
in operational mechanisms trying to make the discovery. Such subtlety is very hard to determine 
operationally. For this reason, many of the systems cited above resort to specially tailored stopword lists, 
and/or external sources of knowledge like the MeSH (Medical Subject headings) or Unified Medical 
Language Systems (UMLS) in order to grapple with relevance. Substantial manual intervention is often 
required, for example, the compilation of tailoured stopword lists. There is a significant cost in the 
deployment of such measures, so the question arises whether the reliance on them can be lessened, or even 
removed. Preliminary indications from statistical term-weighting in semantic spaces point to an 
encouraging possibility for gaining operational command of relevance without relying on external props or 
large amounts of manual intervention. More substantive experiments are needed to bear this out. It is likely, 
however, that statistical term weighting will only turn out to be a partial solution to operational relevance. 
 
In operational systems, Gen and Engage are confounded. The generation sublogic Gen, propped up with ad 
hoc mechanisms to cope with the relevance problem produces rankings of terms or phrases (the 
hypotheses) with the implicit assumption that the ranking function is also a ranking in the plausibility of the 
hypotheses. The scientist would peruse such rankings and identify those suggestions for actual conjecture. 
Therefore, the plausibility filter P is ultimately performed by the scientist using the system. However, the 
system can provide support for this, for example, by providing explanatory facilities of why the system 
determined a suggestion A to be highly ranked in relation to the abduction trigger C. Such operational 
support has been termed the “closed mode of discovery”. Similarly, the discharge sublogic Dis is the 
province of the human scientist. Again the system can provide a supporting role, for example, by retrieving 
a focused sub-collection of documents to aid the determination of “theoretical fruitfulness”. 
 
It would be a mistake to conceive of operational abduction as a linear filtration process. We envisage it to 
be an interactive process incorporating feedback to condition vector representations. By way of illustration, 
the scientist can first browse suggestions for B-terms from the system in relation to the abduction trigger C, 
use his or her background knowledge to enhance these suggestions, or change their weights. Consider 
“blood viscosity”. Curiously, this has a weak statistical association with Raynauds’ in the underlying 
corpus. The scientist could boost the respective weights reflecting background knowledge of its 
importance. In an operational setting this amounts to the scientist interactively applying a context function 
to the weights in the C vector. The conditioned C vector can then be used to compute A-C suggestions.  
 

Summary and future work 
 
In the introduction we asserted the need for abductive knowledge discovery systems to enhance our 
awareness in light of the information explosion. For example, by providing creative suggestions spanning 
disparate islands of knowledge. We have argued that a principled and pragmatic approach to operational 
abduction can be taken from a cognitive perspective. Two questions were raised: How should the 
knowledge be represented and how to generate and justify the hypotheses? In relation to the first question, 
semantic spaces have been presented as an approximation, albeit primitive, of the conceptual level of 
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cognition, which harbours geometric (dimensional) representations of information. In addition, semantic 
spaces offer a computationally attractive knowledge representation, which circumvents the operational 
challenges of symbolic knowledge representation. In relation to the second question, it has been speculated, 
for reasons of cognitive economy, that abduction is rooted in conceptual level of cognition, where inference 
has a natural associational, analogical character. Various mechanisms were detailed which compute 
hypotheses by association within semantic space. Operational abduction was illustrated by implementing 
Swanson’s A-B-C discovery scheme and showing promising results in semi-automatically replicating his  
Raynaud/ fish oil discovery from a semantic space derived from a corpus of biomedical literature. 
 
Future work will be directed at going beyond the A-B-C discovery scheme. Dunbar (1999) concludes from 
cognitive studies that scientists frequently resort to analogies when there is not a straightforward answer to 
their current problem. Analogical reasoning plays an important role in hypothesis formation. The question 
is how to generate analogies from semantic space. In this connection, the work of Eliasmith and Thagard 
(2001) provides an interesting avenue for further exploration. They present a computational model for 
replicating colloquial analogies by vector convolutions in a dimensional space. The holographic reduced 
representations (HRRs) used for this purpose are somewhat akin to those found in semantic spaces.  
 
 A criticism that can be leveled at the “flat”, dimensional representations of a semantic space is the lack of 
structural relationships. This is a fair criticism of semantic space, but not of the conceptual level of 
cognition, which does cater for these. Our goal is to first ascertain how far semantic spaces can be exploited 
without recourse to structural relationships. 
 
A major challenge facing abductive systems is gaining operational command of relevance: It is easy to 
generate hypotheses; far harder is it to generate relevant hypotheses (while at the same time excluding 
those that aren’t). From a cognitive perspective it seems that relevance and dimensional reduction are 
inextricably bound as information passes from the subconceptual to conceptual level of cognition. 
Experiments, thus far, with dimensional reduction of semantic space have not been promising in producing 
the operational equivalent, however, more research in this area is certainly warranted. 
 
Finally, it is important to stress that the view of abduction presented in this account does not rest on 
traditional conception of logic. Gabbay and Woods (2003, p63) speculate that a logic of “down below” 
could be “a logic of semantic processing without rules”. We feel that abduction from semantic spaces falls 
very much within the ambit of such speculation and actually reinforces it. In turn, this view of a ``logic" is 
also aligned with C.S. Peirce's view of abduction: ``No reason whatsoever can be given for it [abduction], 
as far as I can discover; and it needs no reason, since it merely offers suggestions" (Peirce Edition Project, 
1998, p217). 
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